France's nuclear power poster child has a money meltdown

By Columbus Free Press


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
The myth of a successful nuclear power industry in France has melted into financial chaos.

With it dies the corporate-hyped poster child for a "nuclear renaissance" of new reactor construction that is drowning in red ink and radioactive waste.

Areva, France's nationally owned corporate atomic façade, has plunged into a deep financial crisis led by a devastating shortage of cash.

Electricite de France, the French national utility, has been raided by European Union officials charging that its price-fixing may be undermining competition throughout the continent.

Delays and cost overruns continue to escalate at Areva's catastrophic Olkiluoto reactor construction project in Finland. Areva has admitted to a $2.2 billion, or 55%, cost increase in the Finnish building site after three and a half years. The Flamanville project — the only one now being built in France — is already over $1 billion more expensive than projected after a single year under construction.

In 2008, France's nuclear power output dropped 0.1%, while wind generation rose more than 37%.

Attempts to build new French reactors in the US are meeting stiffened resistance.

And the definitive failure of America's Yucca Mountain nuke waste dump mirrors France's parallel inability to deal with its own radioactive trash.

Widely portrayed as the model of corporate success, reactor-builder Areva is desperately short of money. As it begs a bailout from its dominant owner, the French government, Areva's mismanagement and overextension in promoting and building new reactors has wrecked its image in worldwide capital markets. According to Mycle Schneider, Paris-based author of "Nuclear Power in France — Beyond the Myth," Areva shares have plunged by over 60% since June 2008, twice as much as the CAC40, the standard indicator of the 40 largest French companies on the stock market.

Areva's hyper-active public relations department has made much of recent orders to build two new reactors in China. But it's now begging France's taxpayers for some $4 billion in short term bailout money, and may need still another $6 billion more to pay for investments in uranium mines, fuel production and heavy manufacturing ventures.

Areva will also need more than 2 billion Euros (about US$3 billion) to buy back shares in its nuclear reactor unit after Germany's Siemens pulled out of a joint venture. There have been significant, highly publicized bumps in the Chinese transaction. And Areva may now be forced to pony up billions more in penalties from delays and overruns at its reactor construction fiasco in Finland.

The Finnish government will also have to meet additional costs from trading in carbon emissions because it had firmly counted on the new reactor to supply "green" power as of this year. Olkiluoto is now not expected to deliver electricity before 2012.

Areva's woes have caused French President Nicolas Sarkozy to face possible job cuts and asset sales at the government-controlled energy giant, which was formed in 2001.

China's two-reactor order includes a promise from Areva to supply up to 20 years worth of nuclear fuel. Areva also hopes to sell at least seven reactors in the US, but these plans are meeting stiff resistance. Complex ownership and licensing battles have erupted at Constellation Energy, meant to be the conduit for two new reactors in Maryland.

Ratepayer revolts in Florida and Missouri have arisen over plans to force the public to pay for new reactors as they are being built. Electric rates in the Sunshine State have already begun to soar due to proposed nuke construction, prompting an angry grassroots upheaval.

The potential American reactor market has also been bloodied by the definitive disposal of the proposed high-level dump at Yucca Mountain, Nevada. After decades as the centerpiece of America's "solution" to the nuke waste problem, with at least $10 billion spent on it, Yucca's failure underscores France's own waste dilemma.

The French reprocessing center at La Hague has come under widespread attack for its massive radiation discharges into the English Channel and surrounding atmosphere. The plant has produced over nine thousand containers of extremely high level wastes with no safe place to go. Its by-product of plutonium has complicated global attempts to curb the spread of radioactive materials capable of being turned into nuclear bombs.

In addition to the reprocessing wastes, without a permanent repository of its own, France's 58 reactors have also accumulated over ten thousand tons of spent fuel rods, as the 104 units in the U.S. constantly generate.

Areva says it hopes to raise cash by selling part of a uranium enrichment plant under construction in southern France to Japan's Kansai Electric. Other asset sales may be hampered by slumping market values. Areva also hopes to partner with U.S. weapons builder Northrop Grumman to build heavy reactor equipment in Virginia.

But on March 11, European Union regulators raided EdF offices because "suspected illegal conduct may include actions to raise prices on the French wholesale electricity market." The stunning action against the massive conglomerate, which is 84.8% owned by the French government, could result in huge fines.

The EU says EdF may have manipulated prices and redrawn contracts for some 60 key corporate users. Nuke backers constantly tout that close to 80% of France's electricity comes from reactors whose power flows through EdF. But Areva's cash shortage and EdF's price-fixing scandal underscore the huge financial imbalances imposed by building and operating atomic reactors.

According to Schneider, "EDF's shares dropped by over 40% during the last six months alone. When management in February 2009 announced that larger than expected charges had corroded profits, share value dropped by 7% overnight and continued to fall since. The EDF share now stands 12% below the value when it was first introduced to the stock market in November 2005. Not really a brilliant investment."

EdF and Areva are at the core of what has been labeled as the global "nuclear renaissance." Their escalating money problems underscore an epic failure that has been a significant factor in the current global economic crisis. After a half- century of massive government subsidies in the U.S., UK, France and elsewhere, atomic energy still staggers under an unsustainable load of high construction costs and uncompetitive prices for the electricity it generates.

EdF's recent $17.5 billion takeover of nuke utility British Energy came with a warning from EdF officials that England's commitment to wind turbines could undermine the future of nuclear power. The statement evoked widespread astonishment and scorn from the environmental community.

In the financial community, concerns still linger over the half-trillion-dollar (and still climbing) cost of the 1986 explosion at Chernobyl. The instant $900 million conversion of the "asset" at Three Mile Island into an epic liability occurred 30 years ago this month. (The conversion of Michigan's Fermi I reactor at Monroe into a $100 million molten mess happened October 5, 1966).

The costs from the earthquake last year that crippled seven reactors at Japan's Kashiwazaki are still rising. The failure of Yucca Mountain has converted billions of dollars in utility and taxpayer investments into pure waste. Growing grassroots movements in Vermont and elsewhere threaten to cut off license extensions and shut American reactors at which decommissioning funds have been slashed by the collapse of U.S. investment funds.

The argument that atomic energy provides an answer for global warming turned to a deep embarrassment in France when reactors were forced to shut during the summer heat because they were raising river temperatures far beyond legal limits. In another case, a reactor containment had to be sprayed in order to cool it back to operational temperatures. Similar shutdowns came at a reactor in Alabama.

But as massive cost overruns and delays continue to escalate at Areva's showpiece reactor construction fiasco in Finland, the industry clamors for unlimited access to taxpayer funds. The surging stream of atomic failure continues to guarantee that private investors will instead favor true green technologies like solar, wind and efficiency.

Thus in France, as elsewhere, the "nuclear renaissance" may be stillborn. In 2007, world nuclear electricity generation dropped by an unprecedented 2%. According to Schneider, in 2008, for the first time in nuclear power history, no new reactor was connected to the grid anywhere on Earth.

As Schneider's "Nuclear Power in France — Beyond the Myth" points out, after 35 years of nuclear power development, the French "nuclear dreamland" gets only 16% of its final energy from nuclear power. Commissioned by the Greens-EFA Group in the European Parliament (Brussels, December, 2008), Schneider's report shows that despite its huge nuclear commitment, almost half of France's energy consumption still comes from oil.

In fact, says Schneider, "the wasteful nature of the French economy and households leads to a higher per capita consumption of oil than in Germany, Italy, the UK or even the EU on average.

"Those who think that nuclear power would be a cheap and clean way to render the U.S. less dependent on oil should have a close look at the French record."

At the French heart of its "renaissance," the nuclear clock is winding down, not up. Time is running out for a radioactive technology that, after fifty years, remains unable to muster a sustainable level of private financing, shows no real promise of ever paying for itself, and has now plunged into deepening financial chaos.

Related News

Ireland and France will connect their electricity grids - here's how

Celtic Interconnector, a subsea electricity link between Ireland and France, connects EU grids via a high-voltage submarine cable, boosting security of supply, renewable integration, and cross-border trade with 700 MW capacity by 2026.

 

Key Points

A 700 MW subsea link between Ireland and France, boosting security, enabling trade, and supporting renewables.

✅ Approx. 600 km subsea cable from East Cork to Brittany

✅ 700 MW capacity; powers about 450,000 homes

✅ Financed by EIB, banks, CEF; Siemens Energy and Nexans

 

France and Ireland signed contracts on Friday to advance the Celtic Interconnector, a subsea electricity link to allow the exchange of electricity between the two EU countries. It will be the first interconnector between continental Europe and Ireland, as similar UK interconnector plans move forward in parallel. 

Representatives for Ireland’s electricity grid operator EirGrid and France’s grid operator RTE signed financial and technical agreements for the high-voltage submarine cable, mirroring developments like Maine’s approved transmission line in North America for cross-border power. The countries’ respective energy ministers witnessed the signing.

European commissioner for energy Kadri Simson said:

In the current energy market situation, marked by electricity price volatility, and the need to move away from imports of Russian fossil fuels, European energy infrastructure has become more important than ever.

The Celtic Interconnector is of paramount importance as it will end Ireland’s isolation from the Union’s power system, with parallels to Cyprus joining the electricity highway in the region, and ensure a reliable high-capacity link improving the security of electricity supply and supporting the development of renewables in both Ireland and France.

EirGrid and RTE signed €800 million ($827 million) worth of financing agreements with Barclays, BNP Paribas, Danske Bank, and the European Investment Bank, similar to the Lake Erie Connector investment that blends public and private capital.

In 2019, the project was awarded a Connecting Europe Facility (CEF) grant worth €530.7 million to support construction works and align with a broader push for electrification in Europe under climate strategies. The CEF program also provided €8.3 million for the Celtic Interconnector’s feasibility study and initial design and pre-consultation.

Siemens Energy will build converter stations in both countries, and Paris-based global cable company Nexans will design and install a 575-km-long cable for the project.

The cable will run between East Cork, on Ireland’s southern coast, and northwestern France’s Brittany coast and will connect into substations at Knockraha in Ireland and La Martyre in France.

The Celtic Interconnector, which is expected to be operational by 2026, will be approximately 600 km (373 miles) long and have a capacity of 700 MW, similar to cross-border initiatives such as Quebec-to-New York power exports expected in 2025, which is enough to power 450,000 households.

 

Related News

View more

Ontario Energy Board Sets New Electricity Rate Plan Prices and Support Program Thresholds

OESP Eligibility 2024 updates Ontario electricity affordability: TOU, Tiered, Ultra-Low-Overnight price plans, online bill calculator, higher income thresholds, monthly credits for low-income households, and a winter disconnection ban for residential customers.

 

Key Points

Raises income thresholds and credits to help low-income Ontarians cut electricity costs and choose suitable price plans.

✅ TOU, Tiered, and ULO price plans with online bill calculator

✅ Income eligibility thresholds raised up to 35% on March 1, 2024

✅ Winter disconnection ban for residences: Nov 15, 2023 to Apr 30, 2024

 

Residential, small business and farm customers can choose their price plan, either Time-Of-Use (TOU), Tiered or the ultra-low overnight rates price plan available to many customers. The OEB has an online bill calculator to help customers who are considering a switch in price plans and monitoring changes for electricity consumers this year. 

The Government of Ontario announced on Friday, October 19, 2023, that it is raising the income eligibility thresholds that enable Ontarians to qualify for the Ontario Electricity Support Program (OESP) by up to 35 percent. OESP is part of Ontario’s energy affordability framework and other support for electric bills meant to reduce the cost of electricity for low-income households by applying a monthly credit directly on to electricity bills.. The higher income eligibility thresholds will begin on March 1, 2024.

The amount of OESP bill credit is determined by the number of people living in a home and the household’s combined income, and can help offset typical bill increases many customers experience. The current income thresholds cap income eligibility at $28,000 for one-person households and $52,000 for five-person households, and temporary measures like the off-peak price freeze have also influenced bills in recent periods.

The new income eligibility thresholds, which will be in effect beginning March 1, 2024, will allow many more families to access the program as rates are about to change across Ontario.

In addition, under the OEB’s winter disconnection ban, which follows the Nov. 1 rate increase, electricity distributors cannot disconnect residential customers for non-payment from November 15, 2023, to April 30, 2024.

 

Related News

View more

Washington State's Electric Vehicle Rebate Program

Washington EV Rebate Program drives EV adoption with incentives, funding, and clean energy goals, cutting greenhouse gas emissions. Residents embrace electric vehicles as charging infrastructure expands, supporting sustainable transportation and state climate targets.

 

Key Points

Washington EV Rebate Program provides incentives to cut EV costs, accelerate adoption, and support clean energy targets.

✅ Over half of allocated funding already utilized statewide.

✅ Incentives lower upfront costs and spur EV demand.

✅ Charging infrastructure expansion remains a key priority.

 

Washington State has reached a significant milestone in its electric vehicle (EV) rebate program, with more than half of the allocated funding already utilized. This rapid uptake highlights the growing interest in electric vehicles as residents seek more sustainable transportation options. As the state continues to prioritize environmental initiatives, this development showcases both the successes and challenges of promoting electric vehicle adoption.

A Growing Demand for Electric Vehicles

The substantial drawdown of rebate funds indicates a robust demand for electric vehicles in Washington. As consumers become increasingly aware of the environmental benefits associated with EVs—such as reduced greenhouse gas emissions and improved air quality—more individuals are making the switch from traditional gasoline-powered vehicles. Additionally, rising fuel prices and advancements in EV technology, alongside zero-emission incentives are further incentivizing this shift.

Washington's rebate program, which offers financial incentives to residents who purchase or lease eligible electric vehicles, plays a critical role in making EVs more accessible. The program helps to lower the upfront costs associated with purchasing electric vehicles, and similar approaches like New Brunswick EV rebates illustrate how regional incentives can boost adoption, thus encouraging more drivers to consider these greener alternatives. As the state moves toward its goal of a more sustainable transportation system, the popularity of the rebate program is a promising sign.

The Impact of Funding Utilization

With over half of the rebate funding already used, the program's popularity raises questions about the sustainability of its financial support and the readiness of state power grids to accommodate rising EV demand. Originally designed to spur adoption and reduce barriers to entry for potential EV buyers, the rapid depletion of funds could lead to future challenges in maintaining the program’s momentum.

The Washington State Department of Ecology, which oversees the rebate program, will need to assess the current funding levels and consider future allocations to meet the ongoing demand. If the funds run dry, it could slow down the adoption of electric vehicles, potentially impacting the state’s broader climate goals. Ensuring a consistent flow of funding will be essential for keeping the program viable and continuing to promote EV usage.

Environmental Benefits and Climate Goals

The increasing adoption of electric vehicles aligns with Washington’s ambitious climate goals, including a commitment to reduce carbon emissions significantly by 2030. The state aims to transition to a clean energy economy and has set a target for all new vehicles sold by 2035 to be electric, and initiatives such as the hybrid-electric ferry upgrade demonstrate progress across the transportation sector. The success of the rebate program is a crucial step in achieving these objectives.

As more residents switch to EVs, the overall impact on air quality and carbon emissions can be profound. Electric vehicles produce zero tailpipe emissions, which contributes to improved air quality, particularly in urban areas that struggle with pollution. The transition to electric vehicles can also help to reduce dependence on fossil fuels, further enhancing the state’s sustainability efforts.

Challenges Ahead

While the current uptake of the rebate program is encouraging, there are challenges that need to be addressed. One significant issue is the availability of EV models. Although the market is expanding, not all consumers have equal access to a variety of electric vehicle options. Affordability remains a barrier for many potential buyers, especially in lower-income communities, but targeted supports like EV charger rebates in B.C. can ease costs for households. Ensuring that all residents can access EVs and the associated incentives is vital for equitable participation in the transition to electric mobility.

Additionally, there are concerns about charging infrastructure. For many potential EV owners, the lack of accessible charging stations can deter them from making the switch. Expanding charging networks, particularly in underserved areas, is essential for supporting the growing number of electric vehicles on the road, and B.C. EV charging expansion offers a regional model for scaling access.

Looking to the Future

As Washington continues to advance its electric vehicle initiatives, the success of the rebate program is a promising indication of changing consumer attitudes toward sustainable transportation. With more than half of the funding already used, the focus will need to shift to sustaining the program and ensuring that it meets the needs of all residents, while complementary incentives like home and workplace charging rebates can amplify its impact.

Ultimately, Washington’s commitment to electric vehicles is not just about rebates; it’s about fostering a comprehensive ecosystem that supports clean energy, infrastructure, and equitable access. By addressing these challenges head-on, the state can continue to lead the way in the transition to electric mobility, benefiting both the environment and its residents in the long run.

 

Related News

View more

Maritime Link almost a reality, as first power cable reaches Nova Scotia

Maritime Link Subsea Cable enables HVDC grid interconnection across the Cabot Strait, linking Nova Scotia with Newfoundland and Labrador to import Muskrat Falls hydroelectric power and expand renewable energy integration and reliability.

 

Key Points

A 170-km HVDC subsea link connecting Nova Scotia and Newfoundland and Labrador for Muskrat Falls power and renewables

✅ 170-km HVDC subsea route across Cabot Strait

✅ Connects Nova Scotia and Newfoundland and Labrador grids

✅ Enables Muskrat Falls hydro and renewable energy trade

 

The longest sub-sea electricity cable in North America now connects Nova Scotia and Newfoundland and Labrador, according to the company behind the $1.7-billion Maritime Link project.  

The first of the project's two high-voltage power transmission cables was anchored at Point Aconi, N.S., on Sunday. 

The 170-kilometre long cable across the Cabot Strait will connect the power grids in the two provinces. The link will allow power to flow between the two provinces, as demonstrated by its first electricity transfer milestone, and bring to Nova Scotia electricity generated by the massive Muskrat Falls hydroelectric project in Labrador. 

Ultimately, the Maritime Link will help Nova Scotia reach the renewable energy goals set out by the federal government, said Rick Janega, the president and CEO of Emera Newfoundland and Labrador, whose subsidiary owns the Maritime Link.

"If not for the Maritime Link then really the province would not have the ability to meet those requirements because we're pretty much tapped out of all the hydro in province and all the wind generation without creating new interconnections like the Maritime Link," said Janega. 

Not everyone wanted the link 

Fishermen in Cape Breton had objected to the Maritime Link. They were concerned about how the undersea cable might affect fish in the area. 

The laying of the cable and other construction closed a three-kilometre long and 600-metre wide swath of ocean bottom to fishermen for the entire 2017 lobster season.  

But the company came to an agreement to compensate a group of 60 Cape Breton lobster and crab fishermen affected by the project this season. The terms of the compensation deal were not released. 

 

Long cable, big job

The transmission cable runs northwest of the Marine Atlantic ferry route between North Sydney, N.S., and Port aux Basques, N.L. 

Installation of the second cable is set to begin in June, a major step comparable to BC Hydro's Site C transmission milestone achieved recently. The entire link should be completed by late 2017 and should go into full service by January 2018.

"We're quite confident as soon as the Maritime Link is in service there will be energy transactions between Nova Scotia Power and Newfoundland Hydro. Both utilities have already identified opportunities to save money and exchange energy between the two provinces," said Janega.

That's two years before power is expected to flow from the Muskrat Falls hydro project. The Labrador-based power generating facility has been hampered by delays.

Those kinds of transmission project delays are expected for such a large project, said Janega, and won't stop the Maritime Link from being used. 

"With the Maritime Link going in service this year providing Nova Scotia the opportunity that it needs to be able to reach carbon reductions and to adapt to climate change and to increase renewable energy content and we're very pleased to be at this state today," said Janega.

 

Related News

View more

New EPA power plant rules will put carbon capture to the test

CCUS in the U.S. Power Sector drives investments as DOE grants, 45Q tax credits, and EPA carbon rules spur carbon capture, geologic storage, and utilization, while debates persist over costs, transparency, reliability, and emissions safeguards.

 

Key Points

CCUS captures CO2 from power plants for storage or use, backed by 45Q tax credits, DOE funding, and EPA carbon rules.

✅ DOE grants and 45Q credits aim to de-risk project economics.

✅ EPA rules may require capture rates to meet emissions limits.

✅ Transparency and MRV guard against tax credit abuse.

 

New public and private funding, including DOE $110M for CCUS announced recently, and expected strong federal power plant emissions reduction standards have accelerated electricity sector investments in carbon capture, utilization and storage,’ or CCUS, projects but some worry it is good money thrown after bad.

CCUS separates carbon from a fossil fuel-burning power plant’s exhaust through carbon capture methods for geologic storage or use in industrial and other applications, according to the Department of Energy. Fossil fuel industry giants like Calpine and Chevron are looking to take advantage of new federal tax credits and grant funding for CCUS to manage potentially high costs in meeting power plant performance requirements, amid growing investor pressure for climate reporting, including new rules, expected from EPA soon, on reducing greenhouse gas emissions from existing power plants.

Power companies have “ambitious plans” to add CCUS to power plants, estimated to cause 25% of U.S. CO2 emissions. As a result, the power sector “needs CCUS in its toolkit,” said DOE Office of Fossil Energy and Carbon Management Assistant Secretary Brad Crabtree. Successful pilots and demonstrations “will add to investor confidence and lead to more deployment” to provide dispatchable clean energy, including emerging CO2-to-electricity approaches for power system reliability after 2030,| he added.

But environmentalists and others insist potentially cost-prohibitive CCUS infrastructure, including CO2 storage hub initiatives, must still prove itself effective under rigorous and transparent federal oversight.

“The vast majority of long-term U.S. power sector needs can be met without fossil generation, and better options are being deployed and in development,” Sierra Club Senior Advisor, Strategic Research and Development, Jeremy Fisher, said, pointing to carbon-free electricity investments gaining momentum in the market. CCUS “may be needed, but without better guardrails, power sector abuses of federal funding could lead to increased emissions and stranded fossil assets,” he added.

New DOE CCUS project grants, an increased $85 per metric ton, or tonne, federal 45Q tax credit, and the forthcoming EPA power plant carbon rules and the federal coal plan will do for CCUS what similar policies did for renewables, advocates and opponents agreed. But controversial past CCUS performance and tax credit abuses must be avoided with transparent reporting requirements for CO2 capture, opponents added.

 

Related News

View more

Ford announces an all-electric Transit cargo van

Ford Electric Transit is an all electric cargo van for US and Canada, launching 2021, with 4G LTE hotspot, fleet telematics, GPS tracking, and driver assistance safety tech; battery, range, and performance specs TBD.

 

Key Points

An all electric cargo van with fleet telematics, 4G LTE, and driver assistance features for US and Canada.

✅ 4G LTE hotspot, live GPS tracking, and diagnostics

✅ Fleet telematics and management tools for operations

✅ Driver assistance: AEB, lane keeping, and collision warning

 

Ford is making an all-electric version of its popular Transit cargo van for the US and Canadian markets, slated to be released in 2021, aligning with Ford’s EV manufacturing plans to scale production across North America. The company did not share any specifics about the van’s battery pack size, estimated range, or performance characteristics. Ford previously announced an electric Transit for the European market in 2019.

The new cargo van will come equipped with a 4G LTE hotspot and will be outfitted with a number of tech features designed for fleet managers, like live GPS tracking and diagnostics, mirroring moves by Volvo’s electric trucks aimed at connected operations. The electric Transit van will also be equipped with a number of Ford’s safety and driver assistance features, like collision warning and assist, automatic emergency braking, pedestrian detection, and automatic lane-keeping.

Ford said it didn’t have any news to share about an electric version of its Transit passenger van “at this time,” even as the market reaches an EV inflection point for adoption.

Ford’s Transit van is the bestselling cargo van in the US, though it has seen increased competition over the last few years from Mercedes-Benz, which recently refreshed its popular Sprinter van, while others pursue electrified freight like Tesla’s electric truck plans that expand options.

Mercedes-Benz has already unveiled an electric version of the Sprinter, which comes in two configurations, targeting delivery networks where UPS’s Tesla Semi orders signal growing demand. There’s a version with a 55kWh battery pack that can travel 168 kilometers (104 miles) on a full charge, and has a payload capacity of 891 kilograms (1,964 pounds). Mercedes-Benz is making a version with a smaller 41kWh battery pack that goes 115 kilometers (72 miles), but which can carry up to 1,045 (2,304 pounds). Both versions come with 10.5 cubic meters (370.8 cubic feet) of storage space.

Mercedes-Benz also announced the EQV concept a year ago, which is an electric van aimed at slightly more everyday use, reflecting broader people-moving trends as electric bus adoption faces hurdles worldwide. The company touted more promising specs with the slightly smaller EQV, saying it will get around 249 miles out of a 100kWh battery pack. Oh, and it has 200 horsepower on offer and will be equipped with the company’s MBUX infotainment system.

Another player in the space is EV startup Rivian, which will build 100,000 electric delivery vans for Amazon over the next few years. Ford has invested $500 million in Rivian, and the startup is helping build a luxury electric SUV for the automotive giant’s Lincoln brand, though the two van projects don’t seem to be related, as Ford and others also boost gas-electric hybrid strategies in the US. Ford is also collaborating with Volkswagen on commercial vans after the two companies formed a global alliance early last year.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified