Conference to boldly explore solar power

By Toronto Star


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Space, the final frontier – these are the voyages of scientific dreamers.

Their mission: to seek out new sources of clean power, to keep climate change in check, to boldly generate electricity where no electricity has ever been generated before.

Seriously.

For three days in September, the Ontario Science Centre will host a conference called the International Symposium on Solar Energy from Space.

Scientists, space engineers and technologists from around the world will try to coordinate a roadmap for building massive solar-power stations in space and beaming the electricity safely back down to Earth.

Bob McDonald, the affable host of CBC Radio's Quirks and Quarks show has been named master of ceremonies of the event, sponsored by a not-for-profit group called SPACE Canada and which promises to attract attention from around the globe.

The idea of generating solar power in space has been gaining traction lately, no doubt because of the urgency of reducing greenhouse-gas emissions in our atmosphere. Temperatures by the end of this century are now likely to rise twice what scientists predicted six years ago, according to a Massachusetts Institute of Technology study published last week in the peer-reviewed Journal of Climate.

Preventing this warming will require "rapid and massive action," the scientists concluded. If you share the view of British theorist James Lovelock, who sees Earth as single organism, then you believe our efforts at combating climate change are futile.

Best, instead, to prepare for what's coming. Those scientists coming to Toronto in September, fortunately, are more optimistically opting for the massive action plan.

How rapid the plan would be... well, that's a different story.

Organizers expect that about 100 technical papers will be presented at the Toronto conference, and preliminary results of a nearly completed International Academy of Astronautics study will also be shared.

That study, nearly two years in the making, promises to raise the profile of space-based solar generation as a solution to our energy woes.

The concept has been around for decades. Some envision huge fields of solar photovoltaic panels floating in an orbital slot and always facing the sun.

The space-based systems would collect the solar energy 24-hours a day and beam it down by microwave to large collection fields strategically placed around the planet.

No clouds. No night. Just a continuous blast of sunlight.

Others see the moon as an ally. The idea is that the moon is plastered with solar panels and the energy is beamed back Earth in a similar fashion.

The difference here is that, over time, solar-powered manufacturing plants could be set up on the moon to make solar panels from the silicon and other metals found on the lunar surface.

If you think this is lunacy, consider that the National Security Space Office, which reports to the U.S. Department of Defense, put out a report in late 2007 that concluded "the technical feasibility of the concept has never been better and all the science and technology development vectors appear to indicate that there is a credible potential."

It has proposed building a 10-megawatt pilot solar station to demonstrate it can be done and to spur private investment in commercial ventures.

Apparently the Canadian space agency is interested in the idea.

Meanwhile, California's Pacific Gas & Electric, one of the largest utilities in the United States, caused quite the chatter last month when it announced a deal to purchase 200 megawatts of electricity from a start-up called Solaren Corp., which plans to build a space-based solar generation station that will start beaming power down to Earth in 2016.

The news was widely criticized as a publicity stunt, given that the utility isn't taking any risk by saying it will merely buy the power if it's available.

If Solaren never delivers, no money will ever exchange hands. It's like telling your kid you'll pay him $1 million if he can bend a spoon with his mind.

The conference this September in Toronto is certain to prove mentally stimulating, and there will no doubt be a lot of attempted spoon-bending going on.

Related News

NRC Begins Special Inspection at River Bend Nuclear Power Plant

NRC Special Inspection at River Bend reviews failures of portable emergency diesel generators, nuclear safety measures, and Entergy Operations actions after Fukushima; off-site power loss readiness, remote COVID-19 oversight, and corrective action plans are assessed.

 

Key Points

An NRC review of generator test failures at River Bend, assessing nuclear safety, root causes, and corrective actions.

✅ Evaluates failures of portable emergency diesel generators

✅ Reviews causal analyses and adequacy of corrective actions

✅ Remote COVID-19 oversight; public report expected within 45 days

 

The Nuclear Regulatory Commission has begun a special inspection at the River Bend nuclear power plant, part of broader oversight that includes the Turkey Point renewal application, to review circumstances related to the failure of five portable emergency diesel generators during testing. The plant, operated by Entergy Operations, is located in St. Francisville, La., as nations like France outage risks continue to highlight broader reliability concerns.

The generators are used to supply power to plant systems in the event of a prolonged loss of off-site electrical power coupled with a failure of the permanently installed emergency generators, a concern underscored by incidents such as the SC nuclear plant leak that shut down production for weeks. These portable generators were acquired as part of the facility's safety enhancements mandated by the NRC following the 2011 accident at the Fukushima Dai-ichi facility in Japan, and amid constraints like France limiting output from warm rivers, the emphasis on resilience remains.

The three-member NRC team will develop a chronology of the test failures and evaluate the licensee's causal analyses and the adequacy of corrective actions, informed by lessons from cases like Davis-Besse closure stakes that underscore risk management.

Due to the COVID-19 pandemic, they will complete most of their work remotely, while other regions address constraints such as high river temperatures limiting output for nuclear stations. An inspection report documenting the team's findings, released as global nuclear project milestones continue across the sector, will be publicly available within 45 days of the end of the inspection.
 

 

Related News

View more

America Going Electric: Dollars And Sense

California Net Zero Grid Investment will fuel electrification, renewable energy buildout, EV adoption, and grid modernization, boosting utilities, solar, and storage, while policy, IRA incentives, and transmission upgrades drive reliability and long-term rate base growth.

 

Key Points

Funding to electrify sectors and modernize the grid, scaling renewables, EVs, and storage to meet 2045 net zero goals.

✅ $370B over 22 years to meet 2045 net zero target

✅ Utilities lead gains via grid modernization and rate base growth

✅ EVs, solar, storage scale; IRA credits offset costs

 

$370 billion: That’s the investment Edison International CEO Pedro Pizarro says is needed for California’s power grid to meet the state’s “net zero” goal for CO2 emissions by 2045.

Getting there will require replacing fossil fuels with electricity in transportation, HVAC systems for buildings and industrial processes. Combined with population growth and data demand potentially augmented by artificial intelligence, that adds up to an 82 percent increase in electricity demand over 22 years, or 3 percent annually, and a potential looming shortage if buildout lags.

California’s plans also call for phasing out fossil fuel generation in the state, despite ongoing dependence on fossil power during peaks. And presumably, its last nuclear plant—PG&E Corp’s (PCG) Diablo Canyon—will be eventually be shuttered as well. So getting there also means trebling the state’s renewable energy generation and doubling usage of rooftop solar.

Assuming this investment is made, it’s relatively easy to put together a list of beneficiaries. Electric vehicles hit 20 percent market share in the state in Q2, even as pandemic-era demand shifts complicate load forecasting. And while competition from manufacturers has increased, leading manufacturers like Tesla TSLA -3% Inc (TSLA) can look forward to rising sales for some time—though that’s more than priced in for Elon Musk’s company at 65 times expected next 12 months earnings.

In the past year, California regulators have dialed back net metering through pricing changes affecting compensation, a subsidy previously paying rooftop solar owners premium prices for power sold back to the grid. That’s hit share prices of SunPower Corp (SPWR) and Sunrun Inc (RUN) quite hard, by further undermining business plans yet to demonstrate consistent profitability.

Nonetheless, these companies too can expect robust sales growth, as global prices for solar components drop and Inflation Reduction Act tax credits at least somewhat offset higher interest rates. And the combination of IRA tax credits and U.S. tariff walls will continue to boost sales at solar manufacturers like JinkoSolar Holding (JKS).

The surest, biggest beneficiaries of California’s drive to Net Zero are the utilities, reflecting broader utility trends in grid modernization, with investment increasing earnings and dividends. And as the state’s largest pure electric company, Edison has the clearest path.

Edison is currently requesting California regulators OK recovery over a 30-year period of $2.4 billion in losses related to 2017 wildfires. Assuming a amicable decision by early next year, management can then turn its attention to upgrading the grid. That investment is expected to generate long-term rate base growth of 8 percent at year, fueling 5 to 7 percent annual earnings growth through 2028 with commensurate dividend increases.

That’s a strong value proposition Edison stock, with trades at just 14 times expected next 12 months earnings. The yield of roughly 4.4 percent at current prices was increased 5.4 percent this year and is headed for a similar boost in December.

When California deregulated electricity in 1996, it required utilities with rare exceptions to divest their power generation. As a result, Edison’s growth opportunity is 100 percent upgrading its transmission and distribution grid. And its projects can typically be proposed, sited, permitted and built in less than a year, limiting risk of cost overruns to ensure regulatory approval and strong investment returns.

Edison’s investment plan is also pretty much immune to an unlikely backtracking on Net Zero goals by the state. And the company has a cost argument as well: Dr Pizarro cites U.S. Department of Energy and Department of Transportation data to project inflation-adjusted savings of 40 percent in California’s total customer energy bills from full electrification.

There’s even a reason to believe 40 percent savings will prove conservative. Mainly, gasoline currently accounts for a bit more than half energy expenditures. And after a more than 10-year global oil and gas investment drought, supplies are likely get tighter and prices possibly much higher in coming years.

Of course, those savings will only show up after significant investment is made. At this point, no major utility system in the world runs on 100 percent renewable energy, and California’s blackout politics underscore how reliability concerns shape deployment. And the magnitude of storage technology needed to overcome intermittency in solar and wind generation is not currently available let alone affordable, though both cost and efficiency are advancing.

Taking EVs from 20 to 100 percent of California’s new vehicle sales calls for a similar leap in efficiency and cost, even with generous federal and state subsidy. And while technology to fully electrify buildings and homes is there, economically retrofitting statewide is almost certainly going to be a slog.

At the end of the day, political will is likely to be as important as future technological advance for how much of Pizarro’s $370 billion actually gets spent. And the same will be true across the U.S., with state governments and regulators still by and large calling the shots for how electricity gets generated, transmitted and distributed—as well as who pays for it and how much, even as California’s exported policies influence Western markets.

Ironically, the one state where investors don’t need to worry about renewable energy’s prospects is one of the currently reddest politically. That’s Florida, where NextEra Energy NEE +2.8% (NEE) and other utilities can dramatically cut costs to customers and boost reliability by deploying solar and energy storage.

You won’t hear management asserting it can run the Sunshine State on 100 percent renewable energy, as utilities and regulators do in some of the bluer parts of the country. But by demonstrating the cost and reliability argument for solar deployment, NextEra is also making the case why its stock is America’s highest percentage bet on renewables’ growth—particularly at a time when all things energy are unfortunately becoming increasingly, intensely political.

 

Related News

View more

California Regulators Face Calls for Action as Electricity Bills Soar

California Electricity Rate Hikes strain households as CPUC weighs fixed charges, utility profit caps, and stricter oversight. Wildfire mitigation, transmission upgrades, and aging grid costs push bills higher amid renewable integration and consumer protection debates.

 

Key Points

California power rates are rising from wildfire mitigation, transmission costs, and grid upgrades under CPUC review.

✅ CPUC mulls fixed charges to stabilize bills and rate design.

✅ Advocates push profit caps; utilities cite investment needs.

✅ Stronger oversight sought to curb waste and boost transparency.

 

California residents and consumer groups are demanding relief as their electricity bills continue to climb, putting increasing pressure on state regulators to intervene.  A recent op-ed in the San Francisco Chronicle highlights the growing frustration, emphasizing that California already has some of the highest electricity rates in the country, as coverage on why prices are soaring underscores, and these costs are only getting more burdensome.


Factors Driving High Bills

The rising electricity bills are attributed to several factors:

  • Wildfire Mitigation and Liability: Utility companies are investing heavily in wildfire prevention measures, such as vegetation management and infrastructure hardening. The costs of these initiatives, along with the increasing financial liabilities associated with wildfire risk, are being passed on to consumers.
  • Transmission Costs: California's vast geography and move towards renewable energy sources necessitate significant investments in transmission lines to deliver electricity from remote locations. These infrastructure costs also contribute to higher bills.
  • Aging Infrastructure: California's electricity grid is aging and requires upgrades and maintenance, and the expenses associated with these efforts are reflected in consumer rates.


Proposed Solutions and Debates

Consumer advocates and some lawmakers are calling for various actions to address the issue, including a potential revamp of electricity rates to clean the grid:

  • Fixed Charge Proposal: The California Public Utilities Commission (CPUC) is considering a proposal to introduce an income-based fixed charge on electricity bills. This change aims to make rates more predictable and encourage investment in renewable energy sources. However, opponents argue that it could disproportionately impact low-income households and discourage conservation.
  • Utility Profit Caps: Some advocate for capping utility companies' profits. They believe excessive profits should be returned to customers in the form of lower rates. However, utility companies counter that they need a certain level of profit to invest in infrastructure and maintain a reliable grid.
  • Increased Oversight: Consumer groups are calling for stricter oversight of utility company spending, and legislators are preparing to crack down on utility spending through upcoming votes as well. They demand transparency and want to ensure that funds collected from customers are being used for necessary investments and not for lobbying or excessive executive compensation.

 

Comparisons and National Implications

Similar concerns about rising utility bills are emerging in other parts of the country as more states transition to renewable energy and invest in infrastructure upgrades.

A report by the Energy Information Administration (EIA) shows that average residential electricity rates across the country have been on the rise for the past decade. While California currently ranks amongst the highest, major changes to electric bills are being debated, and other states are following suit, demonstrating the nationwide challenge of balancing affordability with necessary investments.

 

Uncertain Future

The California Public Utilities Commission is reviewing the fixed charge proposal and is expected to make a decision later this year, with income-based flat-fee utility bills moving closer in the process. The outcome of this decision and potential additional regulatory changes will have significant ramifications for California residents, and some lawmakers plan to overturn income-based charges if adopted, which could set a precedent for how other states handle the rising costs associated with the energy transition.

 

Related News

View more

Should California Fund Biofuels or Electric Vehicles?

California Biofuels vs EV Subsidies examines tradeoffs in decarbonization, greenhouse gas reductions, clean energy deployment, charging infrastructure, energy security, lifecycle emissions, and transportation sector policy to meet climate goals and accelerate sustainable mobility.

 

Key Points

Policy tradeoffs weighing biofuels and EVs to cut GHGs, boost energy security, and advance clean transportation.

✅ Near-term blending cuts emissions from existing fleets

✅ EVs scale with a cleaner grid and charging buildout

✅ Lifecycle impacts and costs guide optimal subsidy mix

 

California is at the forefront of the transition to a greener economy, driven by its ambitious goals to reduce greenhouse gas emissions and combat climate change. As part of its strategy, the state is grappling with the question of whether it should subsidize out-of-state biofuels or in-state electric vehicles (EVs) to meet these goals. Both options come with their own sets of benefits and challenges, and the decision carries significant implications for the state’s environmental, economic, and energy landscapes.

The Case for Biofuels

Biofuels have long been promoted as a cleaner alternative to traditional fossil fuels like gasoline and diesel. They are made from organic materials such as agricultural crops, algae, and waste, which means they can potentially reduce carbon emissions in comparison to petroleum-based fuels. In the context of California, biofuels—particularly ethanol and biodiesel—are viewed as a way to decarbonize the transportation sector, which is one of the state’s largest sources of greenhouse gas emissions.

Subsidizing out-of-state biofuels can help California reduce its reliance on imported oil while promoting the development of biofuel industries in other states. This approach may have immediate benefits, as biofuels are widely available and can be blended with conventional fuels to lower carbon emissions right away. It also allows the state to diversify its energy sources, improving energy security by reducing dependency on oil imports.

Moreover, biofuels can be produced in many regions across the United States, including rural areas. By subsidizing out-of-state biofuels, California could foster economic development in these regions, creating jobs and stimulating agricultural innovation. This approach could also support farmers who grow the feedstock for biofuel production, boosting the agricultural economy in the U.S.

However, there are drawbacks. The environmental benefits of biofuels are often debated. Critics argue that the production of biofuels—particularly those made from food crops like corn—can contribute to deforestation, water pollution, and increased food prices. Additionally, biofuels are not a silver bullet in the fight against climate change, as their production and combustion still release greenhouse gases. When considering whether to subsidize biofuels, California must also account for the full lifecycle emissions associated with their production and use.

The Case for Electric Vehicles

In contrast to biofuels, electric vehicles (EVs) offer a more direct pathway to reducing emissions from transportation. EVs are powered by electricity, and when coupled with renewable energy sources like solar or wind power, they can provide a nearly zero-emission solution for personal and commercial transportation. California has already invested heavily in EV infrastructure, including expanding its network of charging stations and exploring how EVs can support grid stability through vehicle-to-grid approaches, and offering incentives for consumers to purchase EVs.

Subsidizing in-state EVs could stimulate job creation and innovation within California's thriving clean-tech industry, with other states such as New Mexico projecting substantial economic gains from transportation electrification, and the state has already become a hub for electric vehicle manufacturers, including Tesla, Rivian, and several battery manufacturers. Supporting the EV industry could further strengthen California’s position as a global leader in green technology, attracting investment and fostering growth in related sectors such as battery manufacturing, renewable energy, and smart grid technology.

Additionally, the environmental benefits of EVs are substantial. As the electric grid becomes cleaner with an increasing share of renewable energy, EVs will become even greener, with lower lifecycle emissions than biofuels. By prioritizing EVs, California could further reduce its carbon footprint while also achieving its long-term climate goals, including reaching carbon neutrality by 2045.

However, there are challenges. EV adoption in California remains a significant undertaking, requiring major investments in infrastructure as they challenge state power grids in the near term, technology, and consumer incentives. The cost of EVs, although decreasing, still remains a barrier for many consumers. Additionally, there are concerns about the environmental impact of lithium mining, which is essential for EV batteries. While renewable energy is expanding, California’s grid is still reliant on fossil fuels to some degree, and in other jurisdictions such as Canada's 2019 electricity mix fossil generation remains significant, meaning that the full emissions benefit of EVs is not realized until the grid is entirely powered by clean energy.

A Balancing Act

The debate between subsidizing out-of-state biofuels and in-state electric vehicles is ultimately a question of how best to allocate California’s resources to meet its climate and economic goals. Biofuels may offer a quicker fix for reducing emissions from existing vehicles, but their long-term benefits are more limited compared to the transformative potential of electric vehicles, even as some analysts warn of policy pitfalls that could complicate the transition.

However, biofuels still have a role to play in decarbonizing hard-to-abate sectors like aviation and heavy-duty transportation, where electrification may not be as feasible in the near future. Thus, a mixed strategy that includes both subsidies for EVs and biofuels may be the most effective approach.

Ultimately, California’s decision will likely depend on a combination of factors, including technological advancements, 2021 electricity lessons, and the pace of renewable energy deployment, and the state’s ability to balance short-term needs with long-term environmental goals. The road ahead is not easy, but California's leadership in clean energy will be crucial in shaping the nation’s response to climate change.

 

Related News

View more

Gas-electric hybrid vehicles get a boost in the US from Ford, others

U.S. Hybrid Vehicle Sales Outlook highlights rising hybrid demand as an EV bridge, driven by emissions rules, range anxiety, charging infrastructure gaps, and automaker strategies from Ford, Toyota, and Stellantis across U.S. markets.

 

Key Points

Forecast of U.S. hybrid sales shaped by EV adoption, emissions rules, charging access, and automaker strategies.

✅ S&P sees hybrids at 24% of U.S. sales by 2028

✅ Bridges ICE to EV amid range and charging concerns

✅ Ford, Toyota, Stellantis expand U.S. hybrid lineups

 

Hybrid gasoline-electric vehicles may not be dying as fast as some predicted in the auto sector’s rush to develop all-electric models.

Ford Motor is the latest of several top automakers, including Toyota and Stellantis, planning to build and sell hundreds of thousands of hybrid vehicles in the U.S. over the next five years, industry forecasters told Reuters.

The companies are pitching hybrids as an alternative for retail and commercial customers who are seeking more sustainable transportation, but may not be ready to make the leap to a full electric vehicle.

"Hybrids really serve a lot of America," said Tim Ghriskey, senior portfolio strategist at New York-based investment manager Ingalls & Snyder. "Hybrid is a great alternative to a pure electric vehicle (and) it's an easier sell to a lot of customers."

Interest in hybrids is rebounding as consumer demand for pure electrics has not accelerated as quickly as expected, with EV market share dipping in Q1 2024 according to some analyses. Surveys cite a variety of reasons for tepid EV demand, from high initial cost and concerns about range to lengthy charging times and a shortage of public charging infrastructure in many regions.

“With the tightening of emissions requirements, hybrids provide a cleaner fleet without requiring buyers to take the leap into pure electrics,” said Sam Fiorani, vice president at AutoForecast Solutions.

S&P Global Mobility estimates hybrids will more than triple over the next five years, accounting for 24% of U.S. new vehicle sales in 2028. Sales of pure electrics will claim about 37%, supported by strong U.S. EV sales into 2024 momentum, leaving combustion vehicles — including so-called “mild” hybrids — with a nearly 40% share.

S&P estimates hybrids will account for just 7% of U.S. sales this year, and pure electrics 9%, underscoring that EV sales still lag gas cars as internal combustion engine (ICE) vehicles take more than 80%.

Historically, hybrids have accounted for less than 10% of total U.S. sales, with Toyota’s long-running Prius among the most popular models. The Japanese automaker has consistently said hybrids will play a key role in the company's long-range electrification plans as it slowly ramps up investment in pure EVs.

Ford is the latest to roll out more aggressive hybrid plans. On its second-quarter earnings call in late July, Chief Executive Jim Farley surprised analysts, saying Ford expects to quadruple its hybrid sales over the next five years after earlier promising an aggressive push into all-electric vehicles.

“This transition to EVs will be dynamic,” Farley told analysts. “We expect the EV market to remain volatile until the winners and losers shake out.”

Among Ford’s competitors, General Motors appears to have little interest in hybrids in the U.S., while Stellantis will follow Toyota and Ford’s hedge by offering U.S. buyers a choice of different powertrains, including hybrids, until sales of pure electric vehicles start to take off after mid-decade, a potential EV inflection point according to forecaster GlobalData.

In a statement, GM said it, echoing leadership's view that EVs won't go mainstream until key issues are addressed, "continues to be committed to its all-electric future ... While we will have hybrid vehicles in our global fleet, our focus remains on transitioning our portfolio to electric by 2030.”

Stellantis said hybrids now account for 36% of Jeep Wrangler sales and 19% of Chrysler Pacifica sales. In addition to new pure electric models coming soon, "we are very bullish on hybrids going forward," a spokesperson said.

This year, manufacturers are marketing more than 60 hybrids in the U.S. Toyota and its premium Lexus brand are selling at least 18 different hybrid models, enabling the Japanese automaker to maintain its stranglehold on the sector.

Hyundai and sister brand Kia offer seven hybrid models, with Ford and Lincoln six. Stellantis offers just three, and GM’s sole entry, due out later this year, is a hybrid version of the Chevrolet Corvette sports car.

But hybrids remain in short supply at many U.S. dealerships.

Andrew DiFeo, dealer principal at Hyundai of St. Augustine, south of Jacksonville, FL, doesn't see EV adoption hitting the levels the Biden administration wants until EV charging networks are as ubiquitous as gas stations.

"Hybrids are a great bridge to whatever the future holds,” said DiFeo, adding, “I've got zero in stock (and) I've got customers that want all of them."

 

Related News

View more

Amazon Announces Three New Renewable Energy Projects to Support AWS Global Infrastructure

AWS Renewable Energy Projects deliver new wind power for AWS data centers in Ireland, Sweden, and the US, adding 229 MW and 670,000 MWh annually, supporting 100% renewable targets and global cloud sustainability.

 

Key Points

AWS projects add wind power in Ireland, Sweden, and the US to supply clean energy for AWS data centers.

✅ 229 MW new wind capacity; 670,000 MWh annual generation

✅ Sites: Donegal (IE), Backhammar (SE), Tehachapi (US)

✅ Advances 100% renewable goal for global AWS infrastructure

 

 Amazon has announced three new clean energy projects as part of its long-term goal to power all Amazon Web Services (AWS) global infrastructure with renewable energy. These projects – one in Ireland, one in Sweden, and one in the United States – will deliver wind-generated energy that will total over 229 megawatts (MW) of power, with expected generation of over 670,000 megawatt hours (MWh) of renewable energy annually. The new projects are part of AWS’s long-term commitment to achieve 100 percent renewable energy for its global infrastructure. In 2018, AWS exceeded 50 percent renewable energy for its global infrastructure.

Once complete, these projects, combined with AWS’s previous nine renewable energy projects, reflect how renewable power developers benefit from diversified sources and are expected to generate more than 2,700,000 MWh of renewable energy annually – equivalent to the annual electricity consumption of over 262,000 US homes, which is approximately the size of the city of Nashville, Tennessee.

“Each of these projects brings us closer to our long-term commitment to use 100 percent renewable energy to power our global AWS infrastructure,” said Peter DeSantis, Vice President of Global Infrastructure and Customer Support, Amazon Web Services. “These projects are well-positioned to serve AWS data centers in Ireland, Sweden, and the US. We expect more projects in 2019 as we continue toward our goal of powering all AWS global infrastructure with renewable energy.”

Amazon has committed to buying the energy from a new wind project in Ireland, a 91.2 MW wind farm in Donegal. The Donegal wind farm project is expected to deliver clean energy no later than the end of 2021.

“AWS’s investment in renewable projects in Ireland illustrates their continued commitment to adding clean energy to the grid and it will make a positive contribution to Ireland’s renewable energy goals,” said Leo Varadkar, An Taoiseach of Ireland. “As a significant employer in Ireland, it is very encouraging to see Amazon taking a lead on this issue. We look forward to continuing to work with Amazon as we strive to make Ireland a leader on renewable energy.”

Amazon will also purchase 91 MW of power from a new wind farm in Bäckhammar, Sweden, which is expected to deliver renewable energy by the end of 2020.

“Sweden has long been known for ambitious renewable energy goals, and this new wind farm showcases both our country’s leadership and AWS’s commitment to renewable energy,” said Anders Ygeman, Sweden’s Minister for Energy and Digital Development. “This is a significant step in Sweden’s renewable energy production as we work toward our target of 100 percent renewable energy by 2040.”

California leads the United States in renewable electricity generation from non-hydroelectric sources, as US solar and wind growth accelerates, and the state’s Tehachapi Mountains, where AWS’s wind farm will be located, contain some of the largest wind farms in the country. The wind farm project in Tehachapi is expected to bring up to 47 MW of new renewable energy capacity by the end of 2020.

“This announcement from AWS is great news, not just for California, but for the entire country, as it reaffirms our role as a leader in renewable energy and allows us to take an important step forward on deploying the clean energy we need to respond to climate change,” said California State Senator Jerry Hill, San Mateo and Santa Clara Counties, a member of the Senate Standing Committee on Energy, Utilities and Communications.

Beyond the sustainability initiatives focused on powering the AWS global infrastructure, Amazon recently announced Shipment Zero, which is Amazon’s vision to make all Amazon shipments net zero carbon, with 50 percent of all shipments net zero by 2030. Additional sustainability programs across the company include Amazon Wind Farm Texas, which adds more than 1 million MWh of clean energy each year, alongside Amazon Wind Farm US East that is now fully operational, demonstrating scale. In total, Amazon has enabled 53 wind and solar projects worldwide, which produce more than 1,016 MW and are expected to deliver over 3,075,636 million MWh of energy annually, while peers like Arvato's solar power plant underscore broader momentum across the industry. These projects support hundreds of jobs, while providing tens of millions of dollars of investment in local communities, with Iowa wind power offering a strong example. Amazon has also set a goal to host solar energy systems at 50 fulfillment centers by 2020. This deployment of rooftop solar systems, aided by cheap batteries that enhance storage, is part of a long-term initiative that will start in North America and spread across the globe. Amazon also implemented the District Energy Project that uses recycled energy for heating Amazon offices in Seattle. For more information on Amazon’s sustainability initiatives, visit www.amazon.com/sustainability.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified