UK moves three steps closer to green goals

By Reuters


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
One of Europe's largest onshore wind farms has won Scottish planning approval and the world's largest offshore wind project now has two committed backers, boosting Britain's chances of reaching its ambitious green energy goals.

Scottish & Southern Energy PLC has been granted planning permission to build a 456-megawatt wind farm in southern Scotland, while Denmark's Dong Energy and Germany's E.ON will buy Royal Dutch Shell's unwanted stake in the 1,000 MW London Array offshore wind scheme.

The future of the London Array plan to supply some 750,000 homes with electricity from 341 turbines in the outer Thames Estuary had been in doubt since Shell pulled out earlier this year, citing escalating costs.

"We're pleased that, together with DONG Energy, we've been able to secure the future of the project," Paul Golby, Chief Executive of E.ON UK, said.

"We hope to be able to keep the project on track and we should be able to complete the first phase by the end of 2012, subject to securing a number of important contracts, such as those for the wind turbines."

E.ON and Dong Energy will become 50:50 partners in the project after buying out the third partner for an undisclosed sum.

The British government needs wind power to grow rapidly over the next decade to stand any chance of reaching tough European Union renewable energy targets for 2020.

But planning, grid connection and turbine supply problems have frustrated growth to date.

Approval for SSE's 600 million pound ($1.20 billion) Clyde wind scheme in South Lanarkshire, comes three months after Scottish Ministers rejected plans for what would have been Europe's largest onshore wind farm on the Isle of Lewis, citing concerns over its impact on local wildlife.

"Projects like Clyde are essential if Scotland and the UK are to have any hope of meeting legally-binding EU targets for renewable energy," SSE Chief Executive Ian Marchant said.

The 152-turbine Clyde project became part of SSE's development plans when it bought Airtricity earlier this year and construction work is expected to begin later in this financial year.

Commissioning of the first phase of the project is scheduled for 2010, with completion of both phases expected in 2011.

Much of the electricity that produced on the wind-swept hills of Scotland is expected to be sent south to England but the UK power network needs upgrading to transport it.

Iberdrola of Spain's UK arm, ScottishPower, said it had opened two new electricity sub stations in South Lanarkshire as part of a wider program to increase Scottish electricity export capacity from 2,200 MW to 2800 MW by 2010.

"This is a significant milestone in the project to increase the capacity of the Scotland-England interconnector," Alan Bryce, director of energy networks at ScottishPower, said.

"The development of renewable energy projects in Scotland is increasing all the time so it is vital that there is suitable infrastructure to support this growth."

Related News

Germany extends nuclear power amid energy crisis

Germany Nuclear Power Extension keeps Isar 2, Neckarwestheim 2, and Emsland running as Olaf Scholz tackles the energy crisis, soaring gas prices, and EU winter demand, prioritizing grid stability amid the Ukraine war.

 

Key Points

A temporary policy keeping three German reactors online to enhance grid stability and national energy security.

✅ Extends Isar 2, Neckarwestheim 2, and Emsland operations

✅ Addresses EU energy crisis and soaring gas prices

✅ Prioritizes grid stability while coal phase-out advances

 

German Chancellor Olaf Scholz has ordered the country's three remaining nuclear power stations to keep operating until mid-April, signalling a nuclear U-turn as the energy crisis sparked by Russia's invasion of Ukraine hurts the economy.

Originally Germany planned to phase out all three by the end of this year, continuing its nuclear phaseout policy at the time.

Mr Scholz's order overruled the Greens in his coalition, who wanted two plants kept on standby, to be used if needed.

Nuclear power provides 6% of Germany's electricity.

The decision to phase it out was taken by former chancellor Angela Merkel after Japan's Fukushima nuclear disaster in 2011.

But gas prices have soared since Russia's invasion of Ukraine in February, which disrupted Russia's huge oil and gas exports to the EU, though some officials argue that nuclear would do little to solve the gas issue in the short term. In August Russia turned off the gas flowing to Germany via the Nord Stream 1 undersea pipeline.

After relying so heavily on Russian gas Germany is now scrambling to maintain sufficient reserves for the winter. The crisis has also prompted it to restart mothballed coal-fired power stations, with coal generating about a third of its electricity currently, though the plan is to phase out coal in the drive for green energy.

Last year Germany got 55% of its gas from Russia, but in the summer that dropped to 35% and it is declining further.

EU leaders consider how to cap gas prices
France sends Germany gas for first time amid crisis
Chancellor Scholz's third coalition partner, the liberal Free Democrats (FDP), welcomed his move to keep nuclear power as part of the mix. The three remaining nuclear plants are Isar 2, Neckarwestheim 2 and Emsland, which were ultimately shut down after the extension.

The Social Democrat (SPD) chancellor also called for ministries to present an "ambitious" law to boost energy efficiency and to put into law a phase-out of coal by 2030, aiming for a coal- and nuclear-free economy among major industrial nations.

Last week climate activist Greta Thunberg said it was a "mistake" for Germany to press on with nuclear decommissioning while resorting to coal again, intensifying debate over a nuclear option for climate goals nationwide.

 

Related News

View more

Germany turns to coal for a third of its electricity

Germany's Coal Reliance reflects an energy crisis, soaring natural gas prices, and a nuclear phase-out, as Destatis data show higher coal-fired electricity despite growing wind and solar generation, impacting grid stability and emissions.

 

Key Points

Germany's coal reliance is more coal power due to gas spikes and a nuclear phase-out, despite wind and solar growth.

✅ Coal share near one-third of electricity, per Destatis

✅ Gas-fired output falls as prices soar after Russia's invasion

✅ Wind and solar rise; grid stability and recession risks persist

 

Germany is relying on highly-polluting coal for almost a third of its electricity, as the impact of government policies, reflecting an energy balancing act for the power sector, and the war in Ukraine leads producers in Europe’s largest economy to use less gas and nuclear energy.

In the first six months of the year, Germany generated 82.6 kWh of electricity from coal, up 17 per cent from the same period last year, according to data from Destatis, the national statistics office, published on Wednesday. The leap means almost one-third of German electricity generation now comes from coal-fired plants, up from 27 per cent last year. Production from natural gas, which has tripled in price to €235 per megawatt hour since Russia’s invasion in late February, fell 18 per cent to only 11.7 per cent of total generation.

Destatis said that the shift from gas to coal was sharper in the second quarter. Coal-fired electricity increased by an annual rate of 23 per cent in the three months to June, while electricity generation from natural gas fell 19 per cent.

The figures highlight the challenge facing European governments in meeting clean energy goals after the Kremlin announced this week that the Nordstream 1 pipeline that takes Russian gas to Germany would remain closed until Europe removed sanctions on the country’s oil.

Germany has been trying to reduce its reliance on coal, which releases almost twice as many emissions as gas and more than 60 times those of nuclear energy, according to estimates from the Intergovernmental Panel on Climate Change, though grid expansion challenges have slowed renewable build-out in recent years.

Chancellor Olaf Scholz said the opposition CDU bore “complete responsibility” for the exit from coal and nuclear power that formed part of his predecessor Angela Merkel’s Energiewende policies, amid a continuing nuclear option debate in climate policy, which in turn raised reliance on Russian gas. At the beginning of this year, more than 50 per cent of Germany’s gas imports came from Russia, a figure that fell slightly over the opening half of 2022.

But CDU leader Friedrich Merz accused the government of “madness” over its decision to idle the country’s three remaining nuclear power stations from the end of this year, though officials have argued that nuclear would do little to solve the gas issue in the short term.

Electricity generation from nuclear energy has already halved after three of the six nuclear power plants that were still in operation at the end of 2021 were closed during the first half of this year. Berlin said on Monday it would keep on standby two of its remaining three nuclear power stations, a move to extend nuclear power during the energy crisis, which were all due to close at the end of the year.

The German government has warned of the risk of electricity shortages this winter. “We cannot be sure that, in the event of grid bottlenecks in neighbouring countries, there will be enough power plants available to help stabilise our electricity grid in the short term,” said German economy minister Robert Habeck on Monday.

However Scholz said that, after raising gas storage levels to 86 per cent of capacity, Germany would “probably get through this winter, despite all the tension”.

One bright spot from the data was the increase in use of renewable energy, highlighting a recent renewables milestone in Germany. The proportion of electricity generated from wind power generation rose by 18 per cent to 25 per cent of all electricity generation, while solar energy production increased 20 per cent.

Ángel Talavera, head of Europe economics at the consultancy Oxford Economics, said that the success in moving away from gas towards other energy sources “means that the risks of hard energy rationing over the winter are less severe now, even with little to no Russian gas flows”.

However, economists still expect a recession in the eurozone’s largest economy, amid a deteriorating German economy outlook over the near term, as a large part of the impact comes via higher prices and because industries and households still rely on gas for heating.

Separate official data also published on Wednesday showed that German industrial production slid 0.3 per cent between June and July. Production at Germany’s most energy intensive industries fell almost 7 per cent in the five months after Russia’s invasion of Ukraine.

“The demand destruction caused by the surge in prices will still send the German economy into recession over the winter,” said Talavera.

 

Related News

View more

USA: 3 Ways Fossil Energy Ensures U.S. Energy Security

DOE Office of Fossil Energy safeguards energy security via the Strategic Petroleum Reserve, domestic critical minerals from coal byproducts, and carbon capture to curb CO2, strengthening resiliency amid shocks and supporting U.S. manufacturing and defense.

 

Key Points

A DOE program advancing energy security through SPR stewardship, critical minerals R&D, and carbon capture.

✅ Manages the Strategic Petroleum Reserve for emergency crude supply

✅ Develops domestic critical minerals from coal and mining byproducts

✅ Deploys carbon capture, utilization, and storage to cut CO2

 

The global economy has just experienced a period of unique transformation because of COVID-19. The fact that remains constant in this new economic landscape is that our society relies on energy; it’s an integral part of our day-to-day lives, even as U.S. energy use has evolved over time. According to the U.S. Energy Information Administration, approximately 80 percent of energy consumption in the United States comes from fossil fuels, so having access to a secure and reliable supply of those energy resources is more important than ever for national energy security considerations today. Below are three examples that highlight how our work at the U.S. Department of Energy’s Office of Fossil Energy (FE) helps ensure the Nation’s energy security and resiliency.

(1) Open crude oil reserves to respond to crises

FE has overall program responsibility for carrying out the mission of the Strategic Petroleum Reserve (SPR), the world’s largest supply of emergency crude oil. These federally-owned stocks are stored in massive underground salt caverns along the coastline of the Gulf of Mexico. The SPR is a powerful tool U.S. leaders use to respond to a wide range of crises, including energy crisis impacts on electricity and fuels, involving crude oil disruption or demand loss.  When the COVID-19 pandemic hit, the oil markets crashed and crude oil demand dropped drastically across the world. U.S. oil producers turned to the SPR to store their oil while broader energy dominance constraints were becoming evident in practice. This helped alleviate the pressure on producers to shut in oil production and proved to be a critical asset for American energy and national security.

(2) Use the Nation’s abundant coal reserves to produce valuable materials

Critical materials, including rare earth elements, are a group of chemical elements and materials with unique properties that support manufacturing of most modern technologies. They are essential components for critical defense and homeland security applications, green energy technologies, hybrid and electric vehicles, and high-value electronics. While these materials are not rare, they are hard to separate and expensive to extract. The United States relies heavily on imports from China. To reduce U.S. dependence on foreign sources, FE has a research and development program aimed at producing a domestic supply of critical materials from the Nation’s abundant coal resources and associated byproducts from legacy and current mining operations. Many of the technologies being developed can also be used to separate critical minerals from other mining materials and byproducts. Tapping into these resources has the potential to create new industries and revitalize coal communities and the workforce in coal-producing regions.

(3) Decrease carbon emissions for a cleaner energy future

FE is committed to balancing the Nation’s energy use with the need to protect the environment, and has a comprehensive portfolio of technological solutions that help keep carbon dioxide (CO2) emissions out of the atmosphere. For example, amid high natural gas prices that reinforce the case for clean electricity, the Department has been investing in carbon capture, utilization, and storage technologies for over a decade. These technologies capture CO2 emissions from various sources, including coal-fired power plants and manufacturing plants, before they enter the atmosphere. Several of these cutting-edge technologies have been deployed at major demonstration sites, supported by clean energy funding that aims to benefit millions. Three of these projects—Petra Nova, Archer Daniels Midland, and Air Products & Chemicals—have captured and injected over 10.8 million metric tons of CO2. The success of these projects is paving the way toward a cleaner and more sustainable American energy future.

 

Related News

View more

NL Consumer Advocate says 18% electricity rate hike 'unacceptable'

Newfoundland and Labrador electricity rate hike examines a proposed 18.6% increase under the PUB's Rate Stabilization Plan, driven by oil prices at Holyrood, with Consumer Advocate concerns over rate shock and use of RSP balances.

 

Key Points

A proposed 18.6% July 2017 increase under the RSP, driven by oil prices, now under PUB review for potential mitigation.

✅ PUB flags potential rate shock from proposed adjustment

✅ RSP balances cited to offset increases without depleting fund

✅ Oil-fired Holyrood volatility drives fuel cost uncertainty

 

How much of a rate hike is reasonable for users of electricity in Newfoundland and Labrador?

That's a question before the Public Utilities Board (PUB) as it examines an application by Newfoundland and Labrador Hydro, which could see consumers pay up to 18.6 per cent more as of July 1, reflecting regional pressures seen in Nova Scotia, where regulators approved a 14% rate hike earlier this year.

"The estimated rate increase for July 2017 is such a significant increase that it may be argued that it would cause rate shock," said the PUB, asking the company to revise its application.

NL Hydro said the price adjustment is part of what happens every year through the Rate Stabilization Plan (RSP), which is used to offset the ups and downs of oil prices.

"The cost of fuel is volatile and as long as we rely on oil-fired generation at Holyrood, customers will continue to be impacted by this electricity price uncertainty," said the company in a statement to CBC News.

It noted that customers received a break from RSP adjustments in 2015 and 2016, even as costs from the Muskrat Falls project begin to be reflected.

The PUB noted that under the rate stabilization plan, prices have gone up or down by about 10 per cent in the past.

The regulatory board said the impact of the latest request would be a 27.6 per cent hike to Newfoundland Power, with "an estimated average end customer impact of 18.6 per cent."

Hydro's estimates are based on an average price for oil of $81.40 per barrel from July 2017 to June 2018, according to the PUB.

 

'Unacceptable' burden: Consumer Advocate

"To burden ratepayers with an 18 per cent rate increase is unacceptable," said Consumer Advocate Dennis Browne, echoing pushback in Nova Scotia, where the premier urged regulators to reject a 14% hike at the time.

Browne is arguing that there is money in the RSP to reduce the proposed increase, including the possibility of a lump-sum bill credit for customers.

"These ratepayer balances — which, according to NL Power, totals $77.4 million — are not the property of Hydro," he wrote in a letter to the PUB.

"No utility has the right to squirrel away ratepayers' money to be used by that utility for some future purpose. The Board has jurisdiction over those balances," Browne said.

Browne also wants the RSP overhauled so that it can be applied to price fluctuations every quarter, as opposed to annually.

Hydro has expressed concern that depleting the rate stabilization fund would lead to other, more significant, rate increases in the future.

It said several alternatives to mitigate high rates have been provided to the PUB, which has final say, similar to how Manitoba Hydro scaled back a planned increase in the next year.

 

Related News

View more

As peak wildfire season nears, SDG&E completes work on microgrid in Ramona

SDG&E Ramona Microgrid delivers renewable energy and battery storage for wildfire mitigation, grid resilience, and PSPS support, powering the Cal Fire Air Attack Base with a 500 kW, 2,000 kWh lithium-ion system during outages.

 

Key Points

A renewable, battery-backed microgrid powering Ramona's Air Attack Base, boosting wildfire response and PSPS resilience.

✅ 500 kW, 2,000 kWh lithium-ion storage replaces diesel

✅ Keeps Cal Fire and USFS aircraft operations powered

✅ Supports PSPS continuity and rural water reliability

 

It figures to be another dry year — with the potential to spark wildfires in the region. But San Diego Gas & Electric just completed a renewable energy upgrade to a microgrid in Ramona that will help firefighters and reduce the effects of power shutoffs to backcountry residents.

The microgrid will provide backup power to the Ramona Air Attack Base, helping keep the lights on during outages, home to Cal Fire and the U.S. Forest Service's fleet of aircrafts that can quickly douse fires before they get out of hand.

"It gives us peace of mind to have backup power for a critical facility like the Ramona Air Attack Base, especially given the fact that fire season in California has become year-round," Cal Fire/San Diego County Fire Chief Tony Mecham said in a statement.

The air attack base serves as a hub for fixed-wing aircraft assigned to put out fires. Cal Fire staffs the base throughout the year with one two airtankers and one tactical aircraft. The base also houses the Forest Service's Bell 205 A++ helicopter and crew to protect the Cleveland National Forest. Aircraft for both CalFire and the Forest Service can also be mobilized to help fight fires throughout the state.

This summer, the Ramona microgrid won't have to rely on diesel generation. Instead, the facility next to the town's airport will be powered by a 500 kilowatt and 2,000 kilowatt-hour lithium-ion battery storage system that won't generate any greenhouse gas emissions.

"What's great about it, besides that it's a renewable resource, is that it's a permanent installation," said Jonathan Woldemariam, SDG&E's director of wildfire mitigation and vegetation management. "In other words, we don't have to roll a portable generator out there. It's something that can be leveraged right there because it's already installed and ready to go."

Microgrids have taken on a larger profile across the state because they can operate independently of the larger electric grid, where repairing California's grid is an ongoing challenge, thus allowing small areas or communities to keep the power flowing for hours at a time during emergencies.

That can be crucial in wildfire-prone areas affected by Public Safety Power Shutoffs, or PSPS, the practice in which investor-owned utilities in California de-energize electrical power lines in a defined area when conditions are dry and windy in order to reduce the risk of a power line falling and igniting a wildfire, while power grid upgrades move forward statewide.

Rural and backcountry communities are particularly hard hit when the power is pre-emptively cut off because many homes rely on water from wells powered by electricity for their homes, horses and livestock.

In addition to Ramona, SDG&E has established microgrids in three other areas in High Fire Threat Districts:

The microgrids in Butterfield Ranch and Shelter Valley run on diesel power but the utility plans to complete solar and battery storage systems for each locale by the end of next year, as other regions develop new microgrid rules to guide deployment.

SDG&E has a fifth microgrid in operation — in Borrego Springs, which in 2013 became the first utility-scale microgrid in the country. It provides grid resiliency to the roughly 2,700 residents of the desert town and serves as a model for integrated microgrid projects elsewhere in delivering local electricity. While the Borrego Springs microgrid is not located in a High Fire Threat District, "when and if any power is turned off, especially the power transmission feed that goes to Borrego, we can support the customers using the microgrid out there," Woldemariam said.

Microgrid costs can be higher than conventional energy systems, even as projected energy storage revenue grows over the next decade, and the costs of the SDG&E projects are passed on to ratepayers. As per California Public Utilities Commission rules, the financial details for each of microgrid are kept confidential for at least three years.

SDG&E's microgrids are part of the utility's larger plan to reduce wildfire risk that SDG&E files with the utilities commission. In its wildfire plan for 2020 through 2022, SDG&E expected to spend $1.89 billion on mitigation measures.

 

Related News

View more

Ontario's Clean Electricity Regulations: Paving the Way for a Greener Future

Ontario Clean Electricity Regulations accelerate renewable energy adoption, drive emissions reduction, and modernize the smart grid with energy storage, efficiency targets, and reliability upgrades to support decarbonization and a stable power system for Ontario.

 

Key Points

Standards to cut emissions, grow renewables, improve efficiency, and modernize the grid with storage and smart systems.

✅ Phases down fossil generation and invests in storage.

✅ Sets utility efficiency targets to curb demand growth.

✅ Upgrades to smart grid for reliability and resiliency.

 

Ontario has taken a significant step forward in its energy transition with the introduction of new clean electricity regulations. These regulations, complementing federal Clean Electricity Regulations, aim to reduce carbon emissions, promote sustainable energy sources, and ensure a cleaner, more reliable electricity grid for future generations. This article explores the motivations behind these regulations, the strategies being implemented, and the expected impacts on Ontario’s energy landscape.

The Need for Clean Electricity

Ontario, like many regions around the world, is grappling with the effects of climate change, including more frequent and severe weather events. In response, the province has set ambitious targets to reduce greenhouse gas emissions and increase the use of renewable energy sources, reflecting trends seen in Alberta’s path to clean electricity across Canada. The electricity sector plays a central role in this transition, as it is responsible for a significant portion of the province’s carbon footprint.

For years, Ontario has been moving away from coal as a source of electricity generation, and now, with the introduction of these new regulations, the province is taking a step further in decarbonizing its grid, including its largest competitive energy procurement to date. By setting clear goals and standards for clean electricity, the province hopes to meet its environmental targets while ensuring a stable and affordable energy supply for all Ontarians.

Key Aspects of the New Regulations

The regulations focus on encouraging the use of renewable energy sources such as wind, solar, hydroelectric, and geothermal power. One of the key elements of the plan is the gradual phase-out of fossil fuel-based energy sources. This shift is expected to be accompanied by greater investments in energy storage solutions, including grid batteries, to address the intermittency issues often associated with renewable energy sources.

Ontario’s new regulations also emphasize the importance of energy efficiency in reducing overall demand. As part of this initiative, utilities and energy providers will be required to meet strict energy-saving targets and participate in new electricity auctions designed to reduce costs, ensuring that both consumers and businesses are incentivized to use energy more efficiently.

In addition, the regulations promote technological innovation in the electricity sector. By supporting the development of smart grids, energy storage technologies, and advanced power management systems, Ontario is positioning itself to become a leader in the global energy transition.

Impact on the Economy and Jobs

One of the anticipated benefits of the clean electricity regulations is their positive impact on Ontario’s economy. As the province invests in renewable energy infrastructure and clean technologies, new job opportunities are expected to arise in industries such as manufacturing, construction, and research and development. These regulations also encourage innovation in energy services, which could lead to the growth of new companies and industries, while easing pressures on industrial ratepayers through complementary measures.

Furthermore, the transition to cleaner energy is expected to reduce the long-term costs associated with climate change. By investing in sustainable energy solutions now, Ontario will help mitigate the financial burdens of environmental damage and extreme weather events in the future.

Challenges and Concerns

While the new regulations have been widely praised for their environmental benefits, they are not without their challenges. One of the primary concerns is the potential cost to consumers, and some Ontario hydro policy critique has called for revisiting legacy pricing approaches to improve affordability. While renewable energy sources have become more affordable over the years, transitioning from fossil fuels could still result in higher electricity prices in the short term. Additionally, the implementation of new technologies, such as smart grids and energy storage, will require substantial upfront investment.

Moreover, the intermittency of renewable energy generation poses a challenge to grid stability. Ontario’s electricity grid must be able to adapt to fluctuations in energy supply as more variable renewable sources come online. This challenge will require significant upgrades to the grid infrastructure and the integration of storage solutions to ensure reliable energy delivery.

The Road Ahead

Ontario’s clean electricity regulations represent an important step in the province’s commitment to combating climate change and transitioning to a sustainable, low-carbon economy. While there are challenges to overcome, the benefits of cleaner air, reduced emissions, and a more resilient energy system will be felt for generations to come. As the province continues to innovate and lead in the energy sector, Ontario is positioning itself to thrive in the green economy of the future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.