SCE operating normally following quake

By Business Wire


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Southern California EdisonÂ’s (SCEÂ’s) transmission and generation systems were operating normally after a 5.4 magnitude earthquake struck near Chino Hills on July 29, but some customers near the epicenter lost power.

As of 2 p.m. PDT, about 100 customers were without service. Initially, an estimated 5,000 customers were without service in the areas of Chino Hills, Chino, La Habra, Diamond Bar and Pomona.

A fire was reported at SCEÂ’s substation in La Habra, but no major damage was reported.

The earthquake was felt at the San Onofre Nuclear Generating Station site. There were no safety issues reported and no indications of any damage. The plant continues to operate normally.

SCE reminds its customers of the following electrical safety tips as a result of the earthquake:

• Never touch or try to move a downed power line because of the danger of electrocution. Call SCE at (800) 611-1911 and your local police and fire officials for assistance.

• Watch for traffic signals that may be out. Approach uncontrolled intersections as four-way stops.

• Make sure you have a battery-operated radio and flashlights.

• Do not rely on candles for lighting during a power outage because they pose a significant fire hazard.

• Turn off and unplug any unnecessary electrical equipment, especially sensitive electronic equipment.

• Do not use equipment designed for outdoor cooking indoors. Such equipment can emit carbon monoxide and other toxic gases.

• If you use a generator, place it outdoors and plug individual appliances directly into the generator, using a heavy-duty extension cord. Connecting generators directly to household circuits creates “backfeed,” which is dangerous to repair crews.

• During an outage, turn off unattended electrical appliances and devices to avoid possible hazards when service is restored.

Related News

Current Model For Storing Nuclear Waste Is Incomplete

Nuclear Waste Corrosion accelerates as stainless steel, glass, and ceramics interact in aqueous conditions, driving localized corrosion in repositories like Yucca Mountain, according to Nature Materials research on high-level radioactive waste storage.

 

Key Points

Degradation of waste forms and canisters from water-driven chemistry, causing accelerated, localized corrosion in storage.

✅ Stainless steel-glass contact triggers severe localized attack

✅ Ceramics and steel co-corrosion observed under aqueous conditions

✅ Yucca Mountain-like chemistry accelerates waste form degradation

 

The materials the United States and other countries plan to use to store high-level nuclear waste, even as utilities expand carbon-free electricity portfolios, will likely degrade faster than anyone previously knew because of the way those materials interact, new research shows.

The findings, published today in the journal Nature Materials (https://www.nature.com/articles/s41563-019-0579-x), show that corrosion of nuclear waste storage materials accelerates because of changes in the chemistry of the nuclear waste solution, and because of the way the materials interact with one another.

"This indicates that the current models may not be sufficient to keep this waste safely stored," said Xiaolei Guo, lead author of the study and deputy director of Ohio State's Center for Performance and Design of Nuclear Waste Forms and Containers, part of the university's College of Engineering. "And it shows that we need to develop a new model for storing nuclear waste."

Beyond waste storage, options like carbon capture technologies are being explored to reduce atmospheric CO2 alongside nuclear energy.

The team's research focused on storage materials for high-level nuclear waste -- primarily defense waste, the legacy of past nuclear arms production. The waste is highly radioactive. While some types of the waste have half-lives of about 30 years, others -- for example, plutonium -- have a half-life that can be tens of thousands of years. The half-life of a radioactive element is the time needed for half of the material to decay.

The United States currently has no disposal site for that waste; according to the U.S. General Accountability Office, it is typically stored near the nuclear power plants where it is produced. A permanent site has been proposed for Yucca Mountain in Nevada, though plans have stalled. Countries around the world have debated the best way to deal with nuclear waste; only one, Finland, has started construction on a long-term repository for high-level nuclear waste.

But the long-term plan for high-level defense waste disposal and storage around the globe is largely the same, even as the U.S. works to sustain nuclear power for decarbonization efforts. It involves mixing the nuclear waste with other materials to form glass or ceramics, and then encasing those pieces of glass or ceramics -- now radioactive -- inside metallic canisters. The canisters then would be buried deep underground in a repository to isolate it.

At the generation level, regulators are advancing EPA power plant rules on carbon capture to curb emissions while nuclear waste strategies evolve.

In this study, the researchers found that when exposed to an aqueous environment, glass and ceramics interact with stainless steel to accelerate corrosion, especially of the glass and ceramic materials holding nuclear waste.

In parallel, the electrical grid's reliance on SF6 insulating gas has raised warming concerns across Europe.

The study qualitatively measured the difference between accelerated corrosion and natural corrosion of the storage materials. Guo called it "severe."

"In the real-life scenario, the glass or ceramic waste forms would be in close contact with stainless steel canisters. Under specific conditions, the corrosion of stainless steel will go crazy," he said. "It creates a super-aggressive environment that can corrode surrounding materials."

To analyze corrosion, the research team pressed glass or ceramic "waste forms" -- the shapes into which nuclear waste is encapsulated -- against stainless steel and immersed them in solutions for up to 30 days, under conditions that simulate those under Yucca Mountain, the proposed nuclear waste repository.

Those experiments showed that when glass and stainless steel were pressed against one another, stainless steel corrosion was "severe" and "localized," according to the study. The researchers also noted cracks and enhanced corrosion on the parts of the glass that had been in contact with stainless steel.

Part of the problem lies in the Periodic Table. Stainless steel is made primarily of iron mixed with other elements, including nickel and chromium. Iron has a chemical affinity for silicon, which is a key element of glass.

The experiments also showed that when ceramics -- another potential holder for nuclear waste -- were pressed against stainless steel under conditions that mimicked those beneath Yucca Mountain, both the ceramics and stainless steel corroded in a "severe localized" way.

Other Ohio State researchers involved in this study include Gopal Viswanathan, Tianshu Li and Gerald Frankel.

This work was funded in part by the U.S. Department of Energy Office of Science.

Meanwhile, U.S. monitoring shows potent greenhouse gas declines confirming the impact of control efforts across the energy sector.

 

Related News

View more

Alberta shift from coal to cleaner energy

Alberta Coal-to-Gas Transition will retire coal units, convert plants to natural gas, boost renewables, and affect electricity prices, with policy tools like a price cap and carbon tax shaping the power market.

 

Key Points

Shift retiring coal units and converting to natural gas and renewables, targeting coal elimination by 2030.

✅ TransAlta retires Sundance coal unit; more units convert to gas.

✅ Forward prices seen near $40 to low $50/MWh in 2018.

✅ 6.8-cent cap shields consumers; carbon tax backstops costs.

 

The turn of the calendar to 2018 saw TransAlta retire one of its coal power generating units at its Sundance plant west of Edmonton and mothball another as it begins the transition to cleaner sources of energy across Alberta.

The company will say goodbye to three more units over the next year and a half to prepare them for conversion to natural gas.

This is part of a fundamental shift in Alberta, which will see coal power retired ahead of schedule by 2030, replaced by a mix of natural gas and renewable sources.

“We’re going to see that transition continue right up from now until 2030, and likely beyond 2030 as wind generation starts to outpace coal and new technologies become available.”

Coal has long been the backbone of Alberta’s grid, currently providing nearly 40 per cent of the provinces power. Analysts believe removing it will come with a cost to consumers, according to a report on coal phase-out costs published recently.

“The open question over the next couple of years is whether they’re going to inch up gradually, or whether they’re going to inch up like they did in 2012 and 2013, by having periods of very high power prices.”

Albertans are currently paying historically low power prices, with generation costs last year averaging below $23/MWh, less than half of the average of the past 10 years.

A report released in mid-December by electricity consultant firm EDC Associates showed forward prices moving from the $40/MWh in the first three months of 2018, to the low $50/MWh range.

“The forwards tend to take several weeks to fully react to announcements, so its anticipated that prices will continue to gradually track upwards over the coming weeks,” the report reads.

The NDP government has taken steps to protect consumers against price surges. Last spring, a price cap of 6.8 cents/MWh was put in place until the spring of 2021, with any cost above that to be covered by carbon tax revenue.

 

Related News

View more

Ameren, Safe Electricity urge safety near downed lines

Downed Power Line Vehicle Safety: Follow stay-in-the-car protocol, call 911, avoid live wires and utility poles, and use the bunny hop to escape only for fire. Electrical hazards demand emergency response caution.

 

Key Points

Stay in the car, call 911, and use a bunny hop escape only if fire threatens during downed power line incidents.

✅ Stay in vehicle; tell bystanders to keep back and call 911.

✅ Exit only for fire; jump clear and bunny hop away.

✅ Treat all downed lines as live; avoid paths to ground.

 

Ameren Illinois and Safe Electricity are urging the public to stay in their cars and call 911 in the event of an accident involving a power pole that brings down power lines on or around the car.

In a media simulation Tuesday at the Ameren facility on West Lafayette Avenue, Ameren Illinois employees demonstrated the proper way to react if a power line has fallen on or around a vehicle, as some utilities consider on-site staffing measures during outbreaks. Although the situation might seem rare, Illinois motorists alone hit 3,000 power poles each year, said Krista Lisser, communications director for Safe Energy.

“We want to get the word out that, if you hit a utility pole and a live wire falls on your vehicle, stay in your car,” Lisser said. “Our first reaction is we panic and think we need to get out, a sign of the electrical knowledge gap many people have. That’s not the case, you need to stay in because, when that live wire comes down, electricity is all around you. You may not see it, it may not arc, it may not flash, you may not know if there’s electricity there.”

Should someoneinvolved in such an accident see a good Samaritan attempting to help, he should try to tell the would-be rescuer to stay back to prevent injury to the Samaritan, Ameren Illinois Communications Executive Brian Bretsch said.

“We have seen instances where someone comes up and wants to help you,” Bretsch said. “You want to yell, ‘Please stay away from the vehicle. Everyone is OK. Please stay away.’ You’ll see … instances every now and then where the Samaritan will come up, create that path to ground and get injured, and there are also climbers seeking social media glory who put themselves at risk.”

The only instance in which one should exit a car in the vicinity of a downed wire is if the vehicle is on fire and there is no choice but to exit. In that situation, those in the car should “bunny hop” out of the car by jumping from the car without touching the car and the ground at the same time, Bretsch and Lisser said.

After the initial jump, those escaping the vehicle should continue jumping with both feet together and hands tucked in and away from danger until they are safely clear of the downed wire.

It’s important for everyone to be informed, because an encounter with a live wire could easily result in serious injury, as in the Hydro One worker injury case, or death, Lisser said.

“They’re so close to our roads, especially in our rural communities, that it’s quite a common occurrence,” Lisser said. “Just stay away from (downed lines), especially after storms and amid grid oversight warnings that highlight reliability risks … Always treat a downed line as a live wire. Never assume the line is dead.”

 

Related News

View more

USAID Delivers Mobile Gas Turbine Power Plant to Ukraine

USAID GE Mobile Power Plant Ukraine supplies 28MW of emergency power and distributed generation to bolster energy security, grid resilience, and critical infrastructure reliability across cities and regions amid ongoing attacks.

 

Key Points

A 28MW GE gas turbine from USAID providing mobile, distributed power to strengthen Ukraine's grid resilience.

✅ 28MW GE gas turbine; power for 100,000 homes

✅ Mobile deployment to cities and regions as needed

✅ Supports hospitals, schools, and critical infrastructure

 

Deputy U.S. Administrator Isobel Coleman announced during her visit to Kyiv that the U.S. Agency for International Development (USAID) has provided the Government of Ukraine with a mobile gas turbine power plant purchased from General Electric (GE), as discussions of a possible agreement on power plant attacks continue among stakeholders.

The mobile power plant was manufactured in the United States by GE’s Gas Power business and has a total output capacity of approximately 28MW, which is enough to provide the equivalent electricity to at least 100,000 homes. This will help Ukraine increase the supply of electricity to homes, hospitals, schools, critical infrastructure providers, and other institutions, as the country has even resumed electricity exports in recent months. The mobile power plant can be operated in different cities or regions depending on need, strengthening Ukraine’s energy security amid the Russian Federation’s continuing strikes against critical infrastructure.   

Since the February 2022 full-scale invasion of Ukraine, and particularly since October 2022, the Russian Federation has deliberately targeted critical civilian heating, power, and gas infrastructure in an effort to weaponize the winter, raising nuclear risks to grid stability noted by international monitors. Ukraine has demonstrated tremendous resilience in the wake of these attacks, with utility workers routinely risking their lives to repair the damage, often within hours of air strikes, even as Russia builds power lines to reactivate the Zaporizhzhia plant to influence the energy situation.

The collaboration between USAID and GE reflects the U.S. government’s emphasis on engaging American private sector expertise and procuring proven and reliable equipment to meet Ukraine’s needs. Since the start of Putin’s full-scale war against Ukraine, USAID has both directly procured equipment for Ukraine from American companies and engaged the private sector in partnerships to meet Ukraine’s urgent wartime needs, with U.S. policy debates such as a proposal on Ukraine’s nuclear plants drawing scrutiny.

This mobile power plant is the latest example of USAID assistance to Ukraine’s energy sector since the start of the Russian Federation’s full-scale invasion, during which Ukraine has resumed electricity exports as conditions improved. USAID has already delivered more than 1,700 generators to 22 oblasts across Ukraine, with many more on the way. These generators ensure electricity and heating for schools, hospitals, accommodation centers for internally-displaced persons, district heating companies, and water systems if and when power is knocked out by the Russian Federation’s relentless, systematic and cruel attacks against critical civil infrastructure. USAID has invested $55 million in Ukraine’s heating infrastructure to help the Ukrainian people get through winter. This support will benefit up to seven million Ukrainians by supporting repairs and maintenance of pipes and other equipment necessary to deliver heating to homes, hospitals, schools, and businesses across Ukraine. USAID’s assistance builds on over two decades of support to Ukraine to strengthen the country’s energy security, complementing growth in wind power that is harder to destroy.

 

Related News

View more

ATCO Electric agrees to $31 million penalty following regulator's investigation

ATCO Electric administrative penalty underscores an Alberta Utilities Commission probe into a sole-sourced First Nation contract, Jasper transmission line overpayments, and nondisclosure to ratepayers, sparked by a whistleblower and pending settlement approval.

 

Key Points

A $31M AUC settlement over alleged overpayment, sole-sourcing, and nondisclosure tied to a Jasper transmission line.

✅ $31M administrative penalty; AUC settlement pending approval

✅ Sole-sourced First Nation contract to protect related ATCO deal

✅ Overpayment concealed when seeking recovery from ratepayers

 

Regulated Alberta utility ATCO Electric has agreed to pay a $31 million administrative penalty after an Alberta Utilities Commission utilities watchdog investigation found it deliberately overpaid a First Nation group for work on a new transmission line, and then failed to disclose the reasons for it when it applied to be reimbursed by ratepayers for the extra cost.

An agreed statement of facts contained in a settlement agreement between ATCO Electric Ltd. and the commission's enforcement staff says the company sole-sourced a contract in 2018 for work that was necessary for an electric transmission line to Jasper, Alta., even as BC Hydro marked a Site C transmission line milestone elsewhere.

The company that won the contract was co-owned by the Simpcw First Nation in Barriere, B.C., while debates over a First Nations electricity line in Ontario underscore related issues, and the agreement says one of the reasons for the sole-sourcing was that another of Calgary-based ATCO's subsidiaries had a prior deal with the First Nation for infrastructure projects that included the provision of work camps on the Trans Mountain Pipeline expansion project.

The statement of facts says ATCO Electric feared that if it didn't grant the contract to the First Nation group and instead put the work to tender, amid legal pressures such as a treaty rights challenge, the group might back out of its deal with ATCO Structures and Logistics and partner with another, non-ATCO company on the Trans Mountain work.

The agreed statement says ATCO Electric paid several million dollars more than market value for some of the Jasper line work, while a Manitoba-Minnesota line delay was being weighed in another jurisdiction, and staff attempted to conceal the reasons for the overpayment when they sought to recover the extra money from Alberta consumers.

It states the investigation was sparked by a whistleblower, and notes the agreement between the utility commission's enforcement staff and ATCO Electric must still be approved by the Alberta Utilities Commission, a process comparable to hearings that consider oral traditional evidence on interprovincial lines.

The commission must be satisfied the settlement is in the public interest, a consideration often informed by concerns from Site C opponents in other regions.

 

Related News

View more

Poland’s largest power group opts to back wind over nuclear

Poland Offshore Wind Energy accelerates as PGE exits nuclear leadership, PKN Orlen steps in, and Baltic Sea projects expand to cut coal reliance, meet EU emissions goals, attract investors, and bridge the power capacity gap.

 

Key Points

A shift from coal and nuclear to Baltic offshore wind to add capacity, cut EU emissions, and attract investment.

✅ PGE drops lead in nuclear; pivots $10bn to offshore wind.

✅ PKN Orlen may assume nuclear role; projects await approval.

✅ 6 GW offshore could add 60b zlotys and 77k jobs by 2030.

 

PGE, Poland’s biggest power group has decided to abandon a role in building the country’s first nuclear power plant and will instead focus investment on offshore wind energy.

Reuters reports state-run refiner PKN Orlen (PKN.WA) could take on PGE’s role, while the latter announces a $10bn offshore wind power project.

Both moves into renewables and nuclear represent a major change in Polish energy policy, diversifying away from the country’s traditional coal-fired power base, as regional efforts like the North Sea wind farms initiative expand, in a bid to fill an electricity shortfall and meet EU emission standards.

An unnamed source told the news agency, PGE could not fund both projects and cheap technology had swung the decision in favour of wind, with offshore wind competing with gas in some markets. PGE could still play a smaller role in the nuclear project which has been delayed and still needs government approval.

#google#

A proposed law is currently before the Polish parliament aiming at facilitating easy construction of wind turbines, mindful of Germany’s grid expansion challenges that have hindered rollout.

If the law is passed, as expected, several other wind farm projects could also proceed.

Polenergia has said it would like to build a wind farm in the Baltic by 2022. PKN Orlen is also considering building one.

PGE said in March that it wants to build offshore windfarms with a capacity of 2.5 gigawatts (GW) by 2030.

Analysts and investors say that offshore wind farms are the easiest and fastest way for Poland to fill the expected capacity gap from coal, with examples like the largest UK offshore wind farm coming online underscoring momentum, and reduce CO2 emissions in line with EU’s 2030 targets as Poland seeks improved ties with Brussels.

The decision to open up the offshore power industry could also draw in investors, as shown by Japanese utilities’ UK offshore investment attracting cross-border capital. Statoil said in April it would join Polenergia’s offshore project which has drawn interest from other international wind companies. “

The Polish Wind Energy Association (PWEA) estimates that offshore windfarms with a total capacity of 6 GW would help create around 77,000 new jobs and add around 60 billion zlotys to economic growth.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.