Canada to establish carbon-trading market

By Agence France-Presse


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Canada announced plans for a carbon market that could eventually link up with nascent EU and proposed U.S. markets to form a global system for carbon pollution trading.

The local market would provide Canadian companies and individuals an opportunity to reduce their carbon emissions, which are linked to global warming.

"It does so by establishing a price for carbon in Canada — something that has never been done before in this country," Environment Minister Jim Prentice said in a speech to the Economic Club of Canada.

"Anyone wanting to offset their emissions will be able to purchase credits — from small businesses, to individuals, to travelers," he said.

"Every offset credit will represent a real and verified emission reduction, equal to the equivalent of one tonne of carbon dioxide."

Rules and requirements for generating offset credits, including registration of projects and issuance of actual credits and an explanation of how CO2 cuts would be verified, are to be published after a 60-day public consultation.

"Projects that could qualify for offsets span the economy," said Prentice, "from farmers using reduced or no-till techniques to store more carbon dioxide in their fields, to wind turbines producing clean electricity using only the wind, to landfill sites that are able to turn captured methane into usable fuel."

The new system would also target emissions from activities and sectors not covered by planned limits on big industrial polluters, he said.

Under Europe's nascent Emissions Trading System, the EU allocates carbon polluting allowances to member states to meet its obligations under the UN's Kyoto Protocol.

The states then assign quotas to those industries that belch most CO2 into the atmosphere.

Companies that emit less than their allowance can sell the difference on the market to companies that exceed their limits, thus providing a financial carrot to everyone to become greener.

The ETS is touted by supporters as a model for U.S. President Barack Obama's own cap-and-trade scheme and others seeking to cut greenhouse gases and boost green technologies.

However, since its inception it has twice crashed.

In 2007, carbon quotas, set during an initial two-year test period, turned out to be far too generous. After a months-long slump, prices picked up when governments set tougher targets for the 2008-2012 period.

The price of a tonne of carbon dioxide (CO2) or its equivalent again nosedived this month as big European polluters, responding to plummeting demand for their products in a global recession, emitted less.

In December, the United Nations is to hold its 15th climate change conference in Copenhagen.

The summit aims to forge a new global agreement on climate change, to take over from the Kyoto Protocol after it expires in 2012.

"Failure to make progress in Copenhagen is simply not an option," Prentice also commented.

"The consequences are too great, the stakes too high, not to bring to that meeting our best efforts and unwavering resolve," he said.

Related News

IAEA reactor simulators get more use during Covid-19 lockdown

IAEA Nuclear Reactor Simulators enable virtual nuclear power plant training on IPWR/PWR systems, load-following operations, baseload dynamics, and turbine coupling, supporting advanced reactor education, flexible grid integration, and low-carbon electricity skills development during remote learning.

 

Key Points

IAEA Nuclear Reactor Simulators are tools for training on reactor operations, safety, and flexible power management.

✅ Simulates IPWR/PWR systems with real-time parameter visualization.

✅ Practices load-following, baseload, and grid flexibility scenarios.

✅ Supports remote training on safety, controls, and turbine coupling.

 

Students and professionals in the nuclear field are making use of learning opportunities during lockdown made necessary by the Covid-19 pandemic, drawing on IAEA low-carbon electricity lessons for the future.

Requests to use the International Atomic Energy Agency’s (IAEA’s) basic principle nuclear reactor simulators have risen sharply in recent weeks, IAEA said on 1 May, as India takes steps to get nuclear back on track. New users will have the opportunity to learn more about operating them.

“This suite of nuclear power plant simulators is part of the IAEA education and training programmes on technology development of advanced reactors worldwide. [It] can be accessed upon request by interested parties from around the world,” said Stefano Monti, head of the IAEA’s Nuclear Power Technology Development Section.

Simulators include several features to help users understand fundamental concepts behind the behaviour of nuclear plants and their reactors. They also provide an overview of how various plant systems and components work to power turbines and produce low-carbon electricity, while illustrating roles beyond electricity as well.

In the integral pressurised water reactor (IPWR) simulator, for instance, a type of advanced nuclear power design, users can navigate through several screens, each containing information allowing them to adjust certain variables. One provides a summary of reactor parameters such as primary pressure, flow and temperature. Another view lays out the status of the reactor core.

The “Systems” screen provides a visual overview of how the plant’s main systems, including the reactor and turbines, work together. On the “Controls” screen, users can adjust values which affect reactor performance and power output.

This simulator provides insight into how the IPWR works, and also allows users to see how the changes they make to plant variables alter the plant’s operation. Operators can also perform manoeuvres similar to those that would take place in the course of real plant operations e.g. in load following mode.

“Currently, most nuclear plants operate in ‘baseload’ mode, continually generating electricity at their maximum capacity. However, there is a trend of countries, aligned with green industrial revolution strategies, moving toward hybrid energy systems which incorporate nuclear together with a diverse mix of renewable energy sources. A greater need for flexible operations is emerging, and many advanced power plants offer standard features for load following,” said Gerardo Martinez-Guridi, an IAEA nuclear engineer who specialises in water-cooled reactor technology.

Prospective nuclear engineers need to understand the dynamics of the consequences of reducing a reactor’s power output, for example, especially in the context of next-generation nuclear systems and emerging grids, and simulators can help students visualise these processes, he noted.

“Many reactor variables change when the power output is adjusted, and it is useful to see how this occurs in real-time,” said Chirayu Batra, an IAEA nuclear engineer, who will lead the webinar on 12 May.

“Users will know that the operation is complete once the various parameters have stabilised at their new values.”

Observing and comparing the parameter changes helps users know what to expect during a real power manoeuvre, he added.

 

Related News

View more

Here's what we know about the mistaken Pickering nuclear alert one week later

Pickering Nuclear Alert Error prompts Ontario investigation into the Alert Ready emergency alert system, Pelmorex safeguards, and public response at Pickering Nuclear Generating Station, including potassium iodide orders and geo-targeted notification issues.

 

Key Points

A mistaken Ontario emergency alert about the Pickering plant, now under probe for human error and system safeguards.

✅ Investigation led by Emergency Management Ontario

✅ Alert Ready and Pelmorex safeguards under review

✅ KI pill demand surged; geo-targeting questioned

 

A number of questions still remain a week after an emergency alert was mistakenly sent out to people across Ontario warning of an unspecified incident at the Pickering Nuclear Generating Station. 

The province’s solicitor general has stepped in and says an investigation into the incident should be completed fairly quickly according to the minister.

However, the nuclear scare has still left residents on edge with tens of thousands of people ordering potassium iodide, or KI, pills that protect the body from radioactive elements in the days following the incident.

Here’s what we know and still don’t know about the mistaken Pickering nuclear plant alert:

Who sent the alert?

According to the Alert Ready Emergency Alert System website, the agency works with several federal, provincial and territorial emergency management officials, Environment and Climate Change Canada and Pelmorex, a broadcasting industry and wireless service provider, to send the alerts.

Martin Belanger, the director of public alerting for Pelmorex, a company that operates the alert system, said there are a number of safeguards built in, including having two separate platforms for training and live alerts.

"The software has some steps and some features built in to minimize that risk and to make sure that users will be able to know whether or not they're sending an alert through the... training platform or whether they're accessing the live system in the case of a real emergency," he said.

Only authorized users have access to the system and the province manages that, Belanger said. Once in the live system, features make the user aware of which platform they are using, with various prompts and messages requiring the user's confirmation. There is a final step that also requires the user to confirm their intent of issuing an alert to cellphones, radio and TVs, Belanger said.

Last Sunday, a follow-up alert was sent to cellphones nearly two hours after the original notification, and during separate service disruptions such as a power outage in London residents also sought timely information.

What has the investigation revealed?

It’s still unclear as to how exactly the alert was sent in error, but Solicitor General Sylvia Jones has tapped the Chief of Emergency Management Ontario to investigate.

"It's very important for me, for the people of Ontario, to know exactly what happened on Sunday morning," Jones said.

Jones said initial observations suggest human error was responsible for the alert that was sent out during routine tests of the emergency alert.

“I want to know what happened and equally important, I want some recommendations on insurances and changes we can make to the system to make sure it doesn't happen again,” Jones said.

Jones said she expects the results of the probe to be made public.

Can you unsubscribe from emergency alerts?

It’s not possible to opt out of receiving the alerts, according to the Alert Ready Emergency Alert System website, and Ontario utilities warn about scams to help customers distinguish official notices.

“Given the importance of warning Canadians of imminent threats to the safety of life and property, the CRTC requires wireless service providers to distribute alerts on all compatible wireless devices connected to an LTE network in the target area,” the website reads.

The agency explains that unlike radio and TV broadcasting, the wireless public alerting system is geo-targeted and is specific to the a “limited area of coverage”, and examples like an Alberta grid alert have highlighted how jurisdictions tailor notices for their systems.

“As a result, if an emergency alert reaches your wireless device, you are located in an area where there is an imminent danger.”

The Pickering alert, however, was received by people from as far as Ottawa to Windsor.

Is the Pickering Nuclear Generating Station closing?

The Pickering nuclear plant has been operating since 1971, and had been scheduled to be decommissioned this year, but the former Liberal government -- and the current Progressive Conservative government -- committed to keeping it open until 2024. Decommissioning is now set to start in 2028.

It operates six CANDU reactors, and in contingency planning operators have considered locking down key staff to maintain reliability, generates 14 per cent of Ontario's electricity and is responsible for 4,500 jobs across the region, according to OPG, while utilities such as Hydro One's relief programs have supported customers during broader crises.

What should I do if I receive an emergency alert?

Alert Ready says that if you received an alert on your wireless device it’s important to take action “safely”.

“Stop what you are doing when it is safe to do so and read the emergency alert,” the agency says on their website.

“Alerting authorities will include within the emergency alert the information you need and guidance for any action you are required to take, and insights from U.S. grid pandemic response underscore how critical infrastructure plans intersect with public safety.”

“This could include but is not limited to: limit unnecessary travel, evacuate the areas, seek shelter, etc.”

The wording of last Sunday's alert caused much initial confusion, warning residents within 10 kilometres of the plant of "an incident," though there was no "abnormal" release of radioactivity and residents didn't need to take protective steps, but emergency crews were responding.

“In the event of a real emergency, the wording would be different,” Jones said.

 

Related News

View more

Hydro-Québec to Invest $750 Million in Carillon Generating Station

Hydro-Québec Carillon Refurbishment delivers a $750M hydropower modernization, replacing six turbines and upgrading civil works, water passageways, and grid equipment to extend run-of-river, renewable energy output for peak demand near Montréal.

 

Key Points

A $750M project replacing six units and upgrading civil, water and electrical systems to supply power for 50 years.

✅ Replaces six generating units with Andritz turbines.

✅ Upgrades civil works, water passageways, and electrical gear.

✅ Extends run-of-river output for 50 years; boosts peak supply.

 

Hydro-Québec will invest $750 million to refurbish its Carillon generating station with a major powerhouse upgrade that will mainly replace six generating units. The investment also covers the cost of civil engineering work, including making adjustments to water passageways, upgrading electrical equipment and replacing the station roof. Work will start in 2021, aligning with Hydro-Québec's capacity expansion plans for 2021, and continue until 2027.

Carillon generating station is a run-of-river power plant consisting of 14 generating units with a total installed capacity of 753 MW. Built in the early 1960s, it is a key part of Hydro-Québec's hydroelectric generating fleet, which includes the La Romaine complex as well. The station is close to the greater Montréal area and feeds power into the grid to support industrial demand growth during peak consumption periods.

The selected supplier, turbine manufacturer Andritz, has been asked to maximize the project's economic spinoffs in Québec, as Canada continues investing in new turbines across the country to modernize assets. Once the work is completed, the new generating units will be able to provide clean, renewable energy, supporting Hydro-Québec's strategy to reduce fossil fuel reliance for the next 50 years.

"Carillon generating station is a symbol of our hydroelectric development and plays a strategic role in our production fleet. However, most of the generating units' main components date back to the station's original construction from 1959 to 1962. Hydropower generating stations have long service lives - with this refurbishment, Carillon will be producing clean renewable energy for decades to come." said David Murray, Chief Innovation Officer and President, Hydro-Québec Production.

"In light of today's economic situation, this is an important announcement that clearly reaffirms Hydro-Québec's role in relaunching Québec's economy and strengthening interprovincial electricity partnerships that open new markets. Over 600,000 hours of work will be required for everything from the engineering work to component assembly, creating many new high-quality skilled jobs for Québec industries."

 

Related News

View more

Maritime Link sends first electricity between Newfoundland, Nova Scotia

Maritime Link HVDC Transmission connects Newfoundland and Nova Scotia to the North American grid, enabling renewable energy imports, subsea cable interconnection, Muskrat Falls hydro power delivery, and lower carbon emissions across Atlantic Canada.

 

Key Points

A 500 MW HVDC intertie linking Newfoundland and Nova Scotia to deliver Muskrat Falls hydro power.

✅ 500 MW capacity using twin 170 km subsea HVDC cables

✅ Interconnects Newfoundland and Nova Scotia to the North American grid

✅ Enables Muskrat Falls hydro imports, cutting CO2 and costs

 

For the first time, electricity has been sent between Newfoundland and Nova Scotia through the new Maritime Link.

The 500-megawatt transmission line — which connects Newfoundland to the North American energy grid for the first time and echoes projects like the New England Clean Power Link underway — was tested Friday.

"This changes not only the energy options for Newfoundland and Labrador but also for Nova Scotia and Atlantic Canada," said Rick Janega, the CEO of Emera Newfoundland and Labrador, which owns the link.

"It's an historic event in our eyes, one that transforms the electricity system in our region forever."

 

'On time and on budget'

It will eventually carry power from the Muskrat Falls hydro project in Labrador, where construction is running two years behind schedule and $4 billion over budget, a context in which the Manitoba Hydro line to Minnesota has also faced delay, to Nova Scotia consumers. It was supposed to start producing power later this year, but the new deadline is 2020 at the earliest.

The project includes two 170-kilometre subsea cables across the Cabot Strait between Cape Ray in southwestern Newfoundland and Point Aconi in Cape Breton.

The two cables, each the width of a two-litre pop bottle, can carry 250 megawatts of high voltage direct current, and rest on the ocean floor at depths up to 470 metres.

This reel of cable arrived in St. John's back in April aboard the Norwegian vessel Nexans Skagerrak, after the first power cable reached Nova Scotia earlier in the project. (Submitted by Emera NL)

The Maritime Link also includes almost 50 kilometres of overland transmission in Nova Scotia and more than 300 kilometres of overland transmission in Newfoundland, paralleling milestones on Site C transmission work in British Columbia.

The link won't go into commercial operation until January 1.

Janega said the $1.6-billion project is on time and on budget.

"We're very pleased to be in a position to be able to say that after seven years of working on this. It's quite an accomplishment," he said.

This Norwegian vessel was used to transport the 5,500 tonne subsea cable. (Submitted by Emera NL)

Once in service, the link will improve electrical interconnections between the Atlantic provinces, aligning with climate adaptation guidance for Canadian utilities.

"For Nova Scotia it will allow it to achieve its 40 per cent renewable energy target in 2020. For Newfoundland it will allow them to shut off the Holyrood generating station, in fact using the Maritime Link in advance of the balance of the project coming into service," Janega said.

Karen Hutt, president and CEO of Nova Scotia Power, which is owned by Emera Inc., calls it a great day for Nova Scotia.

"When it goes into operation in January, the Maritime Link will benefit Nova Scotia Power customers by creating a more stable and secure system, helping reduce carbon emissions, and enabling NSP to purchase power from new sources," Hutt said in a statement.

 

Related News

View more

What's at stake if Davis-Besse and other nuclear plants close early?

FirstEnergy Nuclear Plant Closures threaten Ohio and Pennsylvania jobs, tax revenue, and grid stability, as Nuclear Matters and Brattle Group warn of higher carbon emissions and market pressures from PJM and cheap natural gas.

 

Key Points

Planned shutdowns of Davis-Besse, Perry, and Beaver Valley, with regional economic and carbon impacts.

✅ Over 3,000 direct jobs and local tax revenue at risk

✅ Emissions may rise until renewables scale, possibly into 2034

✅ Debate over subsidies, market design, and PJM capacity rules

 

A national nuclear lobby wants to remind people what's at stake for Ohio and Pennsylvania if FirstEnergy Solutions follows through with plans to shut down three nuclear plants over the next three years, including its Davis-Besse nuclear plant east of Toledo.

A report issued Monday by Nuclear Matters largely echoes concerns raised by FES, a subsidiary of FirstEnergy Corp., and other supporters of nuclear power about economic and environmental hardships and brownout risks that will likely result from the planned closures.

Along with Davis-Besse, Perry nuclear plant east of Cleveland and the twin-reactor Beaver Valley nuclear complex west of Pittsburgh are slated to close.

#google#

"If these plants close, the livelihoods of thousands of Ohio and Pennsylvania residents will disappear. The over 3,000 highly skilled individuals directly employed by these sites will leave to seek employment at other facilities still operating around the country," Lonnie Stephenson, International Brotherhood of Electrical Workers president, said in a statement distributed by Nuclear Matters. Mr. Stephenson also serves on the Nuclear Matters advocacy council.

This new report and others like it are part of an extensive campaign by nuclear energy advocates to court state and federal legislators one more time for tens of millions of dollars of financial support or at least legislation that better suits the nuclear industry. Critics allege such pleas amount to a request for massive government bailouts, arguing that deregulated electricity markets should not subsidize nuclear.

The latest report was prepared for Nuclear Matters by the Brattle Group, a firm that specializes in analyzing economic, finance, and regulatory issues for corporations, law firms, and governments.

"These announced retirements create a real urgency to learn what would happen if these plants are lost," Dean Murphy, the Brattle report's lead author, said.

More than 3,000 jobs would be lost, as would millions of dollars in tax revenue. It also could take as long as 2034 for the region's climate-altering carbon emissions to be brought back down to existing levels, based on current growth projections for solar- and wind-powered projects, and initiatives such as ending coal by 2032 by some utilities, Mr. Murphy said.

His group's report only takes into account nuclear plant operations, though. Many of those who oppose nuclear power have long pointed out that mining uranium for nuclear plant fuel generates substantial emissions, as does the process of producing steel cladding for fuel bundles and the enrichment-production of that fuel. Still, nuclear has ranked among the better performers in reports that have taken such a broader look at overall emissions.

FES has accused the regional grid operator, PJM Interconnection, of creating market conditions that favor natural gas and, thus, make it almost impossible for nuclear to compete throughout its 13-state region, a debate intensified by proposed electricity pricing changes at the federal level.

PJM has strongly denied those accusations, and has said it anticipates no shortfalls in energy distribution if those nuclear plants close prematurely, even as a recent FERC decision on grid policy drew industry criticism.

FES, citing massive losses, has filed for Chapter 11 bankruptcy. The target dates for closures of the FES properties are May 31, 2020 for Davis-Besse; May 31, 2021 for Perry and Beaver Valley Unit 1, and Oct. 31, 2021 for Beaver Valley Unit 2.

In addition to the three FES sites, the report includes information about the Three Mile Island Unit 1 plant near Harrisburg, Pa., which Chicago-based Exelon Generation Corp. has previously announced will be shut down in 2019. That plant and others are experiencing similar difficulties the FES plants face by competing in a market radically changed by record-low natural gas prices.

 

Related News

View more

Alberta Proposes Electricity Market Changes

Alberta Electricity Market Reforms aim to boost grid reliability and efficiency through a day-ahead market, transmission policy changes, clearer pricing signals, AESO oversight, and smarter siting near existing infrastructure to lower consumer costs.

 

Key Points

Policies add a day-ahead market and transmission fees to modernize the grid and improve reliability.

✅ Day-ahead market for clearer pricing and scheduling

✅ Up-front, non-refundable transmission payments by generators

✅ AESO to draft new rules by end of 2025

 

The Alberta government is implementing significant electricity policy changes to its electricity market to enhance system reliability and efficiency. These reforms aim to modernize the grid, accommodate growing energy demands, and align with best practices observed in other jurisdictions.

Proposed Market Reforms

The government has outlined several key initiatives:

  • Day-Ahead Market Implementation: Introducing a day-ahead market is intended to provide clearer pricing signals and improve the scheduling of electricity generation. This approach allows market participants to plan and commit to energy production in advance, enhancing grid stability.

  • Transmission Policy Revisions: The government proposes reforms to transmission policies, including the introduction of up-front and non-refundable transmission payments from new power generators. These payments would vary based on the proximity of new generators to existing transmission lines with available capacity. As part of a broader market overhaul, this strategy encourages the development of power plants in areas where existing infrastructure can be utilized, potentially reducing costs for consumers and businesses.

Government's Objectives

Minister of Affordability and Utilities, Nathan Neudorf, emphasized that these changes are necessary to meet growing energy demands and modernize Alberta’s electricity system. The government's goal is to create a more reliable and efficient electrical system that benefits both consumers and the broader economy.

Industry Reactions

The proposed reforms have elicited mixed reactions from industry stakeholders amid profound sector change across Alberta:

  • Renewable Energy Sector Concerns: The Canadian Renewable Energy Association (CanREA) has expressed concerns about the potential for punitive market and transmission changes, and some retailers have similarly urged caution. They advocate for policies that support the integration of renewable energy sources and ensure fair treatment within the market.

  • Regulatory Oversight: The Alberta Electric System Operator (AESO) is tasked with preparing restructured energy market rules by the end of 2025. This timeline reflects the government's commitment to a thorough and consultative approach to market reform.

Implications for Consumers

The Alberta government's proposed market changes aim to enhance the reliability and efficiency of the electricity system by considering measures such as a Rate of Last Resort to provide additional stability. By encouraging the development of power plants in areas with existing infrastructure, the reforms seek to reduce costs for consumers and businesses. However, the success of these initiatives will depend on careful implementation and ongoing engagement with all stakeholders to balance the diverse interests involved.

Alberta's proposed electricity market reforms represent a significant step toward modernizing the province's energy infrastructure. By introducing a day-ahead market and revising transmission policies, the government aims to create a more reliable and efficient electrical system and promote market competition more effectively. While these changes have generated diverse reactions, they underscore the government's commitment to addressing the evolving energy needs of Alberta's residents and businesses.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified