ATCO partnership wins $1.43 billion competitive transmission project

By ATCO Electric


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
CALGARY, Alberta – Following a worldwide competitive process, Alberta PowerLine, a partnership between ATCO and Quanta Services, has been selected by the Alberta Electric System Operator AESO to design, build, own, operate and finance the Fort McMurray West 500-kilovolt kV Transmission Project.

Alberta PowerLine is 80 percent owned by Canadian Utilities Limited, an ATCO company, and 20 percent owned by Quanta Services. Valued at $1.43 billion, the project was awarded through AlbertaÂ’s recently instituted competitive process.

“We are pleased to have come out on top in this international competition to build and operate this critical piece of transmission infrastructure to help meet the growing demand for electricity in our province,” said Sett Policicchio, President, ATCO Electric, Transmission. “We worked very hard to submit a bid that provided the best possible infrastructure solution at the lowest possible cost to Albertans—a commitment we make every day to millions of customers in delivering electricity and natural gas services across the province.”

Under the partnership, Valard Construction, a Canadian subsidiary of Quanta, will provide turnkey EPC services for the project while ATCO Electric, an ATCO company, will be responsible for route planning and operations and maintenance of the transmission facilities for 35 years. ATCO and Valard are both made-in-Alberta companies with a decades-long relationship successfully building northern AlbertaÂ’s electricity infrastructure.

The project consists of approximately 500 kms of 500 kV transmission line and associated facilities running from Wabamun west of Edmonton to Fort McMurray. The AESO has estimated that the demand for electricity in northeastern Alberta will more than double over the next 10 years. This project will increase the capacity of the electricity system and help to ensure that this economically vital area of the province has the power it needs.

Related News

840 million people have no electricity – World Bank must fund more energy projects

World Bank Energy Policy debates financing for coal, oil, gas, and renewables to fight energy poverty, expand grid reliability, ensure baseload power, and balance climate goals with development finance for affordable, reliable electricity access.

 

Key Points

It outlines the bank's stance on financing fossil fuels and renewables to expand affordable, reliable electricity.

✅ Focus on energy access, baseload reliability, and poverty alleviation

✅ Debate over coal, gas, and renewables in development finance

✅ Geopolitics: China and Russia fill funding gaps, raising risks

 

Why isn’t the World Bank using all available energy resources in its global efforts to fight poverty? That’s the question I’ve asked World Bank President David Malpass. Nearly two years ago, the multilateral development bank decided to stop supporting critical coal, oil and gas projects that help people in developing countries escape poverty.

Along with 11 other senators, and as a member who votes on whether to give U.S. taxpayer dollars to the World Bank, I am pressing the bank to lift these restrictions. Developing countries desperately need access to a steady supply of affordable, reliable clean electricity to support economic growth.

The World Bank has pulled funding for critical electricity projects in poor countries, including high-efficiency power stations that are fueled by coal, even as efforts to revitalize coal communities with clean energy have grown.

Despite Kosovo having the world’s fifth-largest reserves of coal, the bank announced it would only support new energy projects from renewable sources going forward. Kosovo’s Minister of Economic Development Valdrin Lluka responded: “We don’t have the luxury to do such experiments in a poor country such as Kosovo. … It is in our national security interest to secure base energy inside our country.”

The World Bank’s misguided move comes as 840 million people worldwide are living without electricity, including 70 percent of sub-Saharan Africa, and as the fall in global energy investment may lead to shortages.

Even more troubling, nearly 3 billion people in developing countries rely on fuels like wood and other biomass for cooking and home heating, resulting in serious health problems and premature deaths, and the pandemic saw widespread electricity shut-offs that deepened energy insecurity. In 2016, household smoke killed an estimated 2.6 million people.

The World Bank’s mission is to lift people out of poverty. The bank is now compromising that mission in favor of a political agenda targeting certain energy sources.

With the World Bank blocking financing to affordable and reliable energy projects, Russia and China are stepping up their investments in order to gain geopolitical leverage.

President Vladimir Putin is pursuing Russian oil and gas projects in Mozambique, Gabon, and Angola. China’s Belt and Road Initiative is supporting traditional energy resources, with 36 percent of its power projects from 2014 to 2017 involving coal. South Africa had to turn to the China Development Bank to fund its $1.5 billion coal-fired power plant.

There are real risks for countries partnering with China and Russia on these projects. Developing countries are facing what some are calling China’s “debt trap” diplomacy. These nations have also raised concerns over safety compliance, unfair business practices, and labor standards.

As the bank’s largest contributor, the United States has a duty to make sure U.S. taxpayer dollars are used wisely and effectively. Every U.S. dollar at the World Bank should make a difference for people in the developing world.

My colleagues and I have asked the bank to pursue an all-of-the-above energy strategy as it strives to achieve its mission to end extreme poverty and promote shared prosperity. We will take the bank’s response into account during the congressional appropriations process.

The United States is a top global energy producer. And yet Democrats running for president are pursuing anti-energy policies that would hurt not only the United States but the entire world, with implications for U.S. national security as well.

Utilizing our abundant energy resources has fueled an American energy renaissance and a booming U.S. economy, even as disruptions in coal and nuclear have strained the grid, with millions of new jobs and higher wages.

People who are struggling to survive and thrive in developing countries deserve the same opportunity to access affordable and reliable sources of power.

As Microsoft founder and global philanthropist Bill Gates has noted of renewables: "Many people experiencing energy poverty live in areas without access to the kind of grids that are needed to make those technologies cheap and reliable enough to replace fossil fuels."

Ultimately, there is a role for all sources of energy to help countries alleviate poverty and improve the education, health and wellbeing of their people.

The solution to ending energy poverty does not lie in limiting options, but in using all available options. The World Bank must recommit to ending extreme poverty by helping countries use all of the world’s abundant energy resources. Let’s end energy poverty now.

 

Related News

View more

Electricity exports to New York from Quebec will happen as early as 2025: Hydro-Quebec

Hertel-New York Interconnection delivers Hydro-Quebec renewable energy via a cross-border transmission line to New York City by 2025, supplying 1,250 MW through underground and underwater routes under a 25-year contract.

 

Key Points

A cross-border line delivering 1,250 MW of Hydro-Quebec hydropower to New York City via underground routes.

✅ 1,250 MW clean power to NYC by 2025

✅ 56.1 km underground, 1.6 km underwater in Quebec

✅ 25-year contract; Mohawk partnership revenue

 

Hydro-Quebec announced Thursday it has chosen the route for the Hertel-New York interconnection line, which will begin construction in the spring of 2023 in Quebec.

The project will deliver 1,250 megawatts of Quebec hydroelectricity to New York City starting in 2025, even as a recent electricity shortage report warns about rising demand at home.

It's a 25-year contract for Hydro-Quebec, the largest export contract for the province-owned company, and comes as hydrogen production investments gain traction in Eastern Canada.

The Crown corporation has not disclosed potential revenues from the project, but Premier François Legault mentioned on social media last September that a deal in principle worth more than $20 billion over 25 years was in the works.

The route includes a 56.1-kilometre underground and a 1.6-kilometre underwater section, similar to the Lake Erie Connector project planned under Lake Erie.

Eight municipalities in the Montérégie region will be affected: La Prairie, Saint-Philippe, Saint-Jacques-le-Mineur, Saint-Édouard, Saint-Patrice-de-Sherrington, Saint-Cyprien-de-Napierville, Saint-Bernard-de-Lacolle and Lacolle.

Across the country, new renewables such as wind projects in Yukon are receiving federal support, reflecting broader grid decarbonization.

The last part of the route will run along Fairbanks Creek to the Richelieu River, where it will connect with the American network.

Further south, there will be a 545-kilometre link between the Canada-U.S. border and New York City, while a separate Maine transmission approval advances a New England pathway for Quebec power.

Hydro-Quebec is holding two consultations on the project, on Dec. 8 in Lacolle and Dec. 9 in Saint-Jacques-le-Mineur.

Elsewhere in Atlantic Canada, EV-to-grid integration pilots are underway to test how vehicles can support the power system.

Once the route is in service, the Quebec line will be subject to a partnership between Hydro-Quebec and the Mohawk Council of Kahnawake, which will benefit from economic remunerations for 40 years.

To enhance reliability, grid-scale battery storage projects are also expanding in Ontario.

 

Related News

View more

Bruce Power cranking out more electricity after upgrade

Bruce Power Capacity Uprate boosts nuclear output through generator stator upgrades, turbine and transformer enhancements, and cooling pump improvements at Bruce A and B, unlocking megawatts and efficiency gains from legacy heavy water design capacity.

 

Key Points

Upgrades that raise Bruce Power capacity via stator, turbine, transformer, and cooling enhancements.

✅ Generator stator replacement increases electrical conversion efficiency

✅ Turbine and transformer upgrades enable higher MW output

✅ Cooling pump enhancements optimize plant thermal performance

 

Bruce Power’s Unit 3 nuclear reactor will squeeze out an extra 22 megawatts of electricity, thanks to upgrades during its recent planned outage for refurbishment.

Similar gains are anticipated at its three sister reactors at Bruce A generating station, which presents the opportunity for the biggest efficiency gains and broader economic benefits for Ontario, due to a design difference over Bruce B’s four reactors, Bruce Power spokesman John Peevers said.

Bruce A reactor efficiency gains stem mainly from the fact Bruce A’s non-nuclear side, including turbines and the generator, was sized at 88 per cent of the nuclear capacity, Peevers said, while early Bruce C exploration work advances.

This allowed 12 per cent of the energy, in the form of steam, to be used for heavy water production, which was discontinued at the plant years ago. Heavy water, or deuterium, is used to moderate the reactors.

That design difference left a potential excess capacity that Bruce Power is making use of through various non-nuclear enhancements. But the nuclear operator, which also made major PPE donations during the pandemic, will be looking at enhancements at Bruce B as well, Peevers said.

Bruce Power’s efficiency gain came from “technology advancements,” including a “generator-stator improvement project that was integral to the uprate,” and contributed to an operating record at the site, a Bruce Power news release said July 11.

Peevers said the stationary coils and the associated iron cores inside the generator are referred to as the stator. The stator acts as a conductor for the main generator current, while the turbine provides the mechanical torque on the shaft of the generator.

“Some of the other things we’re working on are transformer replacement and cooling pump enhancements, backed by recent manufacturing contracts, which also help efficiency and contribute to greater megawatt output,” Peevers said.

The added efficiency improvements raised the nuclear operator’s peak generating capacity to 6,430 MW, as projects like Pickering life extensions continue across Ontario.

 

Related News

View more

Nearly 600 Hong Kong families still without electricity after power supply cut by Typhoon Mangkhut

Hong Kong Typhoon Mangkhut Power Outages strain households with blackouts, electricity disruption, and humid heat, impacting Tin Ping Estate in Sheung Shui and outlying islands; contractor-led restoration faces fines for delays and infrastructure repairs.

 

Key Points

They are blackout events after Typhoon Mangkhut, bringing heat stress, food spoilage, and delayed power restoration.

✅ 16 floors in Tin Ping Estate lost power after meter room blast.

✅ Contractor faces HK$100,000 daily fines for late restoration.

✅ Kat O and Ap Chau families remain off-grid in humid heat.

 

Nearly 600 Hong Kong families are still sweltering under the summer heat and facing dark nights without electricity after Typhoon Mangkhut cut off power supply to areas, echoing mass power outages seen elsewhere.

At Sheung Shui’s Tin Ping Estate in the New Territories, 384 families were still without power, a situation similar to the LA-area blackout that left many without service. They were told on Tuesday that a contractor would rectify the situation by Friday, or be fined HK$100,000 for each day of delay.

In remote areas such as outlying islets Kat O and Ap Chau, there were some 200 families still without electricity, similar to Tennessee storm outages affecting rural communities.

The power outage at Tin Ping Estate affected 16 floors – from the 11th to 26th – in Tin Cheung House after a blast from the meter room on the 15th floor was heard at about 5pm on Sunday, and authorities urged residents to follow storm electrical safety tips during repairs.

“I was sitting on the sofa when I heard a loud bang,” said Lee Sau-king, 61, whose flat was next to the meter room. “I was so scared that my hands kept trembling.”

While the block’s common areas and lifts were not affected, flats on the 16 floors encountered blackouts.

As her fridge was out of power, Lee had to throw away all the food she had stocked up for the typhoon. With the freezer not functioning, her stored dried seafood became soaked and she had to dry them outside the window when the storm passed.

Daily maximum temperatures rose back to 30 degrees Celsius after the typhoon, and nights became unbearably humid, as utilities worldwide pursue utility climate adaptation to maintain reliability. “It’s too hot here. I can’t sleep at all,” Lee said.

 

Related News

View more

BMW boss says hydrogen, not electric, will be "hippest thing" to drive

BMW Hydrogen Fuel Cell Strategy positions iX5 and eDrive for zero-emission mobility, leveraging fuel cells, fast refueling, and hydrogen infrastructure as an alternative to BEVs, diversifying drivetrains across premium segments globally, rapidly.

 

Key Points

BMW's plan to commercialize hydrogen fuel-cell drivetrains like iX5 eDrive for scalable, zero-emission mobility.

✅ Fuel cells enable fast refueling and long range with water vapor only.

✅ Reduces reliance on lithium and cobalt via recyclable materials.

✅ Targets premium SUV iX5; limited pilots before broader rollout.

 

BMW is hanging in there with hydrogen, a stance mirrored in power companies' hydrogen outlook today. That’s what Oliver Zipse, the chairperson of BMW, reiterated during an interview last week in Goodwood, England. 

“After the electric car, which has been going on for about 10 years and scaling up rapidly, the next trend will be hydrogen,” he says. “When it’s more scalable, hydrogen will be the hippest thing to drive.”

BMW has dabbled with the idea of using hydrogen for power for years, even though it is obscure and niche compared to the current enthusiasm surrounding vehicles powered by electricity. In 2005, BMW built 100 “Hydrogen 7” vehicles that used the fuel to power their V12 engines. It unveiled the fuel cell iX5 Hydrogen concept car at the International Motor Show Germany in 2021. 

In August, the company started producing fuel-cell systems for a production version of its hydrogen-powered iX5 sport-utility vehicle. Zipse indicated it would be sold in the United States within the next five years, although in a follow-up phone call a spokesperson declined to confirm that point. Bloomberg previously reported that BMW will start delivering fewer than 100 of the iX5 hydrogen vehicles to select partners in Europe, the U.S., and Asia, where Asia leads on hydrogen fuel cells today, from the end of this year.

All told, BMW will eventually offer five different drivetrains to help diversify alternative-fuel options within the group, as hybrids gain renewed momentum in the U.S., Zipse says.

“To say in the U.K. about 2030 or the U.K. and in Europe in 2035, there’s only one drivetrain, that is a dangerous thing,” he says. “For the customers, for the industry, for employment, for the climate, from every angle you look at, that is a dangerous path to go to.” 

Zipse’s hydrogen dreams could even extend to the group’s crown jewel, Rolls-Royce, which BMW has owned since 1998. The “magic carpet ride” driving style that has become Rolls-Royce’s signature selling point is flexible enough to be powered by alternatives to electricity, says Rolls-Royce CEO Torsten Müller-Ötvös. 

“To house, let’s say, fuel cell batteries: Why not? I would not rule that out,” Müller-Ötvös told reporters during a roundtable conversation in Goodwood on the eve of the debut of the company’s first-ever electric vehicle, Spectre. “There is a belief in the group that this is maybe the long-term future.”

Such a vehicle would contain a hydrogen fuel-cell drivetrain combined with BMW’s electric “eDrive” system. It works by converting hydrogen into electricity to reach an electrical output of up to 125 kW/170 horsepower and total system output of nearly 375hp, with water vapor as the only emission, according to the brand.

Hydrogen’s big advantage over electric power, as EVs versus fuel cells debates note, is that it can supply fuel cells stored in carbon-fiber-reinforced plastic tanks. “There will [soon] be markets where you must drive emission-free, but you do not have access to public charging infrastructure,” Zipse says. “You could argue, well you also don’t have access to hydrogen infrastructure, but this is very simple to do: It’s a tank which you put in there like an old [gas] tank, and you recharge it every six months or 12 months.”

Fuel cells at BMW would also help reduce its dependency on raw materials like lithium and cobalt, because the hydrogen-based system uses recyclable components made of aluminum, steel, and platinum. 

Zipse’s continued commitment to prioritizing hydrogen has become an increasingly outlier position in the automotive world. In the last five years, electric-only vehicles have become the dominant alternative fuel — as the age of electric cars dawns ahead of schedule — if not yet on the road, where fewer than 3% of new cars have plugs, at least at car shows and new-car launches.

Rivals Mercedes-Benz and Audi scrapped their own plans to develop fuel cell vehicles and instead have poured tens of billions of dollars into developing pure-electric vehicle, including Daimler's electrification plan initiatives. Porsche went public to finance its own electric aspirations. 

BMW will make half of all new-car sales electric by 2030 across the group, with many expecting most drivers to go electric within a decade, which includes MINI and Rolls-Royce. 
 

 

Related News

View more

Idaho gets vast majority of electricity from renewables, almost half from hydropower

Idaho Renewable Energy 2018 saw over 80% in-state utility-scale power from hydropower, wind, solar, biomass, and geothermal, per EIA, with imports declining as Snake River Plain resources and Hells Canyon hydro lead.

 

Key Points

Idaho produced over 80% in-state power from renewables in 2018, led by hydropower, wind, solar, and biomass.

✅ Hydropower supplies about half of capacity; Hells Canyon leads.

✅ Wind provides nearly 20% of capacity along the Snake River Plain.

✅ Utility-scale solar surged since 2016; biomass and geothermal add output.

 

More than 80% of Idaho’s in-state utility-scale electricity generation came from renewable resources in 2018, behind only Vermont, according to recently released data from the U.S. Energy Information Administration’s Electric Power Monthly and broader trends showing that solar and wind reached about 10% of U.S. generation in the first half of 2018.

Idaho generated 17.4 million MWh of electricity in 2018, of which 14.2 million MWh came from renewable sources, while nationally January power generation jumped 9.3% year over year according to EIA. Idaho uses a variety of renewable resources to generate electricity:

Hydroelectricity. Idaho ranked seventh in the U.S. in electricity generation from hydropower in 2018. About half of Idaho’s electricity generating capacity is at hydroelectric power plants, and utility actions such as the Idaho Power settlement could influence future resource choices, and seven of the state’s 10 largest power plants (in terms of electricity generation) are hydroelectric facilities. The largest privately owned hydroelectric generating facility in the U.S. is a three-dam complex on the Snake River in Hells Canyon, the deepest river gorge in North America.

Wind. Nearly one-fifth of Idaho’s electricity generating capacity and one-sixth of its generation comes from wind turbines. Idaho has substantial wind energy potential, and nationally the EIA expects solar and wind to be larger sources this summer, although only a small percentage of the state's land area is well-suited for wind development. All of the state’s wind farms are located in the southern half of the state along the Snake River Plain.

Solar. Almost 5% of Idaho’s electricity generating capacity and 3% of its generation come from utility-scale solar facilities, and nationally over half of new capacity in 2023 will be solar according to projections. The state had no utility-scale solar generation as recently as 2015. Between 2016 and 2017, Idaho’s utility-scale capacity doubled and generation increased from 30,000 MWh to more than 450,000 MWh. Idaho’s small-scale solar capacity also doubled since 2017, generating 33,000 MWh in 2018.

Biomass. Biomass-fueled power plants account for about 2% of the state’s utility-scale electricity generating capacity and 3% of its generation, contributing to a broader U.S. shift where 40% of electricity came from non-fossil sources in 2021. Wood waste from the state’s forests is the primary fuel for these plants.

Geothermal. Idaho is one of seven states with utility-scale geothermal electricity generation. Idaho has one 18-MW geothermal facility, located near the state’s southern border with Utah.

EIA says Idaho requires significant electricity imports, totaling about one-third of demand, to meet its electricity needs. However, Idaho’s electricity imports have decreased over time, and Georgia's recent import levels illustrate how regional dynamics can vary. Almost all of these imports are from neighboring states, as electricity imports from Canada accounted for less than 0.1% of Idaho’s total electricity supply in 2017.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified