Ontario utilities want compensation for conservation

By Toronto Star


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Ontario's local hydro utilities are eager for the province to tell them how they'll be compensated if they encourage their customers to save power — and lose money as a result.

A coalition of the big utilities from Greater Toronto and Hamilton told the Legislature social affairs committee recently that the proposed legislation doesn't address that key concern.

Local utilities now receive a fee for every kilowatt-hour of power they deliver to their customers. If they encourage conservation and reduce the volume of power they deliver, they lose revenue and probably profits.

"We're willing to work shoulder to shoulder with the government to make sure conservation goes 100 per cent," said Gunars Ceksters, who acted as spokesperson for the group. "But we want to make sure that there's some mechanism for recovery."

Ceksters, who is chief executive of Enersource Corp., which owns Enersource Hydro Mississauga, spoke in an interview after addressing the committee in Ottawa.

Energy Minister Dwight Duncan has said he wants to create a "conservation culture" in the province.

But while natural gas utilities are able to reap financial rewards if they meet conservation targets, the new legislation doesn't set up a similar system for electric utilities.

Many of the legislation's proposals are welcome — such as setting up a new system of stable but market-based pricing for consumers — but the potential revenue loss is a problem, he said.

"We're willing to work with it, but not if we're going to be losing our revenue," Ceksters said. "Why would we start turning our meters off, so to speak?"

The utilities and the Independent Electricity Market Operator, or IMO, do not appear enthusiastic about the proposed Ontario Power Authority. The authority would draw up a long-term power plan for the province, and would have the power to sign long-term contracts with generators to ensure its delivery.

The big utilities said the authority should be "transitional" and the province should consider phasing it out or scaling it back eventually.

"There are a lot of bureaucratic agencies now in place," Ceksters said.

"We're just concerned that creating an additional agency will make it difficult for the market to work properly."

Dave Goulding, chief executive of the IMO, noted that both the IMO and the power authority will have responsibility for electricity planning.

Utilities and generators could get mixed signals if the IMO's plans for the shorter term don't mesh well with the power authority's longer-term plans, he said.

There's also a danger of the two agencies duplicating planning staffs, he said.

The IMO, which already has a planning staff, could contract to do much of the power authority's work according to the authority's directives, Goulding suggested.

Related News

The Need for Electricity During the COVID-19 Pandemic

US utilities COVID-19 resilience shows electric utilities maintaining demand stability, reaffirming earnings guidance, and accessing the bond market for low-cost financing, as Dominion, NextEra, and Con Edison manage recession risks.

 

Key Points

It is the sector's capacity to sustain demand, financing access, and guidance despite pandemic recession pressures.

✅ Bond market access locks in low-cost, long-term debt

✅ Stable residential load offsets industrial weakness

✅ Guidance largely reaffirmed by major utilities

 

Dominion Energy (D) expects "incremental residential load" gains, consistent with COVID-19 electricity demand patterns, as a result of COVID-19 fallout. Southern Company CEO Tom Fanning says his company is "nowhere near" a need to review earnings guidance because of a potential recession, in a region where efficiency and demand response can help level electricity demand for years.

Sempra Energy (SRE) has reaffirmed earnings per share guidance for 2020 and 2021, as well timing for the sale of assets in Chile and Peru, and peers such as Duke Energy's renewables plan have reaffirmed capital investments to deliver cleaner energy and economic growth. And Xcel Energy (XEL) says it still "hasn’t seen material impact on its business."

Several electric utilities have demonstrated ability to tap the bond market, in line with utility sector trends in recent years, to lock in low-cost financing, as America moves toward broader electrification, despite ongoing turmoil. Their ranks include Dominion Energy, renewable energy leader NextEra Energy (NEE) and Consolidated Edison (ED), which last week sold $1 billion of 30-year bonds at a coupon rate of just 3.95 percent.

It’s still early days for US COVID-19 fallout. And most electric companies have yet to issue guidance. That’s understandable, since so much is still unknown about the virus and the damage it will ultimately do to human health and the global economy. But so far, the US power industry is showing typical resilience in tough times, as it coordinates closely with federal partners to maintain reliability.

Will it last? We won’t know for certain until there’s a lot more data. NextEra is usually first to report its Q1 earnings reports and detailed guidance. But that’s not expected until April 23. And companies may delay financials further, should the virus and efforts to control it impede collection and analysis of data, and as they address electricity shut-off risks affecting customers.

 

Related News

View more

UK price cap on household energy bills expected to cost 89bn

UK Energy Price Guarantee Cost forecasts from Cornwall Insight suggest an £89bn bill, tied to wholesale gas prices, OBR projections, and fiscal policy, to shield households amid the cost of living crisis.

 

Key Points

It is the projected government spend to cap household bills, driven by wholesale gas prices and OBR market forecasts.

✅ Base case: £89bn over two years, per Cornwall Insight

✅ Range: £72bn to £140bn, volatile wholesale gas costs

✅ Excludes 6-month business support estimated at £22bn-£48bn

 

Liz Truss’s intervention to freeze energy prices for households for two years is expected to cost the government £89bn, according to the first major costing of the policy by the sector’s leading consultancy.

The analysis from Cornwall Insight, seen exclusively by the Guardian, shows the prime minister’s plan to tackle the cost of living crisis could cost as much as £140bn in a worst-case scenario.

Truss announced in early September that the average annual bill for a typical household would be capped at £2,500 to protect consumers from the intensifying cost of living crisis amid high winter energy costs and a scheduled 80% rise in the cap to £3,549.

The ultimate cost of the policy is uncertain as it is highly dependent on the wholesale cost of gas, including UK natural gas prices which have soared since Russia’s invasion of Ukraine put a squeeze on already-volatile international markets. Ballpark projections had put the cost anywhere from £100bn to £150bn.

The Office for Budget Responsibility is expected to give its forecast for the bill when it provides its independent assessment of Kwasi Kwarteng’s medium-term fiscal plan, which the chancellor said on Tuesday would still happen on 23 November despite previous reports that it would be brought forward.

Cornwall Insight analysed projections of wholesale market moves to cost the intervention. In its base case scenario, analysts expect the policy to cost £89bn. That assumes the cost of supporting each household would be just over £1,000 in the first year, and about £2,000 in the second year.

The study’s authors said the wholesale price of gas would be influenced by energy demand, the severity of weather, “geo-political uncertainty” and prices for liquified natural gas as Europe seeks to refill storage facilities, which countries have rushed to fill up this winter but which could be relatively empty by next spring.

In the best-case outcome, the policy would cost £72bn, with some projections pointing to a 16% decrease in energy bills in April for households, while the “extreme high” outlook would see the government shell out £140bn to protect 29m UK households.

Gas prices are expected to push even higher if the Kremlin decides to completely cut off Russian gas exports into Europe.

Cornwall Insight’s projection does not include a separate six-month initiative to cap costs for companies, charities and public sector organisations, which is forecast to cost £22bn to £48bn.

The consultancy’s chief executive, Gareth Miller, said the £70bn range in its forecasts reflected “a febrile wholesale market continuing to be beset by geopolitical instability, sensitivity to demand, weather and infrastructure resilience”.

He said: “Fortune befriends the bold, but it also favours the prepared. The large uncertainties around commodity markets over the next two years means that the government could get lucky with costs coming out at the low end of the range, but the opposite could also be true.

“In each case, the government may find itself passengers to circumstances outside its control, having made policy that is a hostage to surprises, events and volatile factors. That’s a difficult position to be in.”

Privacy Notice: Newsletters may contain info about charities, online ads, and content funded by outside parties. For more information see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.
The government has faced criticism, as some British MPs urge tighter limits on prices, that the policy is effectively a “blank cheque” and is not targeted at the most vulnerable in society.

Concerns over how Truss and Kwarteng intend to fund a series of measures, including the price guarantee, have spooked financial markets.

The EU, which has outlined possible gas price cap strategies in recent proposals, said last week it planned to cap the revenues of low-carbon electricity generators at €180 a megawatt hour, which is less than half current market prices. Truss has so far resisted calls to extend a levy on North Sea oil and gas operators to electricity generators, who have benefited from a link between gas and electricity prices in Britain.

Truss hopes to strike voluntary long-term deals with generators including Centrica and EDF, alongside the government’s Energy Security Bill measures, to bring down wholesale prices.

The Financial Times reported on Tuesday that the government has threatened companies with legislation to cap their revenues if voluntary deals cannot be agreed.

 

Related News

View more

Climate change: Electrical industry's 'dirty secret' boosts warming

Sulphur Hexafluoride (SF6) Emissions drive rising greenhouse gas impacts in electrical switchgear, power grids, and renewables, with extreme global warming potential, long atmospheric lifetime, and leakage risks challenging climate targets and grid decarbonization.

 

Key Points

SF6 emissions are leaks from electrical switchgear and grids, a high-GWP gas with ~1,000-year lifetime.

✅ 23,500x CO2 global warming potential (GWP)

✅ Leaks from switchgear, breakers, gas-insulated substations

✅ Clean air and vacuum alternatives emerging for MV/HV

 

Sulphur hexafluoride, or SF6, is widely used in the electrical industry to prevent short circuits and accidents.

But leaks of the little-known gas in the UK and the rest of the EU in 2017 were the equivalent of putting an extra 1.3 million cars on the road.

Levels are rising as an unintended consequence of the green energy boom and the broader global energy transition worldwide.

Cheap and non-flammable, SF6 is a colourless, odourless, synthetic gas. It makes a hugely effective insulating material for medium and high-voltage electrical installations.

It is widely used across the industry, from large power stations to wind turbines to electrical sub-stations in towns and cities.

It prevents electrical accidents and fires.

However, the significant downside to using the gas is that it has the highest global warming potential of any known substance. It is 23,500 times more warming than carbon dioxide (CO2).

Just one kilogram of SF6 warms the Earth to the same extent as 24 people flying London to New York return.

It also persists in the atmosphere for a long time, warming the Earth for at least 1,000 years.

 

So why are we using more of this powerful warming gas?

The way we make electricity around the world is changing rapidly, with New Zealand's push to electrify in its energy system.

Where once large coal-fired power stations brought energy to millions, the drive to combat climate change and to move away from coal means they are now being replaced by mixed sources of power including wind, solar and gas.

This has resulted in many more connections to the electricity grid, and with EU electricity use could double by 2050, a rise in the number of electrical switches and circuit breakers that are needed to prevent serious accidents.

Collectively, these safety devices are called switchgear. The vast majority use SF6 gas to quench arcs and stop short circuits.

"As renewable projects are getting bigger and bigger, we have had to use it within wind turbines specifically," said Costa Pirgousis, an engineer with Scottish Power Renewables on its new East Anglia wind farm, which doesn't use SF6 in turbines.

"As we are putting in more and more turbines, we need more and more switchgear and, as a result, more SF6 is being introduced into big turbines off shore.

"It's been proven for years and we know how it works, and as a result it is very reliable and very low maintenance for us offshore."

 

How do we know that SF6 is increasing?

Across the entire UK network of power lines and substations, there are around one million kilograms of SF6 installed.

A study from the University of Cardiff found that across all transmission and distribution networks, the amount used was increasing by 30-40 tonnes per year.

This rise was also reflected across Europe with total emissions from the 28 member states in 2017 equivalent to 6.73 million tonnes of CO2. That's the same as the emissions from 1.3 million extra cars on the road for a year.

Researchers at the University of Bristol who monitor concentrations of warming gases in the atmosphere say they have seen significant rises in the last 20 years.

"We make measurements of SF6 in the background atmosphere," said Dr Matt Rigby, reader in atmospheric chemistry at Bristol.

"What we've seen is that the levels have increased substantially, and we've seen almost a doubling of the atmospheric concentration in the last two decades."

 

How does SF6 get into the atmosphere?

The most important means by which SF6 gets into the atmosphere is from leaks in the electricity industry.

Electrical company Eaton, which manufactures switchgear without SF6, says its research indicates that for the full life-cycle of the product, leaks could be as high as 15% - much higher than many other estimates.

Louis Schaeffer, electrical business manager at Eaton, said: "The newer gear has very low leak rates but the key question is do you have newer gear?

"We looked at all equipment and looked at the average of all those leak rates, and we didn't see people taking into account the filling of the gas. Plus, we looked at how you recycle it and return it and also included the catastrophic leaks."

 

How damaging to the climate is this gas?

Concentrations in the atmosphere are very small right now, just a fraction of the amount of CO2 in the air.

However, the global installed base of SF6 is expected to grow by 75% by 2030, as data-driven electricity demand surges worldwide.

Another concern is that SF6 is a synthetic gas and isn't absorbed or destroyed naturally. It will all have to be replaced and destroyed to limit the impact on the climate.

Developed countries are expected to report every year to the UN on how much SF6 they use, but developing countries do not face any restrictions on use.

Right now, scientists are detecting concentrations in the atmosphere that are 10 times the amount declared by countries in their reports. Scientists say this is not all coming from countries like India, China and South Korea.

One study found that the methods used to calculate emissions in richer countries "severely under-reported" emissions over the past two decades.

 

Why hasn't this been banned?

SF6 comes under a group of human-produced substances known as F-gases. The European Commission tried to prohibit a number of these environmentally harmful substances, including gases in refrigeration and air conditioning, back in 2014.

 

But they faced strong opposition from industries across Europe.

"In the end, the electrical industry lobby was too strong and we had to give in to them," said Dutch Green MEP Bas Eickhout, who was responsible for the attempt to regulate F-gases.

"The electric sector was very strong in arguing that if you want an energy transition, and you have to shift more to electricity, you will need more electric devices. And then you also will need more SF6.

"They used the argument that otherwise the energy transition would be slowed down."

 

What do regulator and electrical companies say about the gas?

Everyone is trying to reduce their dependence on the gas, and US control efforts suggest targeted policies can drive declines, as it is universally recognised as harmful to the climate.

In the UK, energy regulator Ofgem says it is working with utilities to try to limit leaks of the gas.

"We are using a range of tools to make sure that companies limit their use of SF6, a potent greenhouse gas, where this is in the interest of energy consumers," an Ofgem spokesperson told BBC News.

"This includes funding innovation trials and rewarding companies to research and find alternatives, setting emissions targets, rewarding companies that beat those targets, and penalising those that miss them."

 

Are there alternatives - and are they very expensive?

The question of alternatives to SF6 has been contentious over recent years.

For high-voltage applications, experts say there are very few solutions that have been rigorously tested.

"There is no real alternative that is proven," said Prof Manu Haddad from the school of engineering at Cardiff University.

"There are some that are being proposed now but to prove their operation over a long period of time is a risk that many companies don't want to take."

Medium voltage operations there are several tried-and-tested materials. Some in the industry say that the conservative nature of the electrical industry is the key reason that few want to change to a less harmful alternative.

 

"I will tell you, everyone in this industry knows you can do this; there is not a technical reason not to do it," said Louis Schaffer from Eaton.

"It's not really economic; it's more a question that change takes effort and if you don't have to, you won't do it."

 

Some companies are feeling the winds of change

Sitting in the North Sea some 43km from the Suffolk coast, Scottish Power Renewables has installed one of world's biggest wind farms, in line with a sustainable electric planet vision, where the turbines will be free of SF6 gas.

East Anglia One will see 102 of these towering generators erected, with the capacity to produce up to 714MW (megawatts) of power by 2020, enough to supply half a million homes.

Previously, an installation like this would have used switchgear supplied with SF6, to prevent the electrical accidents that can lead to fires.

Each turbine would normally have contained around 5kg of SF6, which, if it leaked into the atmosphere, would add the equivalent of around 117 tonnes of carbon dioxide. This is roughly the same as the annual emissions from 25 cars.

"In this case we are using a combination of clean air and vacuum technology within the turbine. It allows us to still have a very efficient, reliable, high-voltage network but to also be environmentally friendly," said Costa Pirgousis from Scottish Power Renewables.

"Once there are viable alternatives on the market, there is no reason not to use them. In this case, we've got a viable alternative and that's why we are using it."

But even for companies that are trying to limit the use of SF6, there are still limitations. At the heart of East Anglia One sits a giant offshore substation to which all 102 turbines will connect. It still uses significant quantities of the highly warming gas.

 

What happens next ?

The EU will review the use of SF6 next year and will examine whether alternatives are available. However, even the most optimistic experts don't think that any ban is likely to be put in place before 2025.

 

Related News

View more

Tariffs on Chinese Electric Vehicles

Canada EV Tariffs weigh protectionism, import duties, and trade policy against affordable electric vehicles, climate goals, and consumer costs, balancing domestic manufacturing, critical minerals, battery supply chains, and China relations amid US-EU actions.

 

Key Points

Canada EV Tariffs are proposed duties on Chinese EV imports to protect jobs vs. prices, climate goals, and trade risks.

✅ Shield domestic automakers; counter subsidies

✅ Raise EV prices; slow adoption, climate targets

✅ Spark China retaliation; hit exports, supply chains

 

Canada, a rising star in critical EV battery minerals, finds itself at a crossroads. The question: should they follow the US and EU and impose tariffs on Chinese electric vehicles (EVs), after the U.S. 100% tariff on Chinese EVs set a precedent?

The Allure of Protectionism

Proponents see tariffs as a shield for Canada's auto industry, supported by recent EV assembly deals that put Canada in the race, a vital job creator. They argue that cheaper Chinese EVs, potentially boosted by government subsidies, threaten Canadian manufacturers. Tariffs, they believe, would level the playing field.

Consumer Concerns and Environmental Impact

Opponents fear tariffs will translate to higher prices, deterring Canadians from buying EVs, especially amid EV shortages and wait times already affecting the market. This could slow down Canada's transition to cleaner transportation, crucial for meeting climate goals. A slower EV adoption could also impact Canada's potential as an EV leader.

The Looming Trade War Shadow

Tariffs risk escalating tensions with China, Canada's second-largest trading partner. China might retaliate with tariffs on Canadian exports, jeopardizing sectors like oil and lumber. This could harm the Canadian economy and disrupt critical mineral and battery development, areas where Canada is strategically positioned, even as opportunities to capitalize on the U.S. EV pivot continue to emerge across North America.

Navigating a Charged Path

The Canadian government faces a complex decision. Protecting domestic jobs is important, but so is keeping EVs affordable for a greener future and advancing EV sales regulations that shape the market. Canada must carefully consider the potential benefits of tariffs against the risks of higher consumer costs and a potential trade war.

This path forward could involve exploring alternative solutions. Canada could invest in its domestic EV industry, providing incentives for both consumers and manufacturers. Additionally, collaborating with other countries, including Canada-U.S. collaboration as companies turn to EVs, to address China's alleged unfair trade practices might be a more strategic approach.

Canada's decision on EV tariffs will have far-reaching consequences. Striking a balance between protecting its domestic industry and fostering a robust, environmentally friendly transportation sector, and meeting ambitious EV goals set by policymakers, is crucial. Only time will tell which path Canada chooses, but the stakes are high, impacting not just jobs, but also the environment and Canada's position in the global EV race.

 

Related News

View more

Key Ontario power system staff may end up locked down at work sites due to COVID-19, operator says

Ontario IESO COVID-19 Control Room Measures detail how essential operators safeguard the electricity grid with split shifts, backup control centres, real-time balancing, deep cleaning, social distancing, and shelter-in-place readiness to maintain reliable power.

 

Key Points

Measures that protect essential grid operators with split shifts, backup sites, and hygiene to keep power reliable.

✅ Split teams across primary and backup control centres

✅ 12-hour shifts with remote handoffs and deep cleaning

✅ Real-time grid modeling to balance demand and supply

 

A group of personnel key to keeping Ontario's electricity system functioning may end up locked down in their control centres due to the COVID-19 crisis, according to the head of the province's power operator.

But that has so far proven unnecessary with a change-up in routine, Independent Electricity System Operator CEO Peter Gregg said.

While about 90 per cent of staff were sent to work from home on March 13, another 48 control-room operators deemed essential are still going into work, Gregg said in an interview.

"We identified a smaller cohort of critical operations room staff that need to go in to operate the system out of our control centres," Gregg said. "My biggest concern is to maintain their health, their safety as we rely on them to do this critical work."

Some of the operators manage power demand and supply in real time as Ontario electricity demand shifts, by calling for more or less generation and keeping an eye on the distribution grid, which also allows power to flow to and from Ontario's neighbours. Others do scenario planning and modelling to prepare for changes.

The essential operators have been split into eight teams of six each working 12-hour shifts. The day crew works out of a control centre near Toronto and the night shift out of a backup centre in the city's west end, Gregg said.

"That means that we're not having physical hand-off between control room operators on shift change -- we can do it remotely -- and it also allows us to do deep cleansing," Gregg said. "We're fortunate that the way the room is set up allows us to practice good social distancing."

Should it become necessary, he said, bed, food and other on-site arrangements have been made to allow the operators to stay at their workplaces as a similar agency in New York has done.

"If we do need to shelter these critical employees in place, we've got the ability to do so."

IESO is responsible for ensuring a balance between supply and demand for electricity across the province. Because power cannot be stored, the IESO ensures generators produce enough power to meet peak demand while making sure they don't produce too much.

"You're seeing, obviously, commercial demand drop, some industrial demand drop," Gregg said. "But you're also seeing a shift in the demand curve as well, where normally you have people heading off to work and so residential demand would go down. But obviously with them staying home, you're seeing an increase in residential electricity use across the province."

Some utilities have indicated no cuts to peak rates for self-isolating customers, with Hydro One peak pricing remaining in place for now.

IESO also runs and settles the wholesale electricity markets. Market prices are set based on accepted offers to supply electricity, while programs supporting stable electricity pricing for industrial and commercial users can affect costs against forecast demand.

With the pandemic forcing many businesses to close and people to stay home, and provincial electricity relief for families and small businesses in place, typical power needs fallen about seven per cent at a time of year that would normally see demand soften anyway. It remains to be seen whether, and how much, power needs shift further amid stringent isolation measures and the ongoing economic impact of the outbreak.

Gregg said the operator is constantly modeling different possibilities.

"What we do normally is prepare for all of these sort of emergency scenarios, as reflected in the U.S. grid response coverage, and test and drill for these," he said. "What we're experiencing over the last few weeks is that those drills come in handy because they help us prepare for when the real-time situation actually happens."

 

Related News

View more

Hungary's Quiet Alliance with Russia in Europe's Energy Landscape

Hungary's Russian Energy Dependence underscores EU tensions, as TurkStream gas flows, discounted imports, and pipeline reliance challenge sanctions, energy security, diversification, and decoupling goals amid Ukraine war pressures and bloc unity concerns.

 

Key Points

It is Hungary's reliance on Russian gas and oil via TurkStream, complicating EU sanctions and energy independence.

✅ 85% gas, 60% oil imports from Russia via TurkStream pipelines.

✅ Discounted contracts seldom cut bills; security cited by Budapest.

✅ EU decoupling targets hampered; sanctions leverage and unity erode.

 

Hungary's energy policies have positioned it as a notable outlier within the European Union, particularly in the context of the ongoing geopolitical tensions stemming from Russia's invasion of Ukraine. While the EU has been actively working to reduce its dependence on Russian energy sources through an EU $300 billion plan to dump Russian energy, Hungary has maintained and even strengthened its energy ties with Moscow, raising concerns about EU unity and the effectiveness of sanctions.

Strategic Energy Dependence

Hungary's energy infrastructure is heavily reliant on Russian supplies. Approximately 85% of Hungary's natural gas and more than 60% of its oil imports originate from Russia. This dependence is facilitated through pipelines such as TurkStream, which delivers Russian gas to Hungary via Turkey and the Balkans amid Europe's energy nightmare over price volatility and security. In 2025, Hungary's gas imports through TurkStream are projected to reach 8 billion cubic meters, a significant increase from previous years. These imports are often secured at discounted rates, although such savings may not always be passed on to Hungarian consumers.

Political and Economic Considerations

Prime Minister Viktor Orbán has been a vocal critic of EU sanctions against Russia and has consistently blocked EU initiatives aimed at providing military aid to Ukraine, even as Ukraine leans on power imports to keep the lights on. His government argues that Russia's military capabilities make it an unyielding adversary and that a ceasefire would only solidify its territorial gains. Orbán's stance has led to Hungary's isolation within the EU on matters related to the conflict in Ukraine.

Economically, Hungary's reliance on Russian energy has been justified by the government as a means to maintain low energy prices for consumers and ensure energy security. However, critics argue that this strategy undermines EU efforts to achieve energy independence and reduces the bloc's leverage over Russia amid a global energy war marked by price hikes and instability.

EU's Response and Challenges

The European Union has set ambitious goals to reduce its reliance on Russian energy, aiming to halt imports of Russian natural gas by the end of 2027 and prohibit new contracts starting in 2025 while exploring gas price cap strategies to contain market volatility. However, Hungary's continued imports of Russian energy complicate these efforts. The TurkStream pipeline, in particular, has become a focal point in discussions about the EU's energy strategy, as it enables ongoing Russian gas exports to Europe despite the bloc's broader decoupling initiatives.

Hungary's actions have raised concerns among other EU member states about the effectiveness of the sanctions regime and the potential for other countries to exploit similar loopholes. There are calls for stricter policies, including banning spot gas purchases and enforcing traceability of gas origins, and consideration of emergency measures to limit electricity prices to ensure genuine energy independence and reduce overreliance on external suppliers.

Hungary's steadfast energy relationship with Russia presents a significant challenge to the European Union's collective efforts to reduce dependence on Russian energy sources. While Hungary argues that its energy strategy is in the national interest, it risks undermining EU solidarity and the bloc's broader geopolitical objectives. As the EU continues to navigate its energy transition and response to the ongoing conflict in Ukraine, including energy ceasefire violations reported by both sides, Hungary's position will remain a critical point of contention within the union.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified