During the holiday period, the Electrium welcomes you

By Canada News Wire


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The Electrium, Hydro-Québec's electricity interpretation centre, offers a special program of activities for the holiday season.

Film screenings, contests and door prizes have been added to the centre's regular guided tours from December 27 to 30, 2007, and from January 3 to 6, 2008. And of course, all these activities are free!

The Electrium invites young people and their families to take part in an entertaining learning experience as they discover electricity's many aspects: its role in the human body, the origin of lightning, the secrets of electric eels, and how the earth's magnetic field works.

Film screenings are also on the program, including the animated film, Follow the Line, which shows how electricity gets from the power station to your home, and Science, Please!, funny short films on science-related topics produced by the National Film Board.

All visitors could be eligible to win a door prize by participating in a quiz related to the film, Follow the Line. Young people, 5 to 14 years, can also participate in an art contest where the most creative drawings will be rewarded.

The Electrium is located in Sainte-Julie, near Exit 128 off Highway 30, in the Montérégie region. Opening hours for the holiday period are as follows:

- December 27, 28, 29 and 30, 2007 - from 9:30 a.m. to 4 p.m. - January 3, 4, 5 and 6, 2008 - from 9:30 a.m. to 4 p.m.

Related News

Brazilian electricity workers call for 72-hour strike

Eletrobras Privatization Strike sparks a 72-hour CNE walkout by Brazil's electricity workers, opposing asset sell-offs and grid privatization while pledging essential services; unions target President Wilson Ferreira Jr. over energy-sector reforms.

 

Key Points

A 72-hour CNE walkout by Brazil's electricity workers opposing Eletrobras sell-offs, while keeping essential services.

✅ 72-hour strike led by CNE unions and federations

✅ Targets privatization plans and leadership at Eletrobras

✅ Essential services maintained to avoid consumer impact

 

Brazil's national electricity workers' collective (CNE) has called for a 72-hour strike to protest the privatization of state-run electric company Eletrobras and its subsidiaries.

The CNE, which gathers the electricity workers' confederation, federations, unions and associations, said the strike is to begin at Monday midnight (0300 GMT) and last through midnight Wednesday, even as some utilities elsewhere have considered asking staff to live on site to maintain operations.

Workers are demanding the ouster of Eletrobras President Wilson Ferreira Jr., who they say is the leading promoter of the privatization move.

Some 24,000 workers are expected to take part in the strike. However, the CNE said it will not affect consumers by ensuring essential services, a pledge echoed by utilities managing costs elsewhere such as Manitoba Hydro's unpaid days off during the pandemic.

#google#

Eletrobras accounts for 32 percent of Brazil's installed energy generation capacity, mainly via hydroelectric plants. Besides, it also operates nuclear and thermonuclear plants, and solar and wind farms, reflecting trends captured by young Canadians' interest in electricity jobs in recent years.

The company distributes electricity in six northern and northeastern states, and handles 47 percent of the nation's electricity transmission lines, even as a U.S. grid pandemic warning has highlighted reliability risks.

The government owns a 63-percent stake in the company, a reminder that public policy shapes the sector, similar to Canada's future-of-work investment initiatives announced recently.

 

Related News

View more

Ford's Washington Meeting: Energy Tariffs and Trade Tensions with U.S

Ontario-U.S. Energy Tariff Dispute highlights cross-border trade tensions, retaliatory tariffs, export surcharges, and White House negotiations as Doug Ford meets U.S. officials to de-escalate pressure over steel, aluminum, and energy supplies.

 

Key Points

A trade standoff over energy exports and tariffs, sparked by Ontario's surcharge and U.S. duties on steel and aluminum.

✅ 25% Ontario energy surcharge paused before White House talks

✅ U.S. steel and aluminum tariffs reduced from 50% to 25%

✅ Potential energy supply cutoff remains leverage in negotiations

 

Ontario Premier Doug Ford's recent high-stakes diplomatic trip to Washington, D.C., underscores the delicate trade tensions between Canada and the United States, particularly concerning energy exports and Canada's electricity exports across the border. Ford's potential use of tariffs or even halting U.S. energy supplies, amid Ontario's energy independence considerations, remains a powerful leverage tool, one that could either de-escalate or intensify the ongoing trade conflict between the two neighboring nations.

The meeting in Washington follows a turbulent series of events that began with Ontario's imposition of a 25% surcharge on energy exports to the U.S. This move came in retaliation to what Ontario perceived as unfair treatment in trade agreements, a step that aligned with Canadian support for tariffs at the time. In response, U.S. President Donald Trump's administration threatened its own set of tariffs, specifically targeting Canadian steel and aluminum, which further escalated tensions. U.S. officials labeled Ford's threat to cut off U.S. electricity exports and energy supplies as "egregious and insulting," warning of significant economic retaliation.

However, shortly after these heated exchanges, Trump’s commerce secretary, Howard Lutnick, extended an invitation to Ford for a direct meeting at the White House. Ford described this gesture as an "olive branch," signaling a potential de-escalation of the dispute. In the lead-up to this diplomatic encounter, Ford agreed to pause the energy surcharge, allowing the meeting to proceed, amid concerns tariffs could spike NY energy prices, without further escalating the crisis. Trump's administration responded by lowering its proposed 50% tariff on Canadian steel and aluminum to a more manageable 25%.

The outcome of the meeting, which is set to address these critical issues, could have lasting implications for trade relations between Canada and the U.S. If Ford and Lutnick can reach an agreement, the potential for tariff imposition on energy exports, though experts advise against cutting Quebec's energy exports due to broader risks, could be resolved. However, if the talks fail, it is likely that both countries could face further retaliatory measures, compounding the economic strain on both sides.

As Canada and the U.S. continue to navigate these complex issues, where support for Canadian energy projects has risen, the outcome of Ford's meeting with Lutnick will be closely watched, as it could either defuse the tensions or set the stage for a prolonged trade battle.

 

Related News

View more

Canadians Support Tariffs on Energy and Minerals in U.S. Trade Dispute

Canada Tariffs on U.S. Energy and Minerals signal retaliatory tariffs amid trade tensions, targeting energy exports and critical minerals, reflecting sovereignty concerns and shifting consumer behavior, reduced U.S. purchases, and demand for Canadian-made goods.

 

Key Points

They are proposed retaliatory tariffs on energy exports and critical minerals to counter U.S. trade pressures.

✅ 75% support tariffs; 70% back dollar-for-dollar retaliation

✅ Consumer shift: fewer U.S. purchases, more Canadian-made goods

✅ Concerns over sovereignty and U.S. trade tactics intensify

 

A recent survey has revealed that a significant majority of Canadians—approximately 75%—support the implementation of tariffs on energy exports and critical minerals in response to electricity exports at risk amid trade tensions with the United States. This finding underscores the nation's readiness to adopt assertive measures to protect its economic interests amid escalating trade disputes.​

Background on Trade Tensions

The trade relationship between Canada and the United States has experienced fluctuations in recent years, with both nations navigating complex issues related to tariffs and energy tariffs and trade tensions as well as trade agreements and economic policies. The introduction of tariffs has been a contentious strategy, often leading to reciprocal measures and impacting various sectors of the economy.​

Public Sentiment Towards Retaliatory Tariffs

The survey, conducted by Leger between February 14 and 17, 2025, sampled 1,500 Canadians and found that 70% favored implementing dollar-for-dollar retaliatory tariffs against the U.S. Notably, 45% of respondents were strongly in favor, while 25% were somewhat in favor. This strong support reflects widespread dissatisfaction with U.S. trade policies and growing support for Canadian energy projects among voters, alongside a collective sentiment favoring decisive action. ​

Concerns Over U.S. Economic Strategies

The survey also highlighted that 81% of Canadians are apprehensive about potential U.S. economic tactics aimed at drawing Canada into a closer political union. These concerns are fueled by statements from U.S. President Donald Trump, who has suggested annexation and employed tariffs that could spike NY energy prices to influence Canadian sovereignty. Such sentiments have heightened fears about the erosion of Canada's political autonomy under economic duress. ​

Impact on Consumer Behavior

In response to these trade tensions, including reports that Ford threatened to cut U.S. electricity exports, many Canadians have adjusted their purchasing habits. The survey indicated that 63% of respondents are buying fewer American products in stores, and 62% are reducing online purchases from U.S. retailers. Specific declines include a 52% reduction in Amazon purchases, a 50% drop in fast-food consumption from American chains, and a 43% decrease in spending at U.S.-based retail stores. Additionally, 30% of Canadians have canceled planned trips to the United States, while 68% have increased their purchases of Canadian-made products. These shifts demonstrate a tangible impact on consumer behavior driven by nationalistic sentiments and support for retaliatory measures. ​

Economic and Political Implications

The widespread support for retaliatory tariffs and the corresponding changes in consumer behavior have significant economic and political implications. Economically, while tariffs can serve as a tool for asserting national interests, they also risk triggering trade wars that can harm various sectors, including agriculture, manufacturing, and technology, with experts cautioning against cutting Quebec's energy exports in response. Politically, the situation presents a challenge for Canadian leadership to balance assertiveness in defending national interests with the necessity of maintaining a stable and mutually beneficial relationship with the U.S., Canada's largest trading partner.​

As Canada approaches its federal elections, trade policy is emerging as a pivotal issue. Voters are keenly interested in how political parties propose to navigate the complexities of international trade, particularly with the United States and how a potential U.S. administration's stance, such as Biden's approach to the energy sector could shape outcomes. The electorate's strong stance on retaliatory tariffs may influence party platforms and campaign strategies, emphasizing the need for clear and effective policies that address both the immediate concerns of trade disputes and the long-term goal of sustaining positive international relations.​

The survey results reflect a nation deeply engaged with its trade dynamics and protective of its sovereignty. While support for retaliatory tariffs is robust, it is essential for policymakers to carefully consider the broader consequences of such actions. Striking a balance between defending national interests and fostering constructive international relationships will be crucial as Canada navigates these complex trade challenges in the coming years.

 

Related News

View more

TTC Introduces Battery Electric Buses

TTC Battery-Electric Buses lead Toronto transit toward zero-emission mobility, improving air quality and climate goals with sustainable operations, advanced charging infrastructure, lower maintenance, energy efficiency, and reliable public transportation across the Toronto Transit Commission network.

 

Key Points

TTC battery-electric buses are zero-emission vehicles improving quality, lowering costs, and providing efficient service.

✅ Zero tailpipe emissions improve urban air quality

✅ Lower maintenance and energy costs increase savings

✅ Charging infrastructure enables reliable operations

 

The Toronto Transit Commission (TTC) has embarked on an exciting new chapter in its commitment to sustainability with the introduction of battery-electric buses to its fleet. This strategic move not only highlights the TTC's dedication to reducing its environmental impact but also positions Toronto as a leader in the evolution of public transportation. As cities worldwide strive for greener solutions, the TTC’s initiative stands as a significant milestone toward a more sustainable urban future.

Embracing Green Technology

The decision to integrate battery-electric buses into Toronto's transit system aligns with a growing trend among urban centers to adopt cleaner, more efficient technologies, including Metro Vancouver electric buses now in service. With climate change posing urgent challenges, transit authorities are rethinking their operations to foster cleaner air and reduce greenhouse gas emissions. The TTC’s new fleet of battery-electric buses represents a proactive approach to addressing these concerns, aiming to create a cleaner, healthier environment for all Torontonians.

Battery-electric buses operate without producing tailpipe emissions, and deployments like Edmonton's first electric bus illustrate this shift, offering a stark contrast to traditional diesel-powered vehicles. This transition is crucial for improving air quality in urban areas, where transportation is a leading source of air pollution. By choosing electric options, the TTC not only enhances the city’s air quality but also contributes to the global effort to combat climate change.

Economic and Operational Advantages

Beyond environmental benefits, battery-electric buses present significant economic advantages. Although the initial investment for electric buses may be higher than that for conventional diesel buses, and broader adoption challenges persist, the long-term savings are substantial. Electric buses have lower operating costs due to reduced fuel expenses and less frequent maintenance requirements. The electric propulsion system generally involves fewer moving parts than traditional engines, resulting in lower overall maintenance costs and improved service reliability.

Moreover, the increased efficiency of electric buses translates into reduced energy consumption. Electric buses convert a larger proportion of energy from the grid into motion, minimizing waste and optimizing operational effectiveness. This not only benefits the TTC financially but also enhances the overall experience for riders by providing a more reliable and punctual service.

Infrastructure Development

To support the introduction of battery-electric buses, the TTC is also investing in necessary infrastructure upgrades, including the installation of charging stations throughout the city. These charging facilities are essential for ensuring that the electric fleet can operate smoothly and efficiently. By strategically placing charging stations at transit hubs and along bus routes, the TTC aims to create a seamless transition for both operators and riders.

This infrastructure development is critical not just for the operational capacity of the electric buses but also for fostering public confidence in this new technology, and consistent safety measures such as the TTC's winter safety policy on lithium-ion devices reinforce that trust. As the TTC rolls out these vehicles, clear communication regarding their operational logistics, including charging times and routes, will be essential to inform and engage the community.

Engaging the Community

The TTC is committed to engaging with Toronto’s diverse communities throughout the rollout of its battery-electric bus program. Community outreach initiatives will help educate residents about the benefits of electric transit, addressing any concerns and building public support, and will also discuss emerging alternatives like Mississauga fuel cell buses in the region. Informational campaigns, workshops, and public forums will provide opportunities for dialogue, allowing residents to voice their opinions and learn more about the technology.

This engagement is vital for ensuring that the transition is not just a top-down initiative but a collaborative effort that reflects the needs and interests of the community. By fostering a sense of ownership among residents, the TTC can cultivate support for its sustainable transit goals.

A Vision for the Future

The TTC’s introduction of battery-electric buses marks a transformative moment in Toronto’s public transit landscape. This initiative exemplifies the commission's broader vision of creating a more sustainable, efficient, and user-friendly transportation network. As the city continues to grow, the need for innovative solutions to urban mobility challenges becomes increasingly critical.

By embracing electric technology, the TTC is setting an example for other transit agencies across Canada and beyond, and piloting driverless EV shuttles locally underscores that leadership. This initiative is not just about introducing new vehicles; it is about reimagining public transportation in a way that prioritizes environmental responsibility and community engagement. As Toronto moves forward, the integration of battery-electric buses will play a crucial role in shaping a cleaner, greener future for urban transit, ultimately benefitting residents and the planet alike.

 

Related News

View more

Energy storage poised to tackle grid challenges from rising EVs as mobile chargers bring new flexibility

EV Charging Grid Readiness addresses how rising EV adoption, larger batteries, and fast charging affect electric utilities, using vehicle-to-grid, energy storage, mobile and temporary chargers, and smart charging to mitigate distribution stress.

 

Key Points

Planning and tech to manage EV load growth with V2G, storage and smart charging to avoid overloads on distribution grids.

✅ Lithium-ion costs may drop 60%, enabling new charger models

✅ Mobile and temporary chargers buffer local distribution peaks

✅ Smart charging and V2G defer transformer and feeder upgrades

 

The impacts of COVID-19 likely mean flat electric vehicle (EV) sales this year, but a trio of new reports say the long-term outlook is for strong growth — which means the electric grid and especially state power grids will need to respond.

As EV adoption grows, newer vehicles will put greater stress on the electric grid due to their larger batteries and capacity for faster charging, according to Rhombus Energy Solutions, while a DOE lab finds US electricity demand could rise 38% as EV adoption scales. A new white paper from the company predicts the cost of lithium-ion batteries will drop by 60% over the next decade, helping enable a new set of charging solutions.

Meanwhile, mobile and temporary EV charging will grow from 0.5% to 2% of the charging market by 2030, according to new Guidehouse research. The overall charging market is expected to reach reach almost $16 billion in revenues in 2020 and more than $60 billion by 2030. ​A third report finds long-range EVs are growing their share of the market as well, and charging them could cause stress to electric distribution systems. 

"One can expect that the number of EVs in fleets will grow very rapidly over the next ten years," according to Rhombus' report. But that means many fleet staging areas will have trouble securing sufficient charging capacity as electric truck fleets scale up.

"Given the amount of time it takes to add new megawatt-level power feeds in most cities (think years), fleet EVs will run into a significant 'power crisis' by 2030," according to Rhombus.

"Grid power availability will become a significant problem for fleets as they increase the number of electric vehicles they operate," Rhombus CEO Rick Sander said in a statement. "Integrating energy storage with vehicle-to-grid capable chargers and smart [energy management system] solutions as seen in California grid stability efforts is a quick and effective mitigation strategy for this issue."

Along with energy storage, Guidehouse says a new, more flexible approach to charger deployment enabled by grid coordination strategies will help meet demand. That means chargers deployed by a van or other mobile stations, and "temporary" chargers that can help fleets expand capacity. 

According to Guidehouse, the temporary units "are well positioned to de-risk large investments in stationary charging infrastructure" while also providing charge point networks and service providers "with new capabilities to flexibly supply predictable changes in EV transportation behaviors and demand surges."

"Mobile charging is a bit of a new area in the EV charging scene. It primarily leverages batteries to make chargers mobile, but it doesn't necessarily have to," Guidehouse Senior Research Analyst Scott Shepard told Utility Dive. 

"The biggest opportunity is with the temporary charging format," said Shepard. "The bigger units are meant to be located at a certain site for a period of time. Those units are interesting because they create a little more scale-ability for sites and a little risk mitigation when it comes to investing in a site."

"Utilities could use temporary chargers as a way to provide more resilient service, using these chargers in line with on-site generation," Shepard said.

Increasing rates of EV adoption, combined with advances in battery size and charging rates, "will impact electric utility distribution infrastructure at a higher rate than previously projected," according to new analysis from FleetCarma.

The charging company conducted a study of over 3,900 EVs, illustrating the rapid change in vehicle capabilities in just the last five years. According to FleetCarma, today's EVs use twice as much energy and draw it at twice the power level. The long-range EV has increased as a proportion of new electric vehicle sales from 14% in 2014 to 66% in 2019 in the United States, it found.

Long-range EVs "are very different from older electric vehicles: they are driven more, they consume more energy, they draw power at a higher level and they are less predictable," according to FleetCarma.

Guidehouse analysts say grid modernization efforts and energy storage can help smooth the impacts of charging larger vehicles. 

Mobile and temporary charging solutions can act as a "buffer" to the distribution grid, according to Guidehouse's report, allowing utilities to avoid or defer some transmission and distribution upgrade costs that could be required due to stress on the grid from newer vehicles.

"At a high level, there's enough power and energy to supply EVs with proper management in place," said Shepard. "And in a lot of different locations, those charging deployments will be built in a way that protects the grid. Public fast charging, large commercial sites, they're going to have the right infrastructure embedded."

"But for certain areas of the grid where there is low visibility, there is the potential for grid disruption and questions about whether the UK grid can cope with EV demand," said Shepard. "This has been on the mind of utilities but never realized: overwhelming residential transformers."

As EVs with higher charging and energy capacities are connected to the grid, Shepard said, "you are going to start to see some of those residential systems come under pressure, and probably see increased incidences of having to upgrade transformers." Some residential upgrades can be deferred through smarter charging programs, he added.

 

Related News

View more

Warren Buffett-linked company to build $200M wind power farm in Alberta

Rattlesnake Ridge Wind Project delivers 117.6 MW in southeast Alberta for BHE Canada, a Berkshire Hathaway Energy subsidiary, using 28 turbines near Medicine Hat under a long-term PPA, supplying renewable power to 79,000 homes.

 

Key Points

A 117.6 MW Alberta wind farm by BHE Canada supplying 79,000 homes via 28 turbines and a long-term PPA.

✅ 28 turbines near Medicine Hat, 117.6 MW capacity

✅ Long-term PPA with a major Canadian corporate buyer

✅ Developed with RES; no subsidies; competitive pricing

 

A company linked to U.S. investor Warren Buffett says it will break ground on a $200-million, 117.6-megawatt wind farm in southeastern Alberta next year.

In a release, Calgary-based BHE Canada, a subsidiary of Buffett's Berkshire Hathaway Energy, says its Rattlesnake Ridge Wind project will be located southwest of Medicine Hat and will produce enough energy to supply the equivalent of 79,000 homes.

"We felt that it was time to make an investment here in Alberta," said Bill Christensen, vice-president of corporate development for BHE Canada, in an interview with the Calgary Eyeopener.

"The structure of the markets here in Alberta, including frameworks for selling renewable energy, make it so that we can invest, and do it at a profit that works for us, and at a price that works for the off-taker," Christensen explained.

Berkshire Hathaway Energy also owns AltaLink, the regulated transmission company that supplies electricity to more than 85 per cent of the Alberta population.

BHE Canada says an unnamed large Canadian corporate partner has signed a long-term power purchase agreement, similar to RBC's solar purchase arrangements, for the majority of the energy output generated by the 28 turbines at Rattlesnake Ridge.

"If you look at just the raw power price that power is going for in Alberta right now, it's averaged around $55 a megawatt hour, or 5.5 cents a kilowatt hour. And we're selling the wind power to this customer at substantially less than that, reflecting wind power's competitiveness in the market, and there's been no subsidies," Christensen said.

 

Positive energy outlook

Christensen said he sees a good future for Alberta's renewable energy industry, not just in wind but also in solar power growth, particularly in the southeast of the province.

But he says BHE Canada is interested in making investments in traditional energy in Alberta, too, as the province is a powerhouse for both green energy and fossil fuels overall.

"It's not a choice of one or the other. I think there is still opportunity to make investments in oil and gas," he said.

"We're really excited about having this project and hope to be able to make other investments here in Alberta to help support the economy here, amid a broader renewable energy surge across the province."

The project is being developed by U.K.-based Renewable Energy Systems, part of a trend where more energy sources make better projects for developers, which is building two other Alberta wind projects totalling 134.6 MW this year and has 750 MW of renewable energy installed or currently under construction in Canada.

BHE Canada and RES are also looking for power purchase partners for the proposed Forty Mile Wind Farm in southeastern Alberta. They say that with generation capacity of 398.5 MW, it could end up being the largest wind power project in Canada.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified