Fuel cell-powered devices getting closer

By Associated Press


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Laptop, cellphone and iPod owners tired of having their devices run out of charge after a few hours have been patiently waiting for the next portable power source to arrive.

Tiny fuel cells, powered by combustible liquids or gasses, have long been touted as the eventual solution. Potentially, they could power a laptop for days between refills.

But fuel cells have perennially remained a year or two away from reaching the market as companies have worked on making them small, cheap and long-lasting, while making sure they don't overheat.

The U.S. government removed a key roadblock this year when the Department of Transportation amended its hazardous materials regulations to allow cells with methanol, butane or formic acid to be carried on airplanes. Methanol and butane are flammable, and formic acid is corrosive.

“That was one of the largest challenges to this market, to overcome that regulation issue,” said Sara Bradford, an energy and power systems consultant for Frost & Sullivan.

Fuel cells, in which a tiny amount of fuel flows into a small chip to generate electricity without combustion, would allow users to skip the wall plug and simply swap out a fuel cartridge to continue listening to music or check e-mail.

Ms. Bradford thinks products are now truly a year or two away, as electronics manufacturers show more interest and fuel-cell makers move beyond trade-show prototypes.

“We are closer, much closer, than even two years ago in terms of the companies' internal designs, how they've met their milestones and just the amount of testing and evaluation that's going on right now,” Ms. Bradford said.

Lilliputian Systems Inc., a Wilmington, Mass., firm founded by former Massachusetts Institute of Technology researchers, plans to introduce a portable fuel cell late next year for any device that can be charged via a USB port.

The cigarette-pack-size charger will use a canister of butane, the same fuel used in cigarette lighters, to juice up an iPod, BlackBerry, GPS device or digital camera, said Mouli Ramani, Lilliputian's vice-president of business development.

Each teaspoon of the fuel can provide 20 times the run time of a battery of the same size. The charging system would likely sell for $100 to $150 (US) with refill cartridges retailing for $1 to $3, he said.

MTI MicroFuel Cells Inc. has been working on fuel cell technology since 2000. In 2002, was showing a prototype it planned to bring to market by 2004.

Peng Lim, the Albany-based company's chairman and chief executive, said MTI has been making significant progress recently. It's current methanol fuel cell can produce about three times the energy of a lithium ion battery, common in cell phones. With further improvements, the cell could one day last ten times longer than lithium, he said.

MTI plans to introduce an external charger by late 2009 as it works with electronics manufacturers on building fuel cells into devices.

Lim said MTI has signed partnerships with the mobile phone division of Samsung Electronics Co. of Korea, a Japan-based digital camera company and Neo Solar Co. Ltd., which makes computers that are smaller than laptops.

Lilliputian also plans to transition to embedding fuel cells in gadgets. Mr. Ramani said the company has signed commercialization agreements with three large, multinational entities he cannot yet name.

Panasonic is promising a fuel cell that can power a laptop for 20 hours on a cup of methanol, but the company says it won't hit stores until 2012.

Medis Technologies Ltd. has come out with a 1-watt liquid borohydride fuel cell recharger that can provide 30 hours of cell phone talk time. The 24-7 Power Pack is slightly larger than a deck of cards and can't be refueled, so it has to be recycled once it's exhausted.

Not all manufacturers are sold on fuel cells, at least not in the near term.

Matt Kohut, competitive analyst for Lenovo Group Ltd., the world's No. 4 PC maker, said fuel cells will eventually power laptops but he doesn't see commercialization for at least five years.

The industry needs to unite to standardize the technology, he believes, and the DOT's limiting of fuel cartridges to smaller than 7 ounces might not provide adequate power for early devices, Mr. Kohut said.

Consumers are used to getting a free battery charge from any electrical outlet, so refill cartridges would have to be “as ubiquitous as cigarettes and bottles of Coke in every 7-Eleven” in order for fuel cells to take off, Mr. Kohut said.

Lenovo is moving toward silver-zinc batteries, which have 20 to 30 per cent higher capacity than lithium ion batteries and don't wear out as fast, Mr. Kohut said.

Toshiba, which has demonstrated fuel cell prototypes at the Consumer Electronic Show during the past few years, continues to develop the technology but doesn't have any firm dates for commercial use, said Duc Dang, group manager for product development for Toshiba America Information Systems Inc. Next year, the company hopes to begin shipping lithium batteries that charge faster.

Mr. Ramani said he understands the skepticism about fuel cells, since they've been “the technology of tomorrow” for a few years.

“We're not around the corner,” Mr. Ramani said. “We're still 12 months to 15 months away from having this in consumers hands.”

Related News

Electricity in Spain is 682.65% more expensive than the same day in 2020

Spain Electricity Prices surge to record highs as the wholesale market hits €339.84/MWh, driven by gas costs and CO2 permits, impacting PVPC regulated tariffs, free-market contracts, and household energy bills, OMIE data show.

 

Key Points

Rates in Spain's wholesale market that shape PVPC tariffs and free-market bills, moving with gas prices and CO2 costs.

✅ Record €339.84/MWh; peak 20:00-21:00; low 04:00-05:00 (OMIE).

✅ PVPC users and free-market contracts face higher bills.

✅ Drivers: high gas prices and rising CO2 emission rights.

 

Electricity in Spain's wholesale market will rise in price once more as European electricity prices continue to surge. Once again, it will set a historical record in Spain, reaching €339.84/MWh. With this figure, it is already the fifth time that the threshold of €300 has been exceeded.

This new high is a 6.32 per cent increase on today’s average price of €319.63/MWh, which is also a historic record, while Germany's power prices nearly doubled over the past year. Monday’s energy price will make it 682.65 per cent higher than the corresponding date in 2020, when the average was €43.42.

According to data published by the Iberian Energy Market Operator (OMIE), Monday’s maximum will be between the hours of 8pm and 9pm, reaching €375/MWh, a pattern echoed by markets where Electric Ireland price hikes reflect wholesale volatility. The cheapest will be from 4am to 5am, at €267.99.

The prices of the ‘pool’ have a direct effect on the regulated tariff  – PVPC – to which almost 11 million consumers in the country are connected, and serve as a reference for the other 17 million who have contracted their supply in the free market, where rolling back prices is proving difficult across Europe.

These spiraling prices in recent months, which have fueled EU energy inflation, are being blamed on high gas prices in the markets, and carbon dioxide (CO2) emission rights, both of which reached record highs this year.

According to an analysis by Facua-Consumidores en Acción, if the same rates were maintained for the rest of the month, the last invoice of the year would reach €134.45 for the average user. That would be 94.1 per cent above the €69.28 for December 2020, while U.S. residential electricity bills rose about 5% in 2022 after inflation adjustments.

The average user’s bill so far this year has increased by 15.1 per cent compared to 2018, as US electricity prices posted their largest jump in 41 years. Thus, compared to the €77.18 of three years ago, the average monthly bill now reaches €90.87 euros. However, the Government continues to insist that this year households will end up paying the same as in 2018.

As Ruben Sanchez, the general secretary of Facua commented, “The electricity bill for December would have to be negative for President Sanchez, and Minister Ribera, to fulfill their promise that this year consumers will pay the same as in 2018 once the CPI has been discounted”.

 

Related News

View more

U.S Bans Russian Uranium to Bolster Domestic Industry

U.S. Russian Uranium Import Ban reshapes nuclear fuel supply, bolstering energy security, domestic enrichment, and sanctions policy while diversifying reactor-grade uranium sources and supply chains through allies, waivers, and funding to sustain utilities and reliability.

 

Key Points

A U.S. law halting Russian uranium imports to boost energy security diversify nuclear fuel and revive U.S. enrichment.

✅ Cuts Russian revenue; reduces geopolitical risk.

✅ Funds U.S. enrichment; supports reactor fuel supply.

✅ Enables waivers to prevent utility shutdowns.

 

In a move aimed at reducing reliance on Russia and fostering domestic energy security for the long term, the United States has banned imports of Russian uranium, a critical component of nuclear fuel. This decision, signed into law by President Biden in May 2024, marks a significant shift in the U.S. nuclear fuel supply chain and has far-reaching economic and geopolitical implications.

For decades, Russia has been a major supplier of enriched uranium, a processed form of uranium used to power nuclear reactors. The U.S. relies on Russia for roughly a quarter of its enriched uranium needs, feeding the nation's network of 94 nuclear reactors operated by utilities which generate nearly 20% of the country's electricity. This dependence has come under scrutiny in recent years, particularly following Russia's invasion of Ukraine.

The ban on Russian uranium is a multifaceted response. First and foremost, it aims to cripple a key revenue stream for the Russian government. Uranium exports are a significant source of income for Russia, and by severing this economic tie, the U.S. hopes to weaken Russia's financial capacity to wage war.

Second, the ban serves as a national energy security measure. Relying on a potentially hostile nation for such a critical resource creates vulnerabilities. The possibility of Russia disrupting uranium supplies, either through political pressure or in the event of a wider conflict, is a major concern. Diversifying the U.S. nuclear fuel supply chain mitigates this risk.

Third, the ban is intended to revitalize the domestic uranium mining and enrichment industry, building on earlier initiatives such as Trump's uranium order announced previously. The U.S. has historically been a major uranium producer, but environmental concerns and competition from cheaper foreign sources led to a decline in domestic production. The ban, coupled with $2.7 billion in federal funding allocated to expand domestic uranium enrichment capacity, aims to reverse this trend.

The transition away from Russian uranium won't be immediate. The law includes a grace period until mid-August 2024, and waivers can be granted to utilities facing potential shutdowns if alternative suppliers aren't readily available. Finding new sources of enriched uranium will require forging partnerships with other uranium-producing nations like Kazakhstan, Canada on minerals cooperation, and Australia.

The long-term success of this strategy hinges on several factors. First, successfully ramping up domestic uranium production will require overcoming regulatory hurdles and addressing environmental concerns, alongside nuclear innovation to modernize the fuel cycle. Second, securing reliable alternative suppliers at competitive prices is crucial, and supportive policy frameworks such as the Nuclear Innovation Act now in law can help. Finally, ensuring the continued safe and efficient operation of existing nuclear reactors is paramount.

The ban on Russian uranium is a bold move with significant economic and geopolitical implications. While challenges lie ahead, the potential benefits of a more secure and domestically sourced nuclear fuel supply chain are undeniable. The success of this initiative will be closely watched not only by the U.S. but also by other nations seeking to lessen their dependence on Russia for critical resources.

 

Related News

View more

US NRC streamlines licensing for advanced reactors

NRC Advanced Reactor Licensing streamlines a risk-informed, performance-based, technology-inclusive pathway for advanced non-light water reactors, aligning with NEIMA to enable predictable regulatory reviews, inherent safety, clean energy deployment, and industrial heat, hydrogen, and desalination applications.

 

Key Points

A risk-informed, performance-based NRC pathway streamlining licensing for advanced non-light water reactors.

✅ Aligned with NEIMA: risk-informed, performance-based, tech-inclusive

✅ Predictable licensing for advanced non-light water reactor designs

✅ Enables clean heat, hydrogen, desalination beyond electricity

 

The US Nuclear Regulatory Commission (NRC) voted 4-0 to approve the implementation of a more streamlined and predictable licensing pathway for advanced non-light water reactors, aligning with nuclear innovation priorities identified by industry advocates, the Nuclear Energy Institute (NEI) announced, and amid regional reliability measures such as New England emergency fuel stock plans that have drawn cost scrutiny.

This approach is consistent with the Nuclear Energy Innovation and Modernisation Act (NEIMA), a nuclear innovation act passed in 2019 by the US Congress calling for the development of a risk-informed, performance-based and technology inclusive licensing process for advanced reactor developers.

NEI Chief Nuclear Officer Doug True said: “A modernised regulatory framework is a key enabler of next-generation nuclear technologies that, amid ACORE’s challenge to DOE subsidy proposals in energy market proceedings, can help us meet our energy needs while protecting the climate. The Commission’s unanimous approval of a risk-informed and performance-based licensing framework paves the way for regulatory reviews to be aligned with the inherent safety characteristics, smaller reactor cores and simplified designs of advanced reactors.”

Over the last several years the industry’s Licensing Modernisation Project, sponsored by US Department of Energy, led by Southern Nuclear, and supported by NEI’s Advanced Reactor Regulatory Task Force, and influenced by a presidential order to bolster uranium and nuclear energy, developed the guidance for this new framework. Amid shifts in the fuel supply chain, including the U.S. ban on Russian uranium, this approach will inform the development of a new rule for licensing advanced reactors, which NEIMA requires.

“A well-defined licensing path will benefit the next generation of nuclear plants, especially as regions consider New England market overhaul efforts, which could meet a wide range of applications beyond generating electricity such as producing heat for industry, desalinating water, and making hydrogen – all without carbon emissions,” True noted.

 

Related News

View more

A robot is killing weeds by zapping them with electricity

Electric weed-zapping farm robots enable precision agriculture, using autonomous mapping, per-plant targeting, and robotics to reduce pesticides, improve soil health, boost biodiversity, and lower costs with data-driven, selective weeding and seed-planting workflows.

 

Key Points

Autonomous machines that map fields, electrocute weeds per plant, and plant seeds, cutting pesticides, inputs, and costs.

✅ Precision agriculture: per-plant targeting reduces pesticide use up to 95%.

✅ Autonomous mapping robot surveys 20 hectares per day for weed data.

✅ Electric weeding and seeding improve soil health, biodiversity, and ROI.

 

On a field in England, three robots have been given a mission: to find and zap weeds with electricity, as advances in digitizing the electrical system continue to modernize power infrastructure, before planting seeds in the cleared soil.

The robots — named Tom, Dick and Harry — were developed by Small Robot Company to rid land of unwanted weeds with minimal use of chemicals and heavy machinery, complementing emerging options like electric tractors that aim to cut on-farm emissions.
The startup has been working on its autonomous weed killers since 2017, and this April launched Tom, its first commercial robot which is now operational on three UK farms. The other robots are still in the prototype stage, undergoing testing.

Small Robot says robot Tom can scan 20 hectares (49 acres) a day, collecting data, with AI-driven analysis guiding Dick, a "crop-care" robot, to zap weeds. Then it's robot Harry's turn to plant seeds in the weed-free soil.

Using the full system, once it is up and running, farmers could reduce costs by 40% and chemical usage by up to 95%, the company says, and integration with virtual power plants could further optimize energy use on electrified farms.

According to the UN Food and Agriculture Organization six million metric tons of pesticides were traded globally in 2018, valued at $38 billion.

"Our system allows farmers to wean their depleted, damaged soils off a diet of chemicals," says Ben Scott-Robinson, Small Robot's co-founder and CEO.

Zapping weeds
Small Robot says it has raised over £7 million ($9.9 million). Scott-Robinson says the company hopes to launch its full system of robots by 2023, which will be offered as a service at a rate of around £400 ($568) per hectare. The monitoring robot is placed at a farm first and the weeding and planting robots delivered only when the data shows they're needed — a setup that ultimately relies on a resilient grid, where research into preventing ransomware attacks is increasingly relevant.

To develop the zapping technology, Small Robot partnered with another UK-based startup, RootWave, while innovations like electricity from snow highlight the breadth of emerging energy tech.

"It creates a current that goes through the roots of the plant through the soil and then back up, which completely destroys the weed," says Scott-Robinson. "We can go to each individual plant that is threatening the crop plants and take it out."

"It's not as fast as it would be if you went out to spray the entire field," he says. "But you have to bear in mind we only have to go into the parts of the field where the weeds are." Plants that are neutral or beneficial to the crops are left untouched.

Small Robot calls this "per plant farming" — a type of precise agriculture where every plant is accounted for and monitored.

A business case
For Kit Franklin, an agricultural engineering lecturer from Harper Adams University, efficiency remains a hurdle, even as utilities use AI to adapt to electricity demands that could support wider on-farm electrification.

"There is no doubt in my mind that the electrical system works," he tells CNN Business. "But you can cover hundreds of hectares a day with a large-scale sprayer ... If we want to go into this really precise weed killing system, we have to realize that there is an output reduction that is very hard to overcome."

But Franklin believes farmers will adopt the technology if they can see a business case.

"There's a realization that farming in an environmentally friendly way is also a way of farming in an efficient way," he says. "Using less inputs, where and when we need them, is going to save us money and it's going to be good for the environment and the perception of farmers."

As well as reducing the use of chemicals, Small Robot wants to improve soil quality and biodiversity.

"If you treat a living environment like an industrial process, then you are ignoring the complexity of it," Scott-Robinson says. "We have to change farming now, otherwise there won't be anything to farm."

 

Related News

View more

External investigators looking into alleged assaults by Manitoba Hydro workers

Manitoba Hydro Allegations Investigation reveals RCMP and OPP probes into 1960s abuses in northern Manitoba, affecting Fox Lake Cree Nation, citing racism, discrimination, sexual assault, and oversight by the IIU and Clean Environment Commission.

 

Key Points

A coordinated probe into historic abuses tied to Manitoba Hydro projects, led by OPP and IIU after RCMP referral.

✅ OPP to investigate historical cases involving Hydro staff and contractors.

✅ IIU to examine any allegations implicating Manitoba RCMP officers.

✅ Findings follow CEC report on racism and abuse near Fox Lake.

 

Manitoba RCMP have called in outside investigators to probe alleged assaults linked to hydro projects in the province’s north during the 1960s.

RCMP say any historical criminal investigations involving Manitoba Hydro employees or contractors will be handled by the Ontario Provincial Police.

The Independent Investigation Unit of Manitoba, the province’s police watchdog, will investigate any allegations involving RCMP officers.

A report released last month by an arm’s-length review agency outlined racism, discrimination and sexual abuse at the Crown-owned utility’s work sites dating back decades, while projects like Site C COVID-19 updates provide contemporary examples of reporting.

Much of the development at that time was centered around the community of Gillam and the nearby Fox Lake Cree Nation.

The report said the presence of a largely male construction workforce led to the sexual abuse of Indigenous women, some of whom said their complaints were ignored by the RCMP, and in a different context, Hydro One worker injury highlights safety risks in the sector.

Premier Brian Pallister says his government is taking the right approach to addressing alleged sexual assaults and racism by Manitoba Hydro workers against members of a remote northern First Nation, while pandemic cost-cutting at Manitoba Hydro has shaped recent operations.

Pallister made his first public comments about the allegations after a private meeting with Prime Minister Justin Trudeau on Tuesday evening, as COVID-19 reshaped Saskatchewan and other Prairie priorities were in focus.

The allegations, made by members of Fox Lake Cree Nation, were revealed in a report produced by the Clean Environment Commission. The report was released by the provincial government in August, although it was completed in May.

Allegations against Manitoba Hydro workers: What you need to know

"My reaction would be that's deplorable behaviour, and I have to admit, my puzzlement is why this wasn't investigated sooner or didn't come to light sooner," Pallister said, adding that he believes his government has taken the right approach by referring the information to the RCMP.

Some members of Fox Lake Cree Nation say the government didn't give them any advance notice of the release of the report, so the community was traumatized when it hit the news.

Pallister said his government didn't want to delay the release of the report.

'Pure trauma': Fox Lake members stricken after hasty release of troubling report

"I think the right thing to do is release the report. A lot of this information was in the public domain over the last number of weeks and months anyway. It wasn't the case of it being new in that respect," he said.

However, he accepted criticism of the timeline of the report's release.

"I would rather accept those criticisms, than accept the argument that we were in any way covering up information that is important to be released," he said.

Fox Lake Chief Walter Spence has said he expects Pallister to visit the community.

The premier said Tuesday he was not sure of the effectiveness of such a trip.

"I think most of the communities would prefer that there be electricity jobs for young Canadians created in their communities, that there be better water, many other tangible things rather than symbolism," he said.

"That's what I'm hearing and I've been in dozens of First Nations communities in the last two years."

 

Related News

View more

NTPC bags order to supply 300 MW electricity to Bangladesh

NTPC Bangladesh Power Supply Tender sees NVVN win 300 MW, long-term cross-border electricity trade to BPDB, enabled by 500 MW HVDC interconnection; rivals included Adani, PTC, and Sembcorp in the competitive bidding process.

 

Key Points

It is NTPC's NVVN win to supply 300 MW to Bangladesh's BPDB for 15 years via a 500 MW HVDC link.

✅ NVVN selected as L1 for short and long-term supply

✅ 300 MW to BPDB; delivery via India-Bangladesh HVDC link

✅ Competing bidders: Adani, PTC, Sembcorp

 

NTPC, India’s biggest electricity producer in a nation that is now the third-largest electricity producer globally, on Tuesday said it has won a tender to supply 300 megawatts (MW) of electricity to Bangladesh for 15 years.

Bangladesh Power Development Board (BPDP), in a market where Bangladesh's nuclear power is expanding with IAEA assistance, had invited tenders for supply of 500 MW power from India for short term (1 June, 2018 to 31 December, 2019) and long term (1 January, 2020 to 31 May, 2033). NTPC Vidyut Vyapar Nigam (NVVN), Adani Group, PTC and Singapore-bases Sembcorp submitted bids by the scheduled date of 11 January.

Financial bid was opened on 11 February, the company said in a statement, amid rising electricity prices domestically. “NVVN, wholly-owned subsidiary of NTPC Limited, emerged as successful bidder (L1), both in short term and long term for 300 MW power,” it said.

Without giving details of the rate at which power will be supplied, NTPC said supply of electricity is likely to commence from June 2018 after commissioning of 500 MW HVDC inter-connection project between India and Bangladesh, and as the government advances nuclear power initiatives to bolster capacity in the sector. India currently exports approximately 600 MW electricity to Bangladesh even as authorities weigh coal rationing measures to meet surging demand domestically.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.