FirstEnergy expands transmission substation in Maryland

By FirstEnergy


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
FirstEnergy Corporation is expanding a transmission substation in Frederick, Maryland, to accommodate new voltage-regulating equipment designed to help reinforce the electric system, support load growth and enhance service reliability in Potomac Edison's service area.

The $34 million project includes the installation of specialized voltage-regulating equipment that responds to real-time electrical conditions, boosting or reducing voltage, as needed, to maintain consistent levels on the regional transmission network. The substation work includes the addition of new capacitor banks, circuit breakers, communications equipment and a control building.

In addition, four massive electrical transformers, weighing about 173,000 pounds each and measuring about 12 feet tall by 12 feet wide, are being installed as part of this project.

The work is expected to be completed in October. The project will benefit more than 125,000 Potomac Edison customers in Frederick city, eastern Frederick County, and western Montgomery County.

"Adding voltage support is just one of the things we do to help ensure the reliable flow of power from one substation to another," said James A. Sears, Jr., president of FirstEnergy's Maryland Operations. "With many of our customers using advanced equipment that is sensitive to voltage fluctuations, our new equipment is a cost-effective option to help maintain consistent power levels throughout our system."

The substation expansion is part of FirstEnergy's previously announced plans to spend $128 million in 2015 in Potomac Edison's service area in western Maryland and the Eastern Panhandle of West Virginia to enhance service reliability and help meet future load growth. About $22 million of the budgeted total will be for transmission-related projects owned by the Trans-Allegheny Interstate Line Company TrAILCo, a FirstEnergy transmission affiliate.

Potomac Edison serves about 250,000 customers in seven Maryland counties and 132,000 customers in the Eastern Panhandle of West Virginia.

FirstEnergy is a diversified energy company dedicated to safety, reliability and operational excellence. Its 10 electric distribution companies form one of the nation's largest investor-owned electric systems, serving customers in Ohio, Pennsylvania, New Jersey, West Virginia, Maryland and New York.

Related News

American Households Struggle with Sky-High Energy Bills During Extreme Summer Heat

US Summer Energy Bills Crisis is driven by record heatwaves, soaring electricity prices, AC cooling demand, energy poverty risks, and LIHEAP relief, straining low-income households, vulnerable seniors, and budgets amid volatile utilities and peak demand.

 

Key Points

Rising household energy costs from extreme heat, higher electricity prices, and AC demand, straining vulnerable families.

✅ Record heatwaves drive peak electricity and cooling loads

✅ Tiered rates and volatile markets inflate utility bills

✅ LIHEAP aid and cooling centers offer short-term relief

 

As the sweltering heat of summer continues to grip much of the United States, American households are grappling with a staggering rise in energy bills. The combination of record-breaking temperatures and rising electricity prices is placing an unprecedented financial strain on families, raising concerns about the long-term impact on household budgets and overall well-being.

Record Heat and Energy Consumption

This summer has witnessed some of the hottest temperatures on record across the country. With many regions experiencing prolonged heatwaves, the demand for air conditioning and cooling systems has surged amid unprecedented electricity demand across parts of the U.S. The increased use of these energy-intensive appliances has led to a sharp rise in electricity consumption, which, combined with elevated energy prices, has pushed household energy bills to new heights.

The situation is particularly dire for households that are already struggling financially. Many families are facing energy bills that are not only higher than usual but are reaching levels that are unsustainable, underscoring electricity struggles for thousands of families across the country. This has prompted concerns about the potential for energy poverty, where individuals are forced to make difficult choices between paying for essential services and covering other necessary expenses.

Impact on Low-Income and Vulnerable Households

Low-income households and vulnerable populations are disproportionately affected by these soaring energy costs. For many, the financial burden of high energy bills is compounded by energy insecurity during the pandemic and other economic pressures, such as rising food prices and stagnant wages. The strain of paying for electricity during extreme heat can lead to tough decisions, including cutting back on other essential needs like healthcare or education.

Moreover, the heat itself poses a serious health risk, particularly for the elderly, children, and individuals with pre-existing health conditions. High temperatures can exacerbate conditions such as cardiovascular and respiratory illnesses, making the need for reliable cooling even more critical. For those struggling to afford adequate cooling, the risk of heat-related illnesses and fatalities increases significantly.

Utilities and Energy Pricing

The sharp rise in energy bills can be attributed to several factors, including higher costs of electricity production and distribution. The ongoing transition to cleaner energy sources, while necessary for long-term environmental sustainability, has introduced short-term volatility in energy markets. Additionally, power-company supply chain crises and increased demand during peak summer months have contributed to higher prices.

Utilities are often criticized for their pricing structures, which can be complex and opaque. Some regions, including areas where California electricity bills soar under scrutiny, use tiered pricing models that charge higher rates as energy consumption increases. This can disproportionately impact households that need to use more energy during extreme heat, further exacerbating financial strain.

Government and Community Response

In response to the crisis, various government and community initiatives are being rolled out to provide relief. Federal and state programs aimed at assisting low-income households with energy costs are being expanded. These programs, such as the Low-Income Home Energy Assistance Program (LIHEAP), offer financial assistance to help with utility bills, but demand often outstrips available resources.

Local community organizations are also stepping in to offer support. Initiatives include distributing fans and portable air conditioners, providing temporary cooling centers, and offering financial assistance to help cover energy costs. These efforts are crucial in helping to mitigate the immediate impact of high energy bills on vulnerable households.

Long-Term Solutions and Sustainability

The current crisis highlights the need for long-term solutions to address both the causes and consequences of high energy costs. Investing in energy efficiency and renewable energy technologies can help reduce the overall demand for electricity and lower long-term costs. Improvements in building insulation, the adoption of energy-efficient appliances, and advancements in smart grid technologies to prevent summer power outages are all essential components of a sustainable energy future.

Furthermore, addressing income inequality and supporting economic stability are critical to ensuring that all households can manage their energy needs without facing financial hardship. Policymakers will need to consider a range of strategies, including financial support programs, regulatory reforms, and infrastructure investments, to create a more equitable and resilient energy system.

Conclusion

As American households endure the double burden of extreme summer heat and skyrocketing energy bills, the need for immediate relief and long-term solutions has never been clearer. The current crisis serves as a reminder of the broader challenges facing the nation’s energy system and the importance of addressing both short-term needs and long-term sustainability. By investing in efficient technologies, supporting vulnerable populations, and developing resilient infrastructure, the U.S. can work towards a future where energy costs are manageable, and everyone has access to the resources they need to stay safe and comfortable.

 

Related News

View more

Duke Energy Florida's smart-thinking grid improves response, power restoration for customers during Hurricane Ian

Self-healing grid technology automatically reroutes power to reduce outages, speed restoration, and boost reliability during storms like Hurricane Ian in Florida, leveraging smart grid sensors, automation, and grid hardening to support Duke Energy customers.

 

Key Points

Automated smart grid systems that detect faults and reroute power to minimize outages and accelerate restoration.

✅ Cuts outage duration via automated fault isolation

✅ Reroutes electricity with sensors and distribution automation

✅ Supports storm resilience and faster field crew restoration

 

As Hurricane Ian made its way across Florida, where restoring power in Florida can take weeks in hard-hit areas, Duke Energy's grid improvements were already on the job helping to combat power outages from the storm.

Smart, self-healing technology, similar to smart grid improvements elsewhere, helped to automatically restore more than 160,000 customer outages and saved nearly 3.3 million hours (nearly 200 million minutes) of total lost outage time.

"Hurricane Ian is a strong reminder of the importance of grid hardening and storm preparedness to help keep the lights on for our customers," said Melissa Seixas, Duke Energy Florida state president. "Self-healing technology is just one of many grid improvements that Duke Energy is making to avoid outages, restore service faster and increase reliability for our customers."

Much like the GPS in your car can identify an accident ahead and reroute you around the incident to keep you on your way, self-healing technology is like a GPS for the grid. The technology can quickly identify power outages and alternate energy pathways to restore service faster for customers when an outage occurs.

Additionally, self-healing technology provides a smart tool to assist crews in the field with power restoration after a major storm like Ian, helping reduce outage impacts and freeing up resources to help restore power in other locations.

Three days after Hurricane Ian exited the state, Duke Energy Florida wrapped up restoration of approximately 1 million customers. This progress enabled the company to deploy more than 550 Duke Energy workers from throughout Florida, as well as contractors from across the country, to help restore power for Lee County Electric Cooperative customers.

Crews worked in Cape Coral and Pine Island, one of the hardest-hit areas in the storm's path, as Canadian power crews have in past storms, and completed power restoration for the majority of customers on Pine Island within approximately one week after arriving to the island.

Prior to Ian in 2022, smart, self-healing technology had helped avoid nearly 250,000 extended customer outages in Florida, similar to Hydro One storm recovery efforts, saving around 285,000 hours (17.1 million minutes) of total lost outage time.

Duke Energy currently serves around 59% of customers in Florida with self-healing capabilities on its main power distribution lines, with a goal of serving around 80% over the next few years.

 

Related News

View more

Four Facts about Covid and U.S. Electricity Consumption

COVID-19 Impact on U.S. Electricity Consumption shows commercial and industrial demand dropped as residential use rose, with flattened peak loads, weekday-weekend convergence, Texas hourly data, and energy demand as a real-time economic indicator.

 

Key Points

It reduced commercial and industrial demand while raising residential use, shifting peaks and weekday patterns.

✅ Commercial electricity down 12%; industrial down 14% in Q2 2020

✅ Residential use up 10% amid work-from-home and lockdowns

✅ Peaks flattened; weekday-weekend loads converged in Texas

 

This is an important turning point for the United States. We have a long road ahead. But one of the reasons I’m optimistic about Biden-Harris is that we will once again have an administration that believes in science.

To embrace this return to science, I want to write today about a fascinating new working paper by Tufts economist Steve Cicala.

Professor Cicala has been studying the effect of Covid on electricity consumption since back in March, when the Wall Street Journal picked up his work documenting an 18% decrease in electricity consumption in Italy.

The new work, focused on the United States, is particularly compelling because it uses data that allows him to distinguish between residential, commercial, and industrial sectors, against a backdrop of declining U.S. electricity sales over recent years.

Without further ado, here are four facts he uncovers about Covid and U.S. electricity demand during COVID-19 and consumption.

 

Fact #1: Firms Are Using Less
U.S. commercial electricity consumption fell 12% during the second quarter of 2020. U.S. industrial electricity consumption fell 14% over the same period.

This makes sense. The second quarter was by some measures, the worst quarter for the U.S. economy in over 145 years!

Economic activity shrank. Schools closed. Offices closed. Factories closed. Restaurants closed. Malls closed. Even health care offices closed as patients delayed going to the dentist and other routine care. All this means less heating and cooling, less lighting, less refrigeration, less power for computers and other office equipment, less everything.

The decrease in the industrial sector is a little more surprising. My impression had been that the industrial sector had not fallen as far as commercial, but amid broader disruptions in coal and nuclear power that strained parts of the energy economy, the patterns for both sectors are quite similar with the decline peaking in May and then partially rebounding by July. The paper also shows that areas with higher unemployment rates experienced larger declines in both sectors.

 

Fact #2: Households Are Using More
While firms are using less, households are using more. U.S. residential electricity consumption increased 10% during the second quarter of 2020. Consumption surged during March, April, and May, a reflection of the lockdown lifestyle many adopted, and then leveled off in June and July – with much less of the rebound observed on the commercial/industrial side.

This pattern makes sense, too. In Professor Cicala’s words, “people are spending an inordinate amount of time at home”. Many of us switched over to working from home almost immediately, and haven’t looked back. This means more air conditioning, more running the dishwasher, more CNN (especially last week), more Zoom, and so on.

The paper also examines the correlates of the decline. Areas in the U.S. where more people can work from home experienced larger increases. Unemployment rates, however, are almost completely uncorrelated with the increase.

 

Fact #3: Firms are Less Peaky
The paper next turns to a novel dataset from Texas, where Texas grid reliability is under active discussion, that makes it possible to measure hourly electricity consumption by sector.

As the figure above illustrates, the biggest declines in commercial/industrial electricity consumption have occurred Monday through Friday between 9AM and 5PM.

The dashed line shows the pattern during 2019. Notice the large spikes in electricity consumption during business hours. The solid line shows the pattern during 2020. Much smaller spikes during business hours.

 

Fact #4: Everyday is Like Sunday
Finally, we have what I would like to nominate as the “Energy Figure of the Year”.

Again, start with the pattern for 2019, reflected by the dashed line. Prior to Covid, Texas households used a lot more electricity on Saturdays and Sundays.

Then along comes Covid, and turned every day into the weekend. Residential electricity consumption in Texas during business hours Monday-Friday is up 16%(!).

In the pattern for 2020, it isn’t easy to distinguish weekends from weekdays. If you feel like weekdays and weekends are becoming a big blur – you are not alone.

 

Conclusion
Researchers are increasingly thinking about electricity consumption as a real-time indicator of economic activity, even as flat electricity demand complicates utility planning and investment. This is an intriguing idea, but Professor Cicala’s new paper shows that it is important to look sector-by-sector.

While commercial and industrial consumption indeed seem to measure the strength of an economy, residential consumption has been sharply countercylical – increasing exactly when people are not at work and not at school.

These large changes in behavior are specific to the pandemic. Still, with the increased blurring of home and non-home activities we may look back on 2020 as a key turning point in how we think about these three sectors of the economy.

More broadly, Professor Cicala’s paper highlights the value of social science research. We need facts, data, and yes, science, if we are to understand the economy and craft effective policies on energy insecurity and shut-offs as well.

 

Related News

View more

BC Hydro suspends new crypto mining connections due to extreme electricity use

BC Hydro Cryptocurrency Mining Suspension pauses new grid connections for Bitcoin data centers, preserving electricity for EVs, heat pumps, and industry electrification, as Site C capacity and megawatt demand trigger provincial energy policy review.

 

Key Points

An 18-month pause on new crypto-mining grid hookups to preserve electricity for EVs, heat pumps, and electrification.

✅ 18-month moratorium on new BC Hydro crypto connections

✅ Preserves capacity for EVs, heat pumps, and industry

✅ 21 pending mines sought 1,403 MW; Site C adds 1,100 MW

 

New cryptocurrency mining businesses in British Columbia are now temporarily banned from being hooked up to BC Hydro’s electrical grid.

The 18-month suspension on new electricity-connection requests is intended to provide the electrical utility and provincial government with the time needed, a move similar to N.B. Power's pause during a crypto review, to create a permanent framework for any future additional cryptocurrency mining operations.

Currently, BC Hydro already provides electricity to seven cryptocurrency mining operations, and six more are in advanced stages of being connected to the grid, with a combined total power consumption of 273 megawatts. These existing operations, unlike the Siwash Creek project now in limbo, will not be affected by the temporary ban.

The electrical utility’s suspension comes at a time when there are 21 applications to open cryptocurrency mining businesses in BC, even as electricity imports supplement the grid during peaks, which would have a combined total power consumption of 1,403 megawatts — equivalent to the electricity needed for 570,000 homes or 2.3 million battery-electric vehicles annually.

In fact, the 21 cryptocurrency mining businesses would completely wipe out the new electrical capacity gained by building the $16 billion Site C hydroelectric dam, alongside two newly commissioned stations that add supply, which has an output capacity of 1,100 megawatts or enough power for the equivalent of 450,000 homes. Site C is expected to be operational by 2025.

Cryptocurrency mining, such as Bitcoin, use a very substantial amount of electricity to operate high-powered computers around the clock, which perform complex cryptographic and math problems to verify transactions. High electricity needs are the result of not only to run the racks of computers, but to provide extreme cooling given the significant heat produced.

“We are suspending electricity connection requests from cryptocurrency mining operators to preserve our electricity supply for people who are switching to electric vehicles, amid BC Hydro's first call for power in 15 years, and heat pumps, and for businesses and industries that are undertaking electrification projects that reduce carbon emissions and generate jobs and economic opportunities,” said Josie Osborne, the BC minister of energy, mines and low carbon innovation, adding that cryptocurrency mining creates very few jobs for the local economy.

Such businesses are attracted to BC due to the availability of its clean, plentiful, and cheap hydroelectricity, which LNG companies continue to seek for their operations as well.

If left unchecked, the provincial government suggests BC Hydro’s long-term electrical capacity could be wiped out by cryptocurrency mining operations, even as debates over going nuclear persist among residents across the province.

 

Related News

View more

Brand New Renewable Technology Harnesses Electricity From The Cold, Dark Night

Nighttime Thermoelectric Generator converts radiative cooling into renewable energy, leveraging outer space cold; a Stanford-UCLA prototype complements solar, serving off-grid loads with low-power output during peak evening demand, using simple materials on a rooftop.

 

Key Points

A device converting nighttime radiative cooling into electricity, complementing solar for low-power evening needs.

✅ Uses thermocouples to convert temperature gradients to voltage.

✅ Exploits radiative cooling to outer space for night power.

✅ Complements solar; low-cost parts suit off-grid applications.

 

Two years ago, one freezing December night on a California rooftop, a tiny light shone weakly with a little help from the freezing night air. It wasn't a very bright glow. But it was enough to demonstrate the possibility of generating renewable power after the Sun goes down.

Working with Stanford University engineers Wei Li and Shanhui Fan, University of California Los Angeles materials scientist Aaswath Raman put together a device that produces a voltage by channelling the day's residual warmth into cooling air, effectively generating electricity from thin air with passive heat exchange.

"Our work highlights the many remaining opportunities for energy by taking advantage of the cold of outer space as a renewable energy resource," says Raman.

"We think this forms the basis of a complementary technology to solar. While the power output will always be substantially lower, it can operate at hours when solar cells cannot."

For all the merits of solar energy, it's just not a 24-7 source of power, although research into nighttime solar cells suggests new possibilities for after-dark generation. Sure, we can store it in a giant battery or use it to pump water up into a reservoir for later, but until we have more economical solutions, nighttime is going to be a quiet time for renewable solar power. 

Most of us return home from work as the Sun is setting, and that's when energy demands spike to meet our needs for heating, cooking, entertaining, and lighting.

Unfortunately, we often turn to fossil fuels to make up the shortfall. For those living off the grid, it could require limiting options and going without a few luxuries.

Shanhui Fan understands the need for a night time renewable power source well. He's worked on a number of similar devices, including carbon nanotube generators that scavenge ambient energy, and a recent piece of technology that flipped photovoltaics on its head by squeezing electricity from the glow of heat radiating out of the planet's Sun-warmed surface.

While that clever item relied on the optical qualities of a warm object, this alternative device makes use of the good old thermoelectric effect, similar to thin-film waste-heat harvesting approaches now explored.

Using a material called a thermocouple, engineers can convert a change in temperature into a difference in voltage, effectively turning thermal energy into electricity with a measurable voltage. This demands something relatively toasty on one side and a place for that heat energy to escape to on the other.

The theory is the easy part – the real challenge is in arranging the right thermoelectric materials in such a way that they'll generate a voltage from our cooling surrounds that makes it worthwhile.

To keep costs down, the team used simple, off-the-shelf items that pretty much any of us could easily get our hands on.

They put together a cheap thermoelectric generator and linked it with a black aluminium disk to shed heat in the night air as it faced the sky. The generator was placed inside a polystyrene enclosure sealed with a window transparent to infrared light, and linked to a single tiny LED.


 

For six hours one evening, the box was left to cool on a roof-top in Stanford as the temperature fell just below freezing. As the heat flowed from the ground into the sky, the small generator produced just enough current to make the light flicker to life.

At its best, the device generated around 0.8 milliwatts of power, corresponding to 25 milliwatts of power per square metre.

That might just be enough to keep a hearing aid working. String several together and you might just be able to keep your cat amused with a simple laser pointer. So we're not talking massive amounts of power.

But as far as prototypes go, it's a fantastic starting point. The team suggests that with the right tweaks and the right conditions, 500 milliwatts per square metre isn't out of the question.

"Beyond lighting, we believe this could be a broadly enabling approach to power generation suitable for remote locations, and anywhere where power generation at night is needed," says Raman.

While we search for big, bright ideas to drive the revolution for renewables, it's important to make sure we don't let the smaller, simpler solutions like these slip away quietly into the night.

This research was published in Joule.

 

Related News

View more

Fire in manhole leaves thousands of Hydro-Québec customers without power

Montreal Power Outage linked to Hydro-Que9bec infrastructure after an underground explosion and manhole fire in Rosemont–La Petite–Patrie, disrupting the STM Blue Line and forcing strategic, cold-weather grid restoration on Be9langer Street.

 

Key Points

Outage from an underground blast and manhole fire disrupted STM service; Hydro-Que9bec restored the grid in cold weather.

✅ Peak impact: 41,000 customers; 10,981 still without power by 7:00 p.m.

✅ STM Blue Line restored after afternoon shutdown; Be9langer Street reopened.

✅ Hydro-Que9bec pacing restoration to avoid grid overload in cold weather.

 

Hydro-Québec says a power outage affecting Montreal is connected to an underground explosion and a fire in a manhole in Rosemont—La Petite–Patrie. 

The fire started in underground pipes belonging to Hydro-Québec on Bélanger Street between Boyer and Saint-André streets, according to Montreal firefighters, who arrived on the scene at 12:18 p.m.

The electricity had to be cut so that firefighters could get into the manhole where the equipment was located.

At the peak of the shutdown, nearly 41,000 customers were without power across Montreal.  As of 7:00 p.m., 10,981 clients still had no power.

In similar storms, Toronto power outages have persisted for hundreds, underscoring restoration challenges.

Hydro-Québec spokesperson Louis-Olivier Batty said the utility is being strategic about how it restores power across the grid. 

Because of the cold, and patterns seen during freezing rain outages, it anticipates that people will crank up the heat as soon as they get their electricity back, and that could trigger an overload somewhere else on the network, Batty said.

The Metro's Blue line was down much of the afternoon, but the STM announced the line was back up and running just after 4:30 p.m.

Bélanger Street was blocked to traffic much of the afternoon, however, it has now been reopened.

Batty said once the smoke clears, Hydro-Québec workers will take a look at the equipment to see what failed. 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified