Remembering the blackout of 2003

By New York Times


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The blackout of 2003 knocked out power in the northeast, affecting cities in eight states and Ontario, Canada. This article appeared in the August 15, 2003 edition of the New York Times:

A surge of electricity to western New York and Canada touched off a series of power failures and enforced blackouts yesterday that left parts of at least eight states in the Northeast and the Midwest without electricity. The widespread failures provoked the evacuation of office buildings, stranded thousands of commuters and flooded some hospitals with patients suffering in the stifling heat.

In an instant that one utility official called ''a blink-of-the-eye second'' shortly after 4 p.m., the grid that distributes electricity to the eastern United States became overloaded. As circuit breakers tripped at generating stations from New York to Michigan and into Canada, millions of people were instantly caught up in the largest blackout in American history.

In New York City, power was shut off by officials struggling to head off a wider blackout. Cleveland and Detroit went dark, as did Toronto and sections of New Jersey, Pennsylvania, Connecticut and Massachusetts. In some areas, the power problems were scattered. The lights remained on in Albany and in Buffalo, but not in nearby suburbs.

Officials worked into the night to put the grid back in operation and restore electric service. Mayor Michael R. Bloomberg said that that the power was back on in parts of Brooklyn, the Bronx and Queens by 11 p.m. - but not Manhattan. ''We're certainly not out of the woods yet,'' the mayor said.

He said that New Yorkers should treat today ''like a snow day'' - listen to the radio and ''exercise your common sense.'' Transit officials said there would be no subway service for the rush hour this morning. Mr. Bloomberg said that he expected the subways to be running eventually today, but that traffic lights might be out of sequence.

''It wouldn't be the worst thing to do to take a day off,'' he said.

The blackout began just after the stock exchanges had closed for the day, a slow summer day of relatively light trading, as thousands of workers were about to head home. Office workers who were still at their desks watched their computer monitors blink off without warning on a hot and hazy afternoon. Soon hospitals and government buildings were switching on backup generators to keep essential equipment operating, and the police were evacuating people trapped in elevators.

Airports throughout the affected states suffered serious disruptions, including the three major airports in the New York metropolitan region, but did not close. Still, delays and cancellations rippled all the way to San Francisco. Federal Aviation Administration officials said the airports in the affected states had switched to emergency power. They said that airliners in the air had not been in danger, although many were rerouted to terminals beyond the blackout.

Thousands of subway passengers in New York City had to be evacuated from tunnels, and commuter trains also came to a halt. Gov. George E. Pataki said that 600 trains were stranded.

Officials said that the cause of the blackout was under investigation but that terrorism did not appear to have played a role. Tom Ridge, the homeland security secretary, met with his advisers in Washington. But Mayor Bloomberg said that there had been ''no evidence of any terrorism whatsoever.''

President Bush, who was in San Diego yesterday, said he planned to order a review of ''why the cascade was so significant.'' He also said the electrical grid might need to be modernized.

''It's a serious situation,'' he said.

''I have been working with federal officials to make sure the response to this situation was quick and thorough and I believe it has been,'' he told reporters.

The office of the Canadian prime minister, Jean Chrétien, initially said the power problems were caused by lightning in New York State but later retracted that. Canadian officials later expressed uncertainty about the exact cause but continued to insist the problem began on the United States side of the border. The Nuclear Regulatory Commission said that the seven nuclear plants in New York and New Jersey and two in the Midwest had shut down automatically when the failure occurred.

Telephone service was disrupted, especially calls to and from cellular phones. Most of the problems, telephone company officials said, had to do with heavy use. Officials said the trouble was compounded by power failures at some cellular transmitters. Cash-dispensing teller machines were also knocked out, so people who did not have cash on hand could not buy flashlights, batteries or other supplies.

The power failure exacted a variety of tolls in Michigan and Ohio, tying up the freeways in Detroit, forcing the cancellation of minor league baseball in Toledo, Ohio, and sending Jennifer M. Granholm, the governor of Michigan, into emergency meetings without the use of lights or computers.

In Times Square in New York, billboards instantly went dark and the city was left without traffic lights and the usual sounds of rush hour. Volunteers directed traffic with mixed success. Some stores in Manhattan closed as cashiers fumbled with registers that no longer toted up purchases. The Metropolitan Museum of Art emptied out, but not before some art lovers had pulled flashlights from backpacks and purses and trained them on paintings.

In a city still jittery from the Sept. 11 terror attack, some people worried as they tried to find their way home. ''All I could think was here we go again - it's just like Sept. 11,'' said Catherine Donnelly, who works at the New York Stock Exchange.

Mr. Pataki said he had ordered the National Guard to assist state and local authorities, but New York City officials said the Guard's aid was not necessary.

Police officials in the city said they first responded as if the power failure had been the work of terrorists, and with the concern that the city was suddenly vulnerable. Heavily armored officers were sent to likely targets and emergency command operations were begun in every borough.

The officials said that the city was mostly calm in the first hours of the blackout, and that every precinct in the city had moved to control traffic at critical intersections.

By midnight, though, the police reported several incidents of looting and bottle throwing in Lower Manhatan and Brooklyn.

So there was no air conditioning, no television, no computers. There was Times Square without its neon glow and Broadway marquees without their incandescence - all the shows were canceled. So was the Mets game against the San Francisco Giants at Shea Stadium. And there was a skyline that had never looked quite the way it did last night: the long, long taut strings of the bridges were dark, the red eyes that usually blink at the very top not red, not blinking.

As the lights came back on, officials estimated that 10 percent of the city's households again had power by 10 p.m. About that time, power was also restored in Newark and Buffalo.

''This is a very, very slow deliberate process, and you have to be very careful how you do it, or you will have the whole system fail again,'' said acting superintendent of New York State police, Wayne E. Bennett.

Mr. Bloomberg said the subways had been evacuated safely and that he believed the rescues of people from stuck elevators had gone smoothly. But one woman, after having walked down 18 flights of stairs at a Midtown office building, collapsed and died as passers-by, rescue workers and paramedics tried to save her.

As the afternoon dragged on with no lights and no word on how soon subways and trains might resume service, some hiked home. Others filled bars. A Kentucky Fried Chicken restaurant on East 14th Street near Avenue B gave away ice cream, one scoop to a customer. The Haagen-Dazs shop near Union Square had a ''power outage sale,'' selling cups and cones for $1 apiece.

Drivers, benefiting from suddenly very essential radios, flashed news bulletins to people in the street. ''It's a major grid, and it's out from Toronto to Ohio,'' Sharon Dennis told a throng that had gathered around her green Ford Taurus on West 34th Street shortly before 6 p.m. ''They say they don't know how long it will take to restore power.''

Mr. Pataki declared a state of emergency, and went to the Office of Emergency Management at the state police headquarters in Albany, where he said he would remain until power was restored.

Mr. Pataki reluctantly recalled one of the two major blackouts of the last 40 years in the Northeast - the 1965 power failure, which left an 80,000-square-mile stretch of the United States and Canada without electricity for as much as 27 hours. ''It wasn't supposed to happen again,'' he said, ''and it has happened again. And there have to be some tough questions asked as to why.''

The Nov. 9, 1965 blackout began with an overloaded relay at a hydroelectric plant in Ontario. That plunged Toronto into darkness, then Syracuse, then four of the five boroughs of New York City, which had been drawing 300,000 kilowatts from the Niagara Mohawk utility in upstate New York. The lights stayed on in parts of Brooklyn and on Staten Island, because of a generating station that was not knocked out.

On July 14, 1977, lightning hit two Con Edison transmission lines north of New York City, tripping relays that soon shut down power plants in the New York metropolitan area. Parts of the city were dark for more than 25 hours, and there was widespread looting.

Yesterday, the North American Electric Reliability Council, which was set up by the utility industry after the blackouts of 1965 to reduce the likelihood of cascading failures, said that power problems were felt throughout the entire eastern interconnection, which covers most of the country east of the Mississippi River. The South was unaffected by the blackout, the council said.

The council had issued its annual summer reliability assessment of the supply of electricity earlier in the year, concluding that the nation should have adequate resources to meet the demand for power this summer. But it warned of possible problems, particularly around New York City, if extreme weather produced unusually heavy demand.

Phillip G. Harris, who is in charge of the consortium that oversees power distribution from New Jersey to the District of Columbia, said the exact cause of the blackout would not be known for some time. ''We have to get into the forensics of it,'' he said. There was high demand for electricity yesterday, he said, ''but it was not any hotter than we had last year.''

He said that his system had recorded a ''massive outflow'' of power to northern New York or Canada shortly after 4 p.m. He said that the surge overloaded power lines that took themselves out of service.

For people with medical problems, the blackout added another layer of anxiety. Emergency rooms were flooded with patients with heat and heart ailments. At Harlem Hospital, a spokeswoman said that a number of pedestrians had been hit by cars because traffic lights were out.

At Jamaica Hospital in Queens, where even emergency power was lost for several hours, a spokeswoman said that officials there had been denied permission to divert patients to other hospitals.

In neighborhoods where memories of the 1977 blackout linger, yesterday did not bring the sounds of that long-ago evening. This time, there was little looting, officials said, and the grinding of iron store gates being forced up and the shattering of glass was absent.

In Bushwick, the Brooklyn neighborhood that was at the center of the vandalism in 1977, Mario Hernandez, a 44-year-old air-conditioner mechanic, remembered the looting well.

''I got five couches, five TV's, two stereo sets, gold chains, everything you could think of,'' he said yesterday, recalling that hot evening when he was 18. ''Even the decent people, the churchgoing people, were taking stuff back then.''

Police officers waited in the 83rd Precinct, on Knickerbocker Avenue. ''So far so good,'' an officer said. ''Nothing out of the ordinary. It's actually quieter than normal.''

There was at least one pocket of trouble: On the Lower East Side, an upscale sneaker store was broken into and one of the owners beaten and bloodied by a group of youths between 11 p.m. and midnight. ''These animals are wrecking my store,'' the owner said.

Related News

Electrifying: New cement makes concrete generate electricity

Cement-Based Conductive Composite transforms concrete into power by energy harvesting via triboelectric nanogenerator action, carbon fibers, and built-in capacitors, enabling net-zero buildings and self-sensing structural health monitoring from footsteps, wind, rain, and waves.

 

Key Points

A carbon fiber cement that harvests and stores energy as electricity, enabling net-zero, self-sensing concrete.

✅ Uses carbon fibers to create a conductive concrete matrix

✅ Acts as a triboelectric nanogenerator and capacitor

✅ Enables net-zero, self-sensing structural health monitoring

 

Engineers from South Korea have invented a cement-based composite that can be used in concrete to make structures that generate and store electricity through exposure to external mechanical energy sources like footsteps, wind, rain and waves, and even self-powering roads concepts.

By turning structures into power sources, the cement will crack the problem of the built environment consuming 40% of the world’s energy, complementing vehicle-to-building energy strategies across the sector, they believe.

Building users need not worry about getting electrocuted. Tests showed that a 1% volume of conductive carbon fibres in a cement mixture was enough to give the cement the desired electrical properties without compromising structural performance, complementing grid-scale vanadium flow batteries in the broader storage landscape, and the current generated was far lower than the maximum allowable level for the human body.

Researchers in mechanical and civil engineering from from Incheon National University, Kyung Hee University and Korea University developed a cement-based conductive composite (CBC) with carbon fibres that can also act as a triboelectric nanogenerator (TENG), a type of mechanical energy harvester.

They designed a lab-scale structure and a CBC-based capacitor using the developed material to test its energy harvesting and storage capabilities, similar in ambition to gravity storage approaches being scaled.

“We wanted to develop a structural energy material that could be used to build net-zero energy structures that use and produce their own electricity,” said Seung-Jung Lee, a professor in Incheon National University’s Department of Civil and Environmental Engineering, noting parallels with low-income housing microgrids in urban settings.

“Since cement is an indispensable construction material, we decided to use it with conductive fillers as the core conductive element for our CBC-TENG system,” he added.

The results of their research were published this month in the journal Nano Energy.

Apart from energy storage and harvesting, the material could also be used to design self-sensing systems that monitor the structural health and predict the remaining service life of concrete structures without any external power, which is valuable in industrial settings where hydrogen-powered port equipment is being deployed.

“Our ultimate goal was to develop materials that made the lives of people better and did not need any extra energy to save the planet. And we expect that the findings from this study can be used to expand the applicability of CBC as an all-in-one energy material for net-zero energy structures,” said Prof. Lee, pointing to emerging circular battery recycling pathways for net-zero supply chains.

Publicising the research, Incheon National University quipped: “Seems like a jolting start to a brighter and greener tomorrow!”

 

Related News

View more

ABO to build 10MW Tunisian solar park

ABO Wind Tunisia 10MW Solar Project will build a photovoltaic park in Gabes with a STEG PPA, fixed tariff, 2,500 m grid connection, producing 18 million kWh annually, targeted for 2020 commissioning with local partners.

 

Key Points

A 10MW photovoltaic park in Gabes with a 20-year STEG PPA and fixed tariff, slated for 2020 commissioning.

✅ 18 million kWh/year; 2,500 m grid tie, 20-year fixed tariff

✅ Electricity supplied to STEG under PPA; 2020 commissioning

✅ Located in Gabes; built with local partners, 10MW capacity

 

ABO Wind has received a permit and a tariff for a 10MW photovoltaic project in Tunisia, amid global activity such as Spain's 90MW wind project now underway, which it plans to build and commission in 2020.

The solar park, in the governorate of Gabes, is 400km south of the country’s capital Tunis and aligns with renewable funding initiatives seen across developing markets.

The developer said it plans to build the project next year in close cooperation with local partners, as regional markets from North Africa to the Gulf expand, with Saudi Arabia boosting wind capacity as well.

ABO Wind department head Nicolas Konig said: “The solar park will produce more than 18 million kilowatt hours of electricity per year and will feed it into the grid at a distance of 2500 metres.”

The developer will conclude an electricity supply contract with the state-owned energy supplier (Societe tunisienne de l’electricite et du gaz (STEG), which will provide a fixed remuneration over 20 years, a model echoed by Germany's wind-solar tender for the electricity fed into the grid.

Earlier this year, ABO Wind had already secured a tariff for a wind farm with a capacity of 30MW in a tender, 35km south-east of Tunis, underscoring Tunisia's wind investments under its long-term plan.

The company is working on half a dozen Tunisian wind and solar projects, as institutions like the World Bank support wind growth in developing countries.

“We are making good progress on our way to assemble a portfolio of several ready-to-build wind and solar projects attractive to investors, as Saudi clean energy targets continue to expand globally,” said ABO Wind general manager responsible for international business development Patrik Fischer.

 

Related News

View more

Alberta set to retire coal power by 2023, ahead of 2030 provincial deadline

Alberta coal phaseout accelerates as utilities convert to natural gas, cutting emissions under TIER regulations and deploying hydrogen-ready, carbon capture capable plants, alongside new solar projects in a competitive, deregulated electricity market.

 

Key Points

A provincewide shift from coal to natural gas and renewables, cutting power emissions years ahead of the 2030 target.

✅ Capital Power, TransAlta converting coal units to gas

✅ TIER pricing drives efficiency, carbon capture readiness

✅ Hydrogen-ready turbines, solar projects boost renewables

 

Alberta is set to meet its goal to eliminate coal-fired electricity production years earlier than its 2030 target, amid a broader shift to cleaner energy in the province, thanks to recently announced utility conversion projects.

Capital Power Corp.’s plan to spend nearly $1 billion to switch two coal-fired power units west of Edmonton to natural gas, and stop using coal entirely by 2023, was welcomed by both the province and the Pembina Institute environmental think-tank.

In 2014, 55 per cent of Alberta’s electricity was produced from 18 coal-fired generators. The Alberta government announced in 2015 it would eliminate emissions from coal-fired electricity generation by 2030.

Dale Nally, associate minister of Natural Gas and Electricity, said Friday that decisions by Capital Power and other utilities to abandon coal will be good for the environment and demonstrates investor confidence in Alberta’s deregulated electricity market, where the power price cap has come under scrutiny.

He credited the government’s Technology Innovation and Emissions Reduction (TIER) regulations, which put a price on industrial greenhouse gas emissions, as a key factor in motivating the conversions.

“Capital Power’s transition to gas is a great example of how private industry is responding effectively to TIER, as it transitions these facilities to become carbon capture and hydrogen ready, which will drive future emissions reductions,” Nally said in an email.

Capital Power said direct carbon dioxide emissions at its Genesee power facility near Edmonton will be about 3.4 million tonnes per year lower than 2019 emission levels when the project is complete.

It says the natural gas combined cycle units it’s installing will be the most efficient in Canada, adding they will be capable of running on 30 per cent hydrogen initially, with the option to run on 95 per cent hydrogen in future with minor investments.

In November, Calgary-based TransAlta Corp. said it will end operations at its Highvale thermal coal mine west of Edmonton by the end of 2021 as it switches to natural gas at all of its operated coal-fired plants in Canada four years earlier than previously planned.

The Highvale surface coal mine is the largest in Canada, and has been in operation on the south shore of Wabamun Lake in Parkland County since 1970.

The moves by the two utilities and rival Atco Ltd., which announced three years ago it would convert to gas at all of its plants by this year, mean significant emissions reduction and better health for Albertans, said Binnu Jeyakumar, director of clean energy for Pembina.

“Alberta’s early coal phaseout is also a great lesson in good policy-making done in collaboration with industry and civil society,” she said.

“As we continue with this transformation of our electricity sector, it is paramount that efforts to support impacted workers and communities are undertaken.”

She added the growing cost-competitiveness of renewable energy, such as wind power, makes coal plant retirements possible, applauding Capital Power’s plans to increase its investments in solar power.

In Ontario, clean power policy remains a focus as the province evaluates its energy mix.

The company announced it would go ahead with its 75-megawatt Enchant Solar power project in southern Alberta, investing between $90 million and $100 million, and that it has signed a 25-year power purchase agreement with a Canadian company for its 40.5-MW Strathmore Solar project now under construction east of Calgary.
 

 

Related News

View more

Disruptions in the U.S. coal, nuclear power industries strain the economy and invite brownouts

Electric power market crisis highlights grid reliability risks as coal and nuclear retire amid subsidies, mandates, and cheap natural gas; intermittent wind and solar raise blackout concerns, resilience costs, and pricing distortions across regulated markets.

 

Key Points

Reliability and cost risks as coal and nuclear retire; subsidies distort prices; intermittent renewables strain grid.

✅ Coal and nuclear retirements reduce baseload capacity

✅ Subsidies and mandates distort market pricing signals

✅ Intermittent renewables increase blackout and grid risk

 

Is anyone paying any attention to the crisis that is going on in our electric power markets?

Over the past six months at least four major nuclear power plants have been slated for shutdown, including the last one in operation in California. Meanwhile, dozens of coal plants have been shuttered as well — despite low prices and cleaner coal. Some of our major coal companies may go into bankruptcy.

This is a dangerous game we are playing here with our most valuable resource — outside of clean air and water. Traditionally, we've received almost half our electric power nationwide from coal and nuclear power, and for good reason. They are cheap sources of power and they are highly resilient and reliable.

The disruption to coal and nuclear power wouldn't be disturbing if this were happening as a result of market forces. That's only partially the case.

#google#

The amazing shale oil and gas revolution is providing Americans with cheap gas for home heating and power generation. Hooray. The price of natural gas has fallen by nearly two-thirds over the last decade and this has put enormous price pressure on other forms of power generation.

But this is not a free-market story of Schumpeterian creative destruction. If it were, then wind and solar power would have been shutdown years ago. They can't possibly compete on a level playing field with $3 natural gas.

In most markets solar and wind power survive purely because the states mandate that as much as 30 percent of residential and commercial power come from these sources. The utilities have to buy it regardless of price, even as electricity demand is flat in many regions. What a sweet deal. The California state legislature just mandated that every new home spend $10,000 on solar panels on the roof.

Well over $100 billion of subsidies to big wind and big solar were doled out over the last decade, and even with the avalanche of taxpayer subsidies and bailout funds many of these companies like Solyndra (which received $500 million in handouts) failed, underscoring why a green revolution hasn't materialized as promised.

These industries are not anywhere close to self sufficiency. In 2017 amid utility trends to watch the wind industry admitted that without a continuation of a multi-billion tax credit, the wind turbines would stop turning.

This combines with the left's war on coal through regulations that have destroyed coal plants in many areas. (Thank goodness for the exports of coal or the industry would be in much bigger trouble.)

Bottom line: Our power market is a Soviet central planner's dream come true and it is extinguishing our coal and nuclear industries.

 

Why should anyone care?

First, because government subsidies, regulations and mandates make electric power more expensive. Natural gas prices have fallen by two-thirds, but electric power costs have still risen in most areas — thanks to the renewable mandates.

More importantly, the electric power market isn't accurately pricing in the value of resilience and reliability. What is the value of making sure the lights don't go off? What is the cost to the economy and human health if we have rolling brownouts and blackouts because the aging U.S. grid doesn't have enough juice during peak demand.

Politicians, utilities and federal regulators are shortsightedly killing our coal and nuclear capacities without considering the risk of future energy shortages and power disruptions. Once a nuclear plant is shutdown, you can't just fire it back up again when you need it.

Wind and solar are notoriously unreliable. Most places where wind power is used, coal plants are needed to back up the system during peak energy use and when the wind isn't blowing.

The first choice to fix energy markets is to finally end the tangled web of layers and layers of taxpayer subsidies and mandates and let the market choose. Alas, that's nearly impossible given the political clout of big wind and solar.

The second best solution is for the regulators and utilities to take into account the grid reliability and safety of our energy. Would people be willing to pay a little more for their power to ensure against brownouts? I sure would. The cost of having too little energy far exceeds the cost of having too much.

A glass of water costs pennies, but if you're in a desert dying of thirst, that water may be worth thousands of dollars.

I'll admit I'm not sure what the best solution is to the power plant closures. But if we have major towns and cities in the country without electric power for stretches of time because of green energy fixation, Americans are going to be mighty angry and our economy will take a major hit.

When our manufacturers, schools, hospitals, the internet and iPhones shut down, we're not going to think wind and solar power are so chic.

If the lights start to go out five or 10 years from now, we will look back at what is happening today and wonder how we could have been so darn stupid.

 

Related News

View more

Alberta shift from coal to cleaner energy

Alberta Coal-to-Gas Transition will retire coal units, convert plants to natural gas, boost renewables, and affect electricity prices, with policy tools like a price cap and carbon tax shaping the power market.

 

Key Points

Shift retiring coal units and converting to natural gas and renewables, targeting coal elimination by 2030.

✅ TransAlta retires Sundance coal unit; more units convert to gas.

✅ Forward prices seen near $40 to low $50/MWh in 2018.

✅ 6.8-cent cap shields consumers; carbon tax backstops costs.

 

The turn of the calendar to 2018 saw TransAlta retire one of its coal power generating units at its Sundance plant west of Edmonton and mothball another as it begins the transition to cleaner sources of energy across Alberta.

The company will say goodbye to three more units over the next year and a half to prepare them for conversion to natural gas.

This is part of a fundamental shift in Alberta, which will see coal power retired ahead of schedule by 2030, replaced by a mix of natural gas and renewable sources.

“We’re going to see that transition continue right up from now until 2030, and likely beyond 2030 as wind generation starts to outpace coal and new technologies become available.”

Coal has long been the backbone of Alberta’s grid, currently providing nearly 40 per cent of the provinces power. Analysts believe removing it will come with a cost to consumers, according to a report on coal phase-out costs published recently.

“The open question over the next couple of years is whether they’re going to inch up gradually, or whether they’re going to inch up like they did in 2012 and 2013, by having periods of very high power prices.”

Albertans are currently paying historically low power prices, with generation costs last year averaging below $23/MWh, less than half of the average of the past 10 years.

A report released in mid-December by electricity consultant firm EDC Associates showed forward prices moving from the $40/MWh in the first three months of 2018, to the low $50/MWh range.

“The forwards tend to take several weeks to fully react to announcements, so its anticipated that prices will continue to gradually track upwards over the coming weeks,” the report reads.

The NDP government has taken steps to protect consumers against price surges. Last spring, a price cap of 6.8 cents/MWh was put in place until the spring of 2021, with any cost above that to be covered by carbon tax revenue.

 

Related News

View more

Prime minister, B.C. premier announce $1B B.C. battery plant

Maple Ridge Lithium-Ion Battery Plant will be a $1B E-One Moli clean-tech facility in Canada, manufacturing high-performance cells for tools and devices, with federal and provincial funding, creating 450 jobs and boosting battery supply chains.

 

Key Points

A $1B E-One Moli facility in B.C. producing lithium-ion cells, backed by federal and provincial funding.

✅ $204.5M federal and up to $80M B.C. support committed

✅ E-One Moli to create 450 skilled jobs in Maple Ridge

✅ High-performance cells for tools, medical devices, and equipment

 

A lithium-ion battery cell production plant costing more than $1 billion will be built in Maple Ridge, B.C., Prime Minister Justin Trudeau and Premier David Eby jointly announced on Tuesday.

Trudeau and Eby say the new E-One Moli facility will bolster Canada's role as a global leader in clean technology, as recent investments in Quebec's EV battery assembly illustrate today.

It will be the largest factory in Canada to manufacture such high-performance batteries, Trudeau said during the announcement, amid other developments such as a new plant in the Niagara Region supporting EV growth.

The B.C. government will contribute up to $80 million, while the federal government plans to contribute up to $204.5 million to the project. E-One Moli and private sources will supply the rest of the funding. 

Trudeau said B.C. has long been known for its innovation in the clean-technology sector, and securing the clean battery manufacturing project, alongside Northvolt's project near Montreal, will build on that expertise.

"The world is looking to Canada. When we support projects like E-One Moli's new facility in Maple Ridge, we bolster Canada's role as a global clean-tech leader, create good jobs and help keep our air clean," he said.

"This is the future we are building together, every single day. Climate policy is economic policy."

Nelson Chang, chairman of E-One Moli Energy, said the company has always been committed to innovation and creativity as creator of the world's first commercialized lithium-metal battery.

E-One Moli has been operating a plant in Maple Ridge since 1990. Its parent company, Taiwan Cement Corp., is based in Taiwan.

"We believe that human freedom is a chance for us to do good for others and appreciate life's fleeing nature, to leave a positive impact on the world," Chang said.

"We believe that [carbon dioxide] reduction is absolutely the key to success for all future businesses," he said.

The new plant will produce high-performance lithium-cell batteries found in numerous products, including vacuums, medical devices, and power and gardening tools, aligning with B.C.'s grid development and job plans already underway, and is expected to create 450 jobs, making E-One Moli the largest private-sector employer in Maple Ridge.

Eby said every industry needs to find ways to reduce their carbon footprint to ensure they have a prosperous future and every province should do the same, with resource plays like Alberta's lithium supporting the EV supply chain today.

It's the responsible thing to do given the record wildfires, extreme heat, and atmospheric rivers that caused catastrophic flooding in B.C., he said, with large-scale battery storage in southwestern Ontario helping grid reliability.

"We know that this is what we have to do. The people who suggest that we have to accept that as the future and stop taking action are simply wrong."

Trudeau, Eby and Chang toured the existing plant in Maple Ridge, east of Vancouver, before making the announcement.

The prime minister wove his way around several machines and apologized to technicians about the commotion his visit was creating.

The Canadian Taxpayers Federation criticized the federal and B.C. governments for the announcement, saying in a statement the multimillion-dollar handout to the battery firm will cost taxpayers hundreds of thousands of dollars for each job.

Federation director Franco Terrazzano said the Trudeau government has recently given "buckets of cash" to corporations such as Volkswagen, Stellantis, the Ford Motor Company and Northvolt.

"Instead of raising taxes on ordinary Canadians and handing out corporate welfare, governments should be cutting red tape and taxes to grow the economy," said Terrazzano. 

Construction is expected to start next June, as EV assembly deals put Canada in the race, and the company plans for the facility to be fully operational in 2028.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.