Duke, NC GreenPower launch offset program

By PR Newswire


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Duke Energy Carolinas and NC GreenPower have created a carbon offset program for North Carolina customers interested in "canceling out" the carbon dioxide produced from their everyday activities like driving, watching television or mowing the grass.

Carbon offsets are created through projects that result in a reduction of carbon in the atmosphere. Carbon offsets are purchased from a third party and can neutralize carbon produced from today's energy-intensive lifestyles.

This new program will be available to Duke Energy Carolinas' North Carolina customers immediately. Duke Energy Carolinas' South Carolina customers will be able to participate in the program in the near future.

"As a company, Duke Energy is building more efficient coal- and gas-fired plants, and investing in wind, solar and other renewable energy. We are also investigating new technology to capture and sequester carbon emissions, pursuing innovative energy efficiency programs and supporting effective and sensible federal climate change legislation," said Keith Trent, group executive and chief strategy, policy and regulatory officer.

"We value our customers' commitment to energy efficiency and a clean environment. Through our partnership with NC GreenPower, we hope to give them the opportunity to achieve their personal goals through these carbon offsets," said Trent.

Duke Energy Carolinas' North Carolina customers can purchase a carbon offset for $4 a month, which represents 500 pounds of carbon dioxide, the equivalent of 500 kilowatt-hours of electricity. For the typical residential customer, the purchase of two carbon offsets for $8 a month would offset their average monthly consumption of 1,000 kilowatt-hours of electricity.

As part of its commitment to the environment and to encourage participation in the carbon offset program, Duke Energy Carolinas will match the first carbon offset block purchased by customers from NC GreenPower up to $1 million through 2009.

The NC GreenPower carbon offset program reflects Duke Energy's carbon-reduction strategy and efforts. North Carolina customers interested in reducing the carbon produced from their daily activities now have a program they can easily enroll in by visiting the company's Web site: www.Duke-Energy.com .

Carbon offset purchases will be reflected in a participating customer's monthly bill and passed directly to NC GreenPower. NC GreenPower is a non-profit organization created jointly by the states utilities and Raleigh-based Advanced Energy to promote renewable energy.

Advanced Energy is a non-profit organization that creates economic, environmental and societal benefits through innovative and market-based approaches to energy issues.

"Duke Energy Carolinas has partnered with us to promote renewable energy in North Carolina, and we are delighted to participate in the development and administration of this carbon offset program. Program funds will be used to support carbon offset programs such as reforestation projects and the capture of methane gas from landfills," said Maggy Inman, NC GreenPower's vice president.

In selecting projects, NC GreenPower will follow strict criteria developed by the Environmental Defense Fund. Projects must meet nine specific criteria, including the following key requirements:

- It must be a direct carbon emission (no renewable energy certificates);

- Quantification of emission reductions must be reliable and accurate;

- Emission reductions must be serialized and tracked;

- All offsets must be verified by an independent third party;

"NC GreenPower was created to develop renewable sources of energy to supplement the existing generation sources such as coal and nuclear generation. We believe this new carbon offset program will be just as successful in developing projects that address climate change issues," said Inman.

Related News

Crucial step towards completing nuclear plant achieved in Abu Dhabi

Barakah Unit 4 Cold Hydrostatic Testing validates reactor coolant system integrity at the Barakah Nuclear Energy Plant in Abu Dhabi, UAE, confirming safety, quality, and commissioning readiness under ENEC and KEPCO oversight.

 

Key Points

Pressure test of Unit 4's reactor coolant system, confirming integrity and safety for commissioning at Barakah.

✅ 25% above normal operating pressure verified.

✅ Welds, joints, and high-pressure components inspected.

✅ Supports safe, reliable, emissions-free baseload power.

 

The Emirates Nuclear Energy Corporation (ENEC) has successfully completed Cold Hydrostatic Testing (CHT) at Unit 4 of the Barakah Nuclear Energy Plant, the Arab world’s first nuclear energy plant being built in the Al Dhafra region of Abu Dhabi, UAE. The testing incorporated the lessons learned from the previous three units and is a crucial step towards the completion of Unit 4, the final unit of the Barakah plant.

As a part of CHT, the pressure inside Unit 4’s systems was increased to 25 per cent above what will be the normal operating pressure, demonstrating, as seen across global nuclear projects, the quality and robust nature of the Unit’s construction. Prior to the commencement of CHT, Unit 4’s Nuclear Steam Supply Systems were flushed with demineralised water, and the Reactor Pressure Vessel Head and Reactor Coolant Pump Seals were installed. During the Cold Hydrostatic Testing, the welds, joints, pipes and components of the reactor coolant system and associated high-pressure systems were verified.

Mohammed Al Hammadi, Chief Executive Officer of ENEC said: “I am proud of the continued progress being made at Barakah despite the circumstances we have all faced in relation to COVID-19. The UAE leadership’s decisive and proactive response to the pandemic supported us in taking timely, safety-led actions to protect the health and safety of our workforce and our plant. These actions, alongside the efforts of our talented and dedicated workforce, have enabled the successful completion of CHT at Unit 4, which was completed in adherence to the highest standards of safety, quality, and security.

“With this accomplishment, we move another step closer to achieving our goal of supplying up to a quarter of our nation’s electricity needs through the national grid and powering its future growth with safe, reliable, and emissions-free electricity,” he added.

By the end of 2019, ENEC and Korea Electric Power Corporation (KEPCO), working with Korea Hydro & Nuclear Power (KHNP) on the project, had successfully completed all major construction work including major concrete pouring, installation of the Turbine Generator, and the internal components of the Reactor Pressure Vessel (RPV) of Unit 4, which paved the way for the commencement of testing and commissioning.

The testing at Unit 4 represents a significant achievement in the development of the UAE Peaceful Nuclear Energy Program, following the successful completion of fuel assembly loading into Unit 1 in March 2020, confirming that the UAE has officially become a peaceful nuclear energy operating nation. Preparations are now in the final stages for the safe start-up of Unit 1, which subsequently reached 100% power ahead of commercial operations, in the coming months.

ENEC is currently in the final stages of construction of units 2, 3 and 4 of the Barakah Nuclear Energy Plant, as China’s nuclear program continues its steady development globally. The overall construction of the four units is more than 94% complete. Unit 4 is more than 84 per cent, Unit 3 is more than 92 per cent and Unit 2 is more than 95 per cent. The four units at Barakah will generate up to 25 per cent of the UAE’s electricity demand by producing 5,600 MW of clean baseload electricity, as projects such as new reactors in Georgia take shape, and preventing the release of 21 million tons of carbon emissions each year – the equivalent of removing 3.2 million cars off the roads annually.

 

Related News

View more

Millions at Risk of Electricity Shut-Offs Amid Summer Heat

Summer Heatwave Electricity Shut-offs strain power grids as peak demand surges, prompting load shedding, customer alerts, and energy conservation. Vulnerable populations face higher risks, while cooling centers, efficiency upgrades, and renewables bolster resilience.

 

Key Points

Episodic power cuts during extreme heat to balance grid load, protect infrastructure, and manage peak demand.

✅ Causes: peak demand, heatwaves, aging grid, AC load spikes.

✅ Impacts: vulnerable households, health risks, economic losses.

✅ Solutions: load shedding, cooling centers, efficiency, renewables.

 

As temperatures soar across various regions, millions of households are facing the threat of U.S. blackouts due to strain on power grids and heightened demand for cooling during summer heatwaves. This article delves into the causes behind these potential shut-offs, the impact on affected communities, and strategies to mitigate such risks in the future.

Summer Heatwave Challenges

Summer heatwaves bring not only discomfort but also significant challenges to electrical grids, particularly in densely populated urban areas where air conditioning units and cooling systems, along with the data center demand boom, strain the capacity of infrastructure designed to meet peak demand. As temperatures rise, the demand for electricity peaks, pushing power grids to their limits and increasing the likelihood of disruptions.

Vulnerable Populations

The risk of electricity shut-offs disproportionately affects vulnerable populations, including low-income households, seniors, and individuals with medical conditions that require continuous access to electricity for cooling or medical devices. These groups are particularly susceptible to heat-related illnesses and discomfort when faced with more frequent outages during extreme heat events.

Utility Response and Management

Utility companies play a critical role in managing electricity demand and mitigating the risk of shut-offs during summer heatwaves. Strategies such as load shedding, where electricity is temporarily reduced in specific areas to balance supply and demand, and deploying AI for demand forecasting are often employed to prevent widespread outages. Additionally, utilities communicate with customers to provide updates on potential shut-offs and offer advice on energy conservation measures.

Community Resilience

Community resilience efforts are crucial in addressing the challenges posed by summer heatwaves and electricity shut-offs, especially as Canadian grids face harsher weather that heightens outage risks. Local governments, non-profit organizations, and community groups collaborate to establish cooling centers, distribute fans, and provide support services for vulnerable populations during heat emergencies. These initiatives help mitigate the health impacts of extreme heat and ensure that all residents have access to relief from oppressive temperatures.

Long-term Solutions

Investing in resilient infrastructure, enhancing energy efficiency, and promoting renewable energy sources are long-term solutions to reduce the risk of electricity shut-offs during summer heatwaves by addressing grid vulnerabilities that persist. By modernizing electrical grids, integrating smart technologies, and diversifying energy sources, communities can enhance their capacity to withstand extreme weather events and ensure reliable electricity supply year-round.

Public Awareness and Preparedness

Public awareness and preparedness are essential components of mitigating the impact of electricity shut-offs during summer heatwaves. Educating residents about energy conservation practices, encouraging the use of programmable thermostats, and promoting the importance of emergency preparedness plans empower individuals and families to navigate heat emergencies safely and effectively.

Conclusion

As summer heatwaves become more frequent and intense due to climate change impacts on the grid, the risk of electricity shut-offs poses significant challenges to communities across the globe. By implementing proactive measures, enhancing infrastructure resilience, and fostering community collaboration, stakeholders can mitigate the impact of extreme heat events and ensure that all residents have access to safe and reliable electricity during the hottest months of the year.

 

Related News

View more

European gas prices fall to pre-Ukraine war level

European Gas Prices hit pre-invasion lows as LNG inflows, EU storage gains, and softer oil markets ease the energy crisis, while recession risks, windfall taxes, and ExxonMobil's challenge shape demand and policy.

 

Key Points

European gas prices reflect supply, LNG inflows, storage, and policy, shaping energy costs for households and industry.

✅ Month-ahead hit €76.78/MWh, rebounding to €85.50/MWh.

✅ EU storage 83.2% filled; autumn peak exceeded 95%.

✅ Demand tempered by recession risks; LNG inflows offset Russian cuts.

 

European gas prices have dipped to a level last seen before Russia launched its invasion of Ukraine in February, after warmer weather across the continent eased concerns over shortages and as coal demand dropped across Europe during winter.

The month-ahead European gas future contract dropped as low as €76.78 per megawatt hour on Wednesday, the lowest level in 10 months, amid EU talks on gas price cap strategies that could shape markets, before closing higher at €83.70, according to Refinitiv, a data company.

The invasion roiled global energy markets, serving as a wake-up call to ditch fossil fuels for policymakers, and forced European countries, including industrial powerhouse Germany, to look for alternative suppliers to those funding the Kremlin. Europe had continued to rely on Russian gas even after its 2014 annexation of Crimea and support for separatists in eastern Ukraine.

On Tuesday 83.2% of EU gas storage was filled, data from industry body Gas Infrastructure Europe showed. The EU in May set a target of filling 80% of its gas storage capacity by the start of November to prepare for winter, and weighed emergency electricity measures to curb prices as needed. It hit that target in August, and by mid-November it had peaked at more than 95%.

Gas prices bounced further off the 10-month low on Thursday to reach €85.50 per megawatt hour.

Europe has several months of domestic heating demand ahead, and some industry bosses believe energy shortages could also be a problem next winter, with a worst energy nightmare still possible if supplies tighten. However, traders have also had to weigh the effects of recessions expected in several big European economies, which could dent energy demand.

UK gas prices have also dropped back from their highs earlier this year, and forecasts suggest UK energy bills to drop in April. The day-ahead gas price closed at 155p per therm on Wednesday, compared with 200p/therm at the start of 2022, and more than 500p/therm in August.

Europe’s response to the prospect of gas shortages also included campaigns to reduce energy use – a strategy belatedly adopted by the UK – and windfall taxes on energy companies to help raise revenues for governments, many of which have started expensive subsidies to cushion the impact of high energy prices for households and consumers. Energy companies have enjoyed huge profits at the expense of businesses and households this year, as EU inflation accelerated, but costs remained much the same.

However, the US oil company ExxonMobil on Wednesday launched a legal challenge against EU plans for a windfall tax on oil companies, according to filings by its German and Dutch subsidiaries at the European general court in Luxembourg. ExxonMobil argued that the windfall tax would be “counter-productive” because it said it would result in lower investment in fossil fuel extraction, and that the EU did not have the legal jurisdiction to impose it.

ExxonMobil’s move has prompted anger among European politicians. A message posted on the Twitter account of Paolo Gentiloni, the EU’s commissioner for the economy, on Thursday stated: “Fairness and solidarity, even for corporate giants. #Exxon.”

Oil prices are significantly lower than they were before the start of Russia’s invasion, and only marginally above where they were at the start of 2022. Brent crude oil futures traded at $100 a barrel on 28 February, but were at $81.84 on Thursday.

Oil prices dropped by 1.7% on Thursday. Prices had risen from 12-month lows in early December as traders hoped for increased demand from China after it relaxed its coronavirus restrictions. However, Covid-19 infection numbers are thought to have surged in the country, prompting the US to require travellers from China to show a negative test for the disease and tempering expectations for a rapid increase in oil demand.

 

Related News

View more

U.A.E. Becomes First Arab Nation to Open a Nuclear Power Plant

UAE Nuclear Power Plant launches the Barakah facility, delivering clean electricity to the Middle East under IAEA safeguards amid Gulf tensions, proliferation risks, and debates over renewables, natural gas, grid resilience, and energy security.

 

Key Points

The UAE Nuclear Power Plant, Barakah, is a civilian facility expected to supply 25% of electricity under IAEA oversight.

✅ Barakah reactors target 25% of national electricity.

✅ Operates under IAEA oversight, no enrichment per US 123 deal.

✅ Raises regional security, proliferation, and environmental concerns.

 

The United Arab Emirates became the first Arab country to open a nuclear power plant on Saturday, following a crucial step in Abu Dhabi earlier in the project, raising concerns about the long-term consequences of introducing more nuclear programs to the Middle East.

Two other countries in the region — Israel and Iran — already have nuclear capabilities. Israel has an unacknowledged nuclear weapons arsenal and Iran has a controversial uranium enrichment program that it insists is solely for peaceful purposes.

The U.A.E., a tiny nation that has become a regional heavyweight and international business center, said it built the plant to decrease its reliance on the oil that has powered and enriched the country and its Gulf neighbors for decades. It said that once its four units were all running, the South Korean-designed plant would provide a quarter of the country’s electricity, with Unit 1 reaching 100% power as a milestone toward commercial operations.

Seeking to quiet fears that it was trying to build muscle to use against its regional rivals, it has insisted that it intends to use its nuclear program only for energy purposes.

But with Iran in a standoff with Western powers over its nuclear program, Israel in the neighborhood and tensions high among Gulf countries, some analysts view the new plant — and any that may follow — as a security and environmental headache. Other Arab countries, including Saudi Arabia and Iraq, are also starting or planning nuclear energy programs.

The Middle East is already riven with enmities that pit Saudi Arabia and the U.A.E. against Iran, Qatar and Iran’s regional proxies. One of those proxies, the Yemen-based Houthi rebel group, claimed an attack on the Barakah plant when it was under construction in 2017.

And Iran is widely believed to be behind a series of attacks on Saudi oil facilities and oil tankers passing through the Gulf over the last year.

“The UAE’s investment in these four nuclear reactors risks further destabilizing the volatile Gulf region, damaging the environment and raising the possibility of nuclear proliferation,” Paul Dorfman, a researcher at University College London’s Energy Institute, wrote in an op-ed in March.

Noting that the U.A.E. had other energy options, including “some of the best solar energy resources in the world,” he added that “the nature of Emirate interest in nuclear may lie hidden in plain sight — nuclear weapon proliferation.”
But the U.A.E. has said it considered natural gas and renewable energy sources before dismissing them in favor of nuclear energy because they would not produce enough for its needs.

Offering evidence that its intentions are peaceful, it points to its collaborations with the International Atomic Energy Agency, which has reviewed the Barakah project, and the United States, with which it signed a nuclear energy cooperation agreement in 2009 that allows it to receive nuclear materials and technical assistance from the United States while barring it from uranium enrichment and other possible bomb-development activities.

That has not persuaded Qatar, which last year lodged a complaint with the international nuclear watchdog group over the Barakah plant, calling it “a serious threat to the stability of the region and its environment.”

The U.A.E.’s oil exports account for about a quarter of its total gross domestic product. Despite its gusher of oil, it has imported increasing amounts of natural gas in recent years in part to power its energy-intensive desalination plants.

“We proudly witness the start of Barakah nuclear power plant operations, in alignment with the highest international safety standards,” Mohammed bin Zayed, the U.A.E.’s de facto ruler, tweeted on Saturday.

The new nuclear facility, which is in the Gharbiya region on the coast, close to Qatar and Saudi Arabia, is the first of several prospective Middle East nuclear plants, even as Europe reduces nuclear capacity elsewhere. Egypt plans to build a power plant with four nuclear reactors.

Saudi Arabia is also building a civilian nuclear reactor while pursuing a nuclear cooperation deal with the United States, and globally, China's nuclear program remains on a steady development track, though the Trump administration has said it would sign such an agreement only if it includes safeguards against weapons development.

 

Related News

View more

Solar changing shape of electricity prices in Northern Europe

EU Solar Impact on Electricity Prices highlights how rising solar PV penetration drives negative pricing, shifts peak hours, pressures wholesale markets, and challenges grid balancing, interconnection, and flexibility amid changing demand and renewables growth.

 

Key Points

Explains how rising solar PV cuts wholesale prices, shifts negative-price hours, and strains grid flexibility.

✅ Negative pricing events surge with higher solar penetration.

✅ Afternoon price dips replace night-time wind-led lows.

✅ Grid balancing, interconnectors, and flexibility become critical.

 

The latest EU electricity market report has confirmed the affect deeper penetration of solar is having on wholesale electricity prices more broadly.

The Quarterly Report on European Electricity Markets for the final three months of last year noted the number of periods of negative electricity pricing doubled from 2019, to almost 1,600 such events, as global renewables set new records in deployment across markets.

Having experienced just three negative price events in 2019, the Netherlands recorded almost 100 last year “amid a dramatic increase in solar PV capacity,” in the nation, according to the report.

Whilst stressing the exceptional nature of the Covid-19 pandemic on power consumption patterns, the quarterly update also noted a shift in the hours during which negative electric pricing occurred in renewables poster child Germany. Previously such events were most common at night, during periods of high wind speed and low demand, but 2020 saw a switch to afternoon negative pricing. “Thus,” stated the report, “solar PV became the main driver behind prices falling into negative territory in the German market in 2020, as Germany's solar boost accelerated, and also put afternoon prices under pressure generally.”

The report also highlighted two instances of scarce electricity–in mid September and on December 9–as evidence of the problems associated with accommodating a rising proportion of intermittent clean energy capacity into the grid, and called for more joined-up cross-border power networks, amid pushback from Russian oil and gas across the continent.

Rising solar generation–along with higher gas output, year on year–also helped the Netherlands generate a net surplus of electricity last year, after being a net importer “for many years.” The EU report also noted a beneficial effect of rising solar generation capacity on Hungary‘s national electricity account, and cited a solar “boom” in that country and Poland, mirroring rapid solar PV growth in China in recent years.

With Covid-19 falls in demand helping renewables generate more of Europe's electricity (39%) than fossil fuels (36%) for the first time, as renewables surpassed fossil fuels across Europe, the market report observed the 5% of the bloc's power produced from solar closed in on the 6% accounted for by hard coal. In the final three months of the year, European solar output rose 12%, year on year, to 18 TWh and “the increase was almost single-handedly driven by Spain,” the study added.

With coal and lignite-fired power plunging 22% last year across the bloc, it is estimated the European power sector reduced its carbon footprint 14% as part of Europe's green surge although the quarterly report warned cold weather, lower wind speeds and rising gas prices in the opening months of this year are likely to see carbon emissions rebound.

There was good news on the transport front, though, with the report stating the scale of the European “electrically-charged vehicle” fleet doubled in 2020, to 2 million, with almost half a million of the new registrations arriving in the final months of the year. That meant cars with plug sockets accounted for a remarkable 17% of new purchases in Q4, twice the proportion seen in China and a slice of the pie six times bigger than such products claimed in the U.S.

 

Related News

View more

Ireland goes 25 days without using coal to generate electricity

Ireland Coal-Free Electricity Record: EirGrid reports 25 days without coal on the all-island grid, as wind power, renewables, and natural gas dominated generation, cutting CO2 emissions, with Moneypoint sidelined by market competitiveness.

 

Key Points

It is a 25-day period when the grid used no coal, relying on gas and renewables to reduce CO2 emissions.

✅ 25 days coal-free between April 11 and May 7

✅ Gas 60%, renewables 30% of generation mix

✅ Eurostat: 6.8% drop in Ireland's CO2 emissions

 

The island of Ireland has gone a record length of time without using coal-fired electricity generation on its power system, Britain's week-long coal-free run providing a recent comparator, Eirgrid has confirmed.

The all-island grid operated without coal between April 11th and May 7th – a total of 25 days, it confirmed. This is the longest period of time the grid has operated without coal since the all-island electricity market was introduced in 2007, echoing Britain's record coal-free stretch seen recently.

Ireland’s largest generating station, Moneypoint in Co Clare, uses coal, with recent price spikes in Ireland fueling concerns about dispatchable capacity, as do some of the larger generation sites in Northern Ireland.

The analysis coincides with the European statistics agency, Eurostat publishing figures showing annual CO2 emissions in Ireland fell by 6.8 per cent last year; partly due to technical problems at Moneypoint.

Over the 25-day period, gas made up 60 per cent of the fuel mix, while renewable energy, mainly wind, accounted for 30 per cent, echoing UK wind surpassing coal in 2016 across the market. Coal-fired generation was available during this period but was not as competitive as other methods.

EirGrid group chief executive Mark Foley said this was “a really positive development” as coal was the most carbon intense of all electricity sources, with its share hitting record lows in the UK in recent years.

“We are acutely aware of the challenges facing the island in terms of meeting our greenhouse gas emission targets, mindful that low-carbon generation stalled in the UK in 2019, through the deployment of more renewable energy on the grid,” he added.

Last year 33 per cent of the island’s electricity came from renewable energy sources, German renewables surpassing coal and nuclear offering a parallel milestone, a new record. Coal accounted for 9 per cent of electricity generation, down from 12.9 per cent in 2017.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.