Playing electrical Russian roulette

By Reuters


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Not everybody in military-ruled Myanmar is cursing the blackouts.

Thieves in the former Burma's main city, Yangon, are taking advantage of outages often lasting for more than 20 hours a day to steal the copper power cables, police said.

Sometimes, of course, they get unlucky.

"The thieves are risking their lives as it is impossible to know exactly when the power is going to be restored. It's just like playing Russian roulette," said one Yangon police officer who did not want to be named.

"I've seen a few cases in which thieves were electrocuted. In April, a 16-year-old boy was found dead, holding a broken cable from a lamppost. Only God knows for sure whether he was a thief or not."

Innocent passers-by are also falling victim.

"In one case, the broken cable end left by the thief dangled into a puddle and a woman jogger was killed when she stepped into it," he said.

Four decades of military rule and economic mismanagement have turned Myanmar - the world's number one rice exporter when it won independence from Britain in 1948 - into one of Asia's biggest basket cases.

Despite huge off-shore natural gas reserves, the southeast Asian nation's 53 million people have access to less than 10 percent of the electricity per capita of neighboring Thailand.

Related News

U.A.E. Becomes First Arab Nation to Open a Nuclear Power Plant

UAE Nuclear Power Plant launches the Barakah facility, delivering clean electricity to the Middle East under IAEA safeguards amid Gulf tensions, proliferation risks, and debates over renewables, natural gas, grid resilience, and energy security.

 

Key Points

The UAE Nuclear Power Plant, Barakah, is a civilian facility expected to supply 25% of electricity under IAEA oversight.

✅ Barakah reactors target 25% of national electricity.

✅ Operates under IAEA oversight, no enrichment per US 123 deal.

✅ Raises regional security, proliferation, and environmental concerns.

 

The United Arab Emirates became the first Arab country to open a nuclear power plant on Saturday, following a crucial step in Abu Dhabi earlier in the project, raising concerns about the long-term consequences of introducing more nuclear programs to the Middle East.

Two other countries in the region — Israel and Iran — already have nuclear capabilities. Israel has an unacknowledged nuclear weapons arsenal and Iran has a controversial uranium enrichment program that it insists is solely for peaceful purposes.

The U.A.E., a tiny nation that has become a regional heavyweight and international business center, said it built the plant to decrease its reliance on the oil that has powered and enriched the country and its Gulf neighbors for decades. It said that once its four units were all running, the South Korean-designed plant would provide a quarter of the country’s electricity, with Unit 1 reaching 100% power as a milestone toward commercial operations.

Seeking to quiet fears that it was trying to build muscle to use against its regional rivals, it has insisted that it intends to use its nuclear program only for energy purposes.

But with Iran in a standoff with Western powers over its nuclear program, Israel in the neighborhood and tensions high among Gulf countries, some analysts view the new plant — and any that may follow — as a security and environmental headache. Other Arab countries, including Saudi Arabia and Iraq, are also starting or planning nuclear energy programs.

The Middle East is already riven with enmities that pit Saudi Arabia and the U.A.E. against Iran, Qatar and Iran’s regional proxies. One of those proxies, the Yemen-based Houthi rebel group, claimed an attack on the Barakah plant when it was under construction in 2017.

And Iran is widely believed to be behind a series of attacks on Saudi oil facilities and oil tankers passing through the Gulf over the last year.

“The UAE’s investment in these four nuclear reactors risks further destabilizing the volatile Gulf region, damaging the environment and raising the possibility of nuclear proliferation,” Paul Dorfman, a researcher at University College London’s Energy Institute, wrote in an op-ed in March.

Noting that the U.A.E. had other energy options, including “some of the best solar energy resources in the world,” he added that “the nature of Emirate interest in nuclear may lie hidden in plain sight — nuclear weapon proliferation.”
But the U.A.E. has said it considered natural gas and renewable energy sources before dismissing them in favor of nuclear energy because they would not produce enough for its needs.

Offering evidence that its intentions are peaceful, it points to its collaborations with the International Atomic Energy Agency, which has reviewed the Barakah project, and the United States, with which it signed a nuclear energy cooperation agreement in 2009 that allows it to receive nuclear materials and technical assistance from the United States while barring it from uranium enrichment and other possible bomb-development activities.

That has not persuaded Qatar, which last year lodged a complaint with the international nuclear watchdog group over the Barakah plant, calling it “a serious threat to the stability of the region and its environment.”

The U.A.E.’s oil exports account for about a quarter of its total gross domestic product. Despite its gusher of oil, it has imported increasing amounts of natural gas in recent years in part to power its energy-intensive desalination plants.

“We proudly witness the start of Barakah nuclear power plant operations, in alignment with the highest international safety standards,” Mohammed bin Zayed, the U.A.E.’s de facto ruler, tweeted on Saturday.

The new nuclear facility, which is in the Gharbiya region on the coast, close to Qatar and Saudi Arabia, is the first of several prospective Middle East nuclear plants, even as Europe reduces nuclear capacity elsewhere. Egypt plans to build a power plant with four nuclear reactors.

Saudi Arabia is also building a civilian nuclear reactor while pursuing a nuclear cooperation deal with the United States, and globally, China's nuclear program remains on a steady development track, though the Trump administration has said it would sign such an agreement only if it includes safeguards against weapons development.

 

Related News

View more

Physicists Just Achieved Conduction of Electricity at Close to The Speed of Light

Attosecond Electron Transport uses ultrafast lasers and single-cycle light pulses to drive tunneling in bowtie gold nanoantennas, enabling sub-femtosecond switching in optoelectronic nanostructures and surpassing picosecond silicon limits for next-gen computing.

 

Key Points

A light-driven method that manipulates electrons with ultrafast pulses to switch currents within attoseconds.

✅ Uses single-cycle light pulses to drive electron tunneling

✅ Achieves 600 attosecond current switching in nano-gaps

✅ Enables optoelectronic, plasmonic devices beyond silicon

 

When it comes to data transfer and computing, the faster we can shift electrons and conduct electricity the better – and scientists have just been able to transport electrons at sub-femtosecond speeds (less than one quadrillionth of a second) in an experimental setup.

The trick is manipulating the electrons with light waves that are specially crafted and produced by an ultrafast laser. It might be a long while before this sort of setup makes it into your laptop, but similar precision is seen in noninvasive interventions where targeted electrical stimulation can boost short-term memory for limited periods, and the fact they pulled it off promises a significant step forward in terms of what we can expect from our devices.

Right now, the fastest electronic components can be switched on or off in picoseconds (trillionths of a second), a pace that intersects with debates over 5G electricity use as systems scale, around 1,000 times slower than a femtosecond.

With their new method, the physicists were able to switch electric currents at around 600 attoseconds (one femtosecond is 1,000 attoseconds).

"This may well be the distant future of electronics," says physicist Alfred Leitenstorfer from the University of Konstanz in Germany. "Our experiments with single-cycle light pulses have taken us well into the attosecond range of electron transport."

Leitenstorfer and his colleagues were able to build a precise setup at the Centre for Applied Photonics in Konstanz. Their machinery included both the ability to carefully manipulate ultrashort light pulses, and to construct the necessary nanostructures, including graphene architectures, where appropriate.

The laser used by the team was able to push out one hundred million single-cycle light pulses every single second in order to generate a measurable current. Using nanoscale gold antennae in a bowtie shape (see the image above), the electric field of the pulse was concentrated down into a gap measuring just six nanometres wide (six thousand-millionths of a metre).

As a result of their specialist setup and the electron tunnelling and accelerating it produced, the researchers could switch electric currents at well under a femtosecond – less than half an oscillation period of the electric field of the light pulses.

Getting beyond the restrictions of conventional silicon semiconductor technology has proved a challenge for scientists, but using the insanely fast oscillations of light to help electrons pick up speed could provide new avenues for pushing the limits on electronics, as our power infrastructure is increasingly digitized and integrated with photonics.

And that's something that could be very advantageous in the next generation of computers: scientists are currently experimenting with the way that light and electronics could work together in all sorts of different ways, from noninvasive brain stimulation to novel sensors.

Eventually, Leitenstorfer and his team think that the limitations of today's computing systems could be overcome using plasmonic nanoparticles and optoelectronic devices, using the characteristics of light pulses to manipulate electrons at super-small scales, with related work even exploring electricity from snowfall under specific conditions.

"This is very basic research we are talking about here and may take decades to implement," says Leitenstorfer.

The next step is to experiment with a variety of different setups using the same principle. This approach might even offer insights into quantum computing, the researchers say, although there's a lot more work to get through yet - we can't wait to see what they'll achieve next.

 

Related News

View more

Solar PV and wind power in the US continue to grow amid favourable government plans

US Renewable Power Outlook 2030 projects surging capacity, solar PV and wind growth, grid modernization, and favorable tax credits, detailing market trends, CAGR, transmission expansion, and policy drivers shaping clean energy generation and consumption.

 

Key Points

A forecast of US power capacity, generation, and consumption, highlighting solar, wind, tax credits, and grid modernization.

✅ Targets 48.4% renewable capacity share by 2030

✅ Strong growth in solar PV and onshore wind installations

✅ Investment and tax credits drive grid and transmission upgrades

 

GlobalData’s latest report, ‘United States Power Market Outlook to 2030, Update 2021 – Market Trends, Regulations, and Competitive Landscape’ discusses the power market structure of the United States and provides historical and forecast numbers for capacity, generation and consumption up to 2030. Detailed analysis of the country’s power market regulatory structure, competitive landscape and a list of major power plants are provided. The report also gives a snapshot of the power sector in the country on broad parameters of macroeconomics, supply security, generation infrastructure, transmission and distribution infrastructure, about a quarter of U.S. electricity from renewables in recent years, electricity import and export scenario, degree of competition, regulatory scenario, and future potential. An analysis of the deals in the country’s power sector is also included in the report.

Renewable power held a 19% share of the US’s total power capacity in 2020, and in that year renewables became the second-most prevalent source in the U.S. electricity mix by generation; this share is expected to increase significantly to 48.4% by 2030. Favourable policies introduced by the US Government will continue to drive the country’s renewable sector, particularly solar photovoltaics (PV) and wind power, with wind now the most-used renewable source in the U.S. generation mix. Installed renewable capacity* increased from 16.5GW in 2000 to 239.2GW in 2020, growing at a compound annual growth rate (CAGR) of 14.3%. By 2030, the cumulative renewable capacity is expected to rise to 884.6GW, growing at a CAGR of 14% from 2020 to 2030. Despite increase in prices of renewable equipment, such as solar modules, in 2021, the US renewable sector will show strong growth during the 2021 to 2030 period as this increase in equipment prices are short term due to supply chain disruptions caused by the Covid-19 pandemic.

The expansion of renewable power capacity during the 2000 to 2020 period has been possible due to the introduction of federal schemes, such as Production Tax Credits, Investment Tax Credits and Manufacturing Tax Credits. These have massively aided renewable installations by bringing down the cost of renewable power generation and making it at par with power generated from conventional sources. Over the last few years, the cost of solar PV and wind power installations has declined sharply, and by 2023 wind, solar, and batteries made up most of the utility-scale pipeline across the US, highlighting investor confidence. Since 2010, the cost of utility-scale solar PV projects decreased by around 82% while onshore wind installations decreased by around 39%. This has supported the rapid expansion of the renewable market. However, the price of solar equipment has risen due to an increase in raw material prices and supply shortages. This may slightly delay the financing of some solar projects that are already in the pipeline.

The US will continue to add significant renewable capacity additions during the forecast period as industry outlooks point to record solar and storage installations over the coming years, to meet its target of reaching 80% clean energy by 2030. In November 2021, President Biden signed a $1tr Infrastructure Bill, within which $73bn is designated to renewables. This includes not just renewable capacity building, but also strengthening the country’s power grid and laying new high voltage transmission lines, both of which will be key to driving solar and wind power capacity additions as wind power surges in the U.S. electricity mix nationwide.

The US was one of the worst hit countries in the world due to the Covid-19 pandemic in 2020. With respect to the power sector, the electricity consumption in the country declined by 2.5% in 2020 as compared to 2019, even as renewable electricity surpassed coal in 2022 in the generation mix, highlighting continued structural change. Power plants that were under construction faced delays due to unavailability of components due to supply chain disruptions and unavailability of labour due to travel restrictions.

According to the US Energy Information Administration, 61 power projects, having a total capacity of 2.4GWm which were under construction during March and April 2020 were delayed because of the Covid-19 pandemic. Among renewable power technologies, solar PV and wind power projects were the most badly affected due to the pandemic.

In March and April 2020, 53 solar PV projects, having a total capacity of 1.3GW, and wind power projects, having a total capacity of 1.2GW, were delayed due to the Covid-19 pandemic. Moreover, several states suspended renewable energy auctions due to the pandemic.

For instance, New York State Energy Research and Development Authority (NYSERDA) had issued a new offshore wind solicitation for 1GW and up to 2.5GW in April 2020, but this was suspended due to the Covid-19 pandemic. In July 2020, the authority relaunched the tender for 2.5GW of offshore wind capacity, with a submission deadline in October 2020.

To ease the financial burden on consumers during the pandemic, more than 1,000 utilities in the country announced disconnection moratoria and implemented flexible payment plans. Duke Energy, American Electric Power, Dominion Power and Southern California Edison were among the major utilities that voluntarily suspended disconnections.

 

Related News

View more

Prevent Summer Power Outages

Summer Heatwave Electricity Shutoffs strain utilities and vulnerable communities, highlighting energy assistance, utility moratoriums, cooling centers, demand response, and grid resilience amid extreme heat, climate change, and rising air conditioning loads.

 

Key Points

Service disconnections for unpaid bills during extreme heat, risking vulnerable households and straining power grids.

✅ Moratoriums and flexible payment plans reduce shutoff risk.

✅ Cooling centers and assistance programs protect at-risk residents.

✅ Demand response, smart grids, and efficiency ease peak loads.

 

As summer temperatures soar, millions of people across the United States face the grim prospect of electricity shutoffs due to unpaid bills, as heat exacerbates electricity struggles for many families nationwide. This predicament highlights a critical issue exacerbated by extreme weather conditions and economic disparities.

The Challenge of Summer Heatwaves

Summer heatwaves not only strain power grids, as unprecedented electricity demand has shown, but also intensify energy consumption as households and businesses crank up their air conditioning units. This surge in demand places considerable stress on utilities, particularly in regions unaccustomed to prolonged heatwaves or lacking adequate infrastructure to cope with increased loads.

Vulnerable Populations

The threat of electricity shutoffs disproportionately affects vulnerable populations, including low-income households who face sky-high energy bills during extreme heat, elderly individuals, and those with underlying health conditions. Lack of access to air conditioning during extreme heat can lead to heat-related illnesses such as heat exhaustion and heatstroke, posing serious health risks.

Economic and Social Implications

The economic impact of electricity shutoffs extends beyond immediate discomfort, affecting productivity, food storage, and the ability to work remotely for those reliant on electronic devices, while rising electricity prices further strain household budgets. Socially, the inability to cool homes and maintain basic comforts strains community resilience and exacerbates inequalities.

Policy and Community Responses

In response to these challenges, policymakers and community organizations advocate for measures to prevent electricity shutoffs during heatwaves. Proposed solutions include extending moratoriums on shutoffs, informed by lessons from COVID-19 energy insecurity measures, implementing flexible payment plans, providing financial assistance to at-risk households, and enhancing communication about available resources.

Public Awareness and Preparedness

Raising public awareness about energy conservation during peak hours and promoting strategies to stay cool without overreliance on air conditioning are crucial steps towards mitigating electricity demand. Encouraging energy-efficient practices and investing in renewable energy sources also contribute to long-term resilience against climate-driven energy challenges.

Collaborative Efforts

Collaboration between government agencies, utilities, nonprofits, and community groups is essential in developing comprehensive strategies to safeguard vulnerable populations during heatwaves, especially when systems like the Texas power grid face renewed stress during prolonged heatwaves. By pooling resources and expertise, stakeholders can better coordinate emergency response efforts, distribute cooling centers, and ensure timely assistance to those in need.

Technology and Innovation

Advancements in smart grid technology and decentralized energy solutions offer promising avenues for enhancing grid resilience and minimizing disruptions during extreme weather events. These innovations enable more efficient energy management, demand response programs, and proactive monitoring of grid stability, though some utilities face summer supply-chain constraints that delay deployments.

Conclusion

As summer heatwaves become more frequent and severe, the risk of electricity shutoffs underscores the urgent need for proactive measures to protect vulnerable communities. By prioritizing equity, sustainability, and resilience in energy policy and practice, stakeholders can work towards ensuring reliable access to electricity, particularly during times of heightened climate vulnerability. Addressing these challenges requires collective action and a commitment to fostering inclusive and sustainable solutions that prioritize human well-being amid changing climate realities.

 

Related News

View more

Australian operator warns of reduced power reserves

Australia Electricity Supply Shortfall highlights AEMO's warning of reduced reserves as coal retirements outpace capacity, risking load shedding. Calls for 1GW strategic reserves and investment in renewables, storage, and dispatchable power in Victoria.

 

Key Points

It is AEMO's forecast of reduced reserves, higher outage risk, and a need for 1GW strategic backup capacity.

✅ Coal retirements outpacing firm, dispatchable capacity

✅ AEMO urges 1GW strategic reserves in Victoria and South Australia

✅ Investment needed: renewables, storage, grid and reliability services

 

Australia’s electricity operator has warned of threats to electricity supply including a shortfall in generation and reduced power reserves on the horizon.

The Australian Energy Market Operator (AEMO) has called for further investment in the country’s energy portfolio as retiring coal plants are replaced by intermittent renewables poised to eclipse coal, leaving the grid with less back-up capacity.

AEMO has said this increases the chances of supply interruption and load shedding.

It added the federal government should target 1GW of strategic reserves in the states most at risk – Victoria and South Australia, even as the Prime Minister has ruled out taxpayer-funded power plants in the current energy battle.

CEO of the Clean Energy Council, Kane Thornton, said the shortfall in generation, reflected in a short supply of electricity, was due a decade of indecisiveness and debate leading to a “policy vacuum”.

He added: “The AEMO report revealed that the new projects added to the system under the renewable energy target will help to improve reliability over the next few years.

“We need to accept that the energy system is in transition, with lessons from dispatchable power shortages in Europe, and long term policy is now essential to ensure private investment in the most efficient new energy technology and solutions.”

 

Related News

View more

Fish boom prompts energy conglomerate to spend $14.5M to bury subsea cables

Maritime Link Cable Burial safeguards 200-kV subsea cables in the Cabot Strait as Emera and Nova Scotia Power trench lines to mitigate bottom trawling risks from a redfish boom, ensuring Muskrat Falls hydro delivery.

 

Key Points

Trenching Cabot Strait subsea power cables to prevent redfish-driven bottom trawling and ensure Muskrat Falls power.

✅ $14.492M spent trenching 59 km at 400 m depth

✅ Protects 200-kV, 170-km subsea interconnects from trawls

✅ Driven by Gulf redfish boom; DFO and UARB consultations

 

The parent company of Nova Scotia Power disclosed this week to the Utility and Review Board, amid Site C dam watchdog attention to major hydro projects, that it spent almost $14,492,000 this summer to bury its Maritime Links cables lying on the floor of the Cabot Strait between Newfoundland and Cape Breton.

It's a fish story no one saw coming, at least not Halifax-based energy conglomerate Emera.

The parent company of Nova Scotia Power disclosed this week to the Utility and Review Board that it spent almost $14,492,000 this summer to bury its Maritime Link cables lying on the floor of the Cabot Strait between Newfoundland and Cape Breton.

The cables were protected because an unprecedented explosion in the redfish population in the Gulf of St Lawrence is about to trigger a corresponding boom in bottom trawling in the area.

Also known as ocean perch, redfish were not on anyone's radar when the $1.5-billion Maritime Link was designed and built to carry Muskrat Falls hydroelectricity from Newfoundland to Nova Scotia.

The two 200-kilovolt electrical submarine cables spanning the Cabot Strait are the longest in North America, compared with projects like the New England Clean Power Link planned further south. They are each 170 kilometres long and weigh 5,500 tonnes.

Nova Scotia Power customers are paying for the Maritime Link in return for a minimum of 20 per cent of the electricity generated by Muskrat Falls over 35 years.

The electricity is supposed to start sending first electricity through the Maritime Link in mid-2020.

First time cost disclosed
In August, the company buried 59 kilometres of subsea cables one metre below the bottom at depths of 400 metres.

"These cables had not been previously trenched due to the absence of fishing activities at those depths when the cables were originally installed," spokesperson Jeff Myrick wrote in an email to CBC News in October.

Ratepayers will get the bill next year, as utilities also face risks like copper theft that can drive costs in the region. Until now, the company had declined to release costs relating to protecting the Maritime Link.

The bill will be presented to regulators, a process that has affected projects such as a Manitoba Hydro line to Minnesota, when the company applies to recover Maritime Link costs from Nova Scotia Power ratepayers in 2020.

Myrick said the company was acting after consultation with the Department of Fisheries and Oceans.

Unexpected consequences
After years of overfishing in the 1980s and early 1990s, redfish quotas were slashed and a moratorium imposed on some redfish.

Confusingly, there are actually two redfish species in the Gulf of St. Lawrence.

But very strong recent year classes, that have coincided with warming waters in the gulf, as utilities adapt to climate change considerations grow, have produced redfish in massive numbers.

After years of overfishing, the redfish population is now booming in the Gulf of St. Lawrence. (Submitted by Marine Institute)
There is now believed to be three-million tonnes of redfish in the Gulf of St Lawrence.

The Department of Fisheries and Oceans is expected to increase quotas in the coming years and the fishing industry is gearing up in a big way.

Earlier this month, Scotia Harvest announced it will begin construction of a new $14-million fish plant in Digby next spring in part to process increased redfish catches.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.