Lameque wind farm up and running

By CBC.ca


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The Lameque Wind Power Project in northeastern New Brunswick is now generating power, NB Power announced.

Acciona Wind Energy began construction last summer on the $115 million, 45-megawatt wind farm.

The project was initiated by La Cooperative d'Energie Renouvelable de Lameque and has a 25-year power purchase agreement with NB Power.

The federal government will invest about $13.8 million into the project over 10 years.

The wind energy project was delayed in 2009 because of the slowing economy.

The 30, 1.5-megawatt wind power wind turbines are spread over about 1,255 hectares. Since wind isn't a constant resource, having multiple wind farms in one market allows for stable power supply overall.

The project signed lease agreements with 68 landowners in the northeastern community.

The power generated will supply enough energy for about 8,000 homes per year, according to a news release.

"We are very proud of this project and are pleased to see it successfully generating energy for the region," said Dan Foley, the CEO of Acciona Energy North America.

"[It's] proof that with the right partners and hard work, we can create clean energy that benefits the community via job creation and economic growth."

Gaetan Thomas, the president of NB Power, said the project was a step towards the company's vision of sustainable electricity.

The province's goal is to have 10 per cent of power sales from renewable sources by 2016.

"To ensure that we have sustainable electricity, we need to meet the needs of today while ensuring the future," Thomas said.

The news release also said that the project brought hundreds of jobs to the area.

Related News

Potent greenhouse gas declines in the US, confirming success of control efforts

US SF6 Emissions Decline as NOAA analysis and EPA mitigation show progress, with atmospheric measurements and Greenhouse Gas Reporting verifying reductions from the electric power grid; sulfur hexafluoride's extreme global warming potential underscores inventory improvements.

 

Key Points

A documented drop in US sulfur hexafluoride emissions, confirmed by NOAA atmospheric data and EPA reporting reforms.

✅ NOAA towers and aircraft show 2007-2018 decline

✅ EPA reporting and utility mitigation narrowed inventory gaps

✅ Winter leaks and servicing signal further reduction options

 

A new NOAA analysis shows U.S. emissions of the super-potent greenhouse gas sulfur hexafluoride (SF6) have declined between 2007-2018, likely due to successful mitigation efforts by the Environmental Protection Agency (EPA) and the electric power industry, with attention to SF6 in the power industry across global markets. 

At the same time, significant disparities that existed previously between NOAA’s estimates, which are based on atmospheric measurements, and EPA’s estimates, which are based on a combination of reported emissions and industrial activity, have narrowed following the establishment of the EPA's Greenhouse Gas Reporting Program. The findings, published in the journal Atmospheric Chemistry and Physics, also suggest how additional emissions reductions might be achieved. 

SF6 is most commonly used as an electrical insulator in high-voltage equipment that transmits and distributes electricity, and its emissions have been increasing worldwide as electric power systems expand, even as regions hit milestones like California clean energy surpluses in recent years. Smaller amounts of SF6 are used in semiconductor manufacturing and in magnesium production. 

SF6 traps 25,000 times more heat than carbon dioxide over a 100-year time scale for equal amounts of emissions, and while CO2 emissions flatlined in 2019 globally, that comparison underscores the potency of SF6. That means a relatively small amount of the gas can have a significant impact on climate warming. Because of its extremely large global warming potential and long atmospheric lifetime, SF6 emissions will influence Earth’s climate for thousands of years.

In this study, researchers from NOAA’s Global Monitoring Laboratory, as record greenhouse gas concentrations drive demand for better data, working with colleagues at EPA, CIRES, and the University of Maryland, estimated U.S. SF6 emissions for the first time from atmospheric measurements collected at a network of tall towers and aircraft in NOAA’s Global Greenhouse Gas Reference Network. The researchers provided an estimate of SF6 emissions independent from the EPA’s estimate, which is based on reported SF6 emissions for some industrial facilities and on estimated SF6 emissions for others.

“We observed differences between our atmospheric estimates and the EPA’s activity-based estimates,” said study lead author Lei Hu, a Global Monitoring Laboratory researcher who was a CIRES scientist at the time of the study. “But by closely collaborating with the EPA, we were able to identify processes potentially responsible for a significant portion of this difference, highlighting ways to improve emission inventories and suggesting additional emission mitigation opportunities, such as forthcoming EPA carbon capture rules for power plants, in the future.” 

In the 1990s, the EPA launched voluntary partnerships with the electric power, where power-sector carbon emissions are falling as generation shifts, magnesium, and semiconductor industries to reduce SF6 emissions after the United States recognized that its emissions were significant. In 2011, large SF6 -emitting facilities were required to begin tracking and reporting their emissions under the EPA Greenhouse Gas Reporting Program. 

Hu and her colleagues documented a decline of about 60 percent in U.S. SF6 emissions between 2007-2018, amid global declines in coal-fired power in some years—equivalent to a reduction of between 6 and 20 million metric tons of CO2 emissions during that time period—likely due in part to the voluntary emission reduction partnerships and the EPA reporting requirement. A more modest declining trend has also been reported in the EPA’s national inventories submitted annually under the United Nations Framework Convention on Climate Change. 

Examining the differences between the NOAA and EPA independent estimates, the researchers found that the EPA’s past inventory analyses likely underestimated SF6 emissions from electrical power transmission and distribution facilities, and from a single SF6 production plant in Illinois. According to Hu, the research collaboration has likely improved the accuracy of the EPA inventories. The 2023 draft of the EPA’s U.S. Greenhouse Gas Emissions and Sinks: 1990-2021 used the results of this study to support revisions to its estimates of SF6 emissions from electrical transmission and distribution. 

The collaboration may also lead to improvements in the atmosphere-based estimates, helping NOAA identify how to expand or rework its network to better capture emitting industries or areas with significant emissions, according to Steve Montzka, senior scientist at GML and one of the paper’s authors.

Hu and her colleagues also found a seasonal variation in SF6 emissions from the atmosphere-based analysis, with higher emissions in winter than in summer. Industry representatives identified increased servicing of electrical power equipment in the southern states and leakage from aging brittle sealing materials in the equipment in northern states during winter as likely explanations for the enhanced wintertime emissions—findings that suggest opportunities for further emissions reductions.

“This is a great example of the future of greenhouse gas emission tracking, where inventory compilers and atmospheric scientists work together to better understand emissions and shed light on ways to further reduce them,” said Montzka.

 

Related News

View more

Electricity Grids Can Handle Electric Vehicles Easily - They Just Need Proper Management

EV Grid Capacity Management shows how smart charging, load balancing, and off-peak pricing align with utility demand response, DC fast charging networks, and renewable integration to keep national electricity infrastructure reliable as EV adoption scales

 

Key Points

EV Grid Capacity Management schedules charging and balances load to keep EV demand within utility capacity.

✅ Off-peak pricing and time-of-use tariffs shift charging demand.

✅ Smart chargers enable demand response and local load balancing.

✅ Gradual EV adoption allows utilities to plan upgrades efficiently.

 

One of the most frequent concerns you will see from electric vehicle haters is that the electricity grid can’t possibly cope with all cars becoming EVs, or that EVs will crash the grid entirely. However, they haven’t done the math properly. The grids in most developed nations will be just fine, so long as the demand is properly management. Here’s how.

The biggest mistake the social media keyboard warriors make is the very strange assumption that all cars could be charging at once. In the UK, there are currently 32,697,408 cars according to the UK Department of Transport. The UK national grid had a capacity of 75.8GW in 2020. If all the cars in the UK were EVs and charging at the same time at 7kW (the typical home charger rate), they would need 229GW – three times the UK grid capacity. If they were all charging at 50kW (a common public DC charger rate), they would need 1.6TW – 21.5 times the UK grid capacity. That sounds unworkable, and this is usually the kind of thinking behind those who claim the UK grid can't cope with EVs.

What they don’t seem to realize is that the chances of every single car charging all at once are infinitesimally low. Their arguments seem to assume that nobody ever drives their car, and just charges it all the time. If you look at averages, the absurdity of this position becomes particularly clear. The distance each UK car travels per year has been slowly dropping, and was 7,400 miles on average in 2019, again according to the UK Department of Transport. An EV will do somewhere between 2.5 and 4.5 miles per kWh on average, so let’s go in the middle and say 3.5 miles. In other words, each car will consume an average of 2,114kWh per year. Multiply that by the number of cars, and you get 69.1TWh. But the UK national grid produced 323TWh of power in 2019, so that is only 21.4% of the energy it produced for the year. Before you argue that’s still a problem, the UK grid produced 402TWh in 2005, which is more than the 2019 figure plus charging all the EVs in the UK put together. The capacity is there, and energy storage can help manage EV-driven peaks as well.

Let’s do the same calculation for the USA, where an EV boom is about to begin and planning matters. In 2020, there were 286.9 million cars registered in America. In 2020, while the US grid had 1,117.5TW of utility electricity capacity and 27.7GW of solar, according to the US Energy Information Administration. If all the cars were EVs charging at 7kW, they would need 2,008.3TW – nearly twice the grid capacity. If they charged at 50kW, they would need 14,345TW – 12.8 times the capacity.

However, in 2020, the US grid generated 4,007TWh of electricity. Americans drive further on average than Brits – 13,500 miles per year, according to the US Department of Transport’s Federal Highway Administration. That means an American car, if it were an EV, would need 3,857kWh per year, assuming the average efficiency figures above. If all US cars were EVs, they would need a total of 1,106.6TWh, which is 27.6% of what the American grid produced in 2020. US electricity consumption hasn’t shrunk in the same way since 2005 as it has in the UK, but it is clearly not unfeasible for all American cars to be EVs. The US grid could cope too, even as state power grids face challenges during the transition.

After all, the transition to electric isn’t going to happen overnight. The sales of EVs are growing fast, with for example more plug-ins sold in the UK in 2021 so far than the whole of the previous decade (2010-19) put together. Battery-electric vehicles are closing in on 10% of the market in the UK, and they were already 77.5% of new cars sold in Norway in September 2021. But that is new cars, leaving the vast majority of cars on the road fossil fuel powered. A gradual introduction is essential, too, because an overnight switchover would require a massive ramp up in charge point installation, particularly devices for people who don’t have the luxury of home charging. This will require considerable investment, but could be served by lots of chargers on street lamps, which allegedly only cost £1,000 ($1,300) each to install, usually with no need for extra wiring.

This would be a perfectly viable way to provide charging for most people. For example, as I write this article, my own EV is attached to a lamppost down the street from my house. It is receiving 5.5kW costing 24p (32 cents) per kWh through SimpleSocket, a service run by Ubitricity (now owned by Shell) and installed by my local London council, Barnet. I plugged in at 11am and by 7.30pm, my car (which was on about 28% when I started) will have around 275 miles of range – enough for a couple more weeks. It will have cost me around £12 ($16) – way less than a tank of fossil fuel. It was a super-easy process involving the scanning of a QR code and entering of a credit card, very similar to many parking systems nowadays. If most lampposts had one of these charging plugs, not having off-street parking would be no problem at all for owning an EV.

With most EVs having a range of at least 200 miles these days, and the average mileage per day being 20 miles in the UK (the 7,400-mile annual figure divided by 365 days) or 37 miles in the USA, EVs won’t need charging more than once a week or even every week or two. On average, therefore, the grids in most developed nations will be fine. The important consideration is to balance the load, because if too many EVs are charging at once, there could be a problem, and some regions like California are looking to EVs for grid stability as part of the solution. This will be a matter of incentivizing charging during off-peak times such as at night, or making peak charging more expensive. It might also be necessary to have the option to reduce charging power rates locally, while providing the ability to prioritize where necessary – such as emergency services workers. But the problem is one of logistics, not impossibility.

There will be grids around the world that are not in such a good place for an EV revolution, at least not yet, and some critics argue that policies like Canada's 2035 EV mandate are unrealistic. But to argue that widespread EV adoption will be an insurmountable catastrophe for electricity supply in developed nations is just plain wrong. So long as the supply is managed correctly to make use of spare capacity when it’s available as much as possible, the grids will cope just fine.

 

Related News

View more

Trump's Oil Policies Spark Shift in Wall Street's Energy Strategy

Wall Street Fossil Fuel Pivot signals banks reassessing ESG, net-zero, and decarbonization goals, reviving oil, gas, and coal financing while recalibrating clean energy exposure amid policy shifts, regulatory rollbacks, and investment risk realignment.

 

Key Points

A shift as major U.S. banks ease ESG limits to fund oil, gas, coal while rebalancing alongside renewables.

✅ Banks revisit lending to oil, gas, and coal after policy shifts.

✅ ESG and net-zero commitments face reassessment amid returns.

✅ Renewables compete for capital as risk models are updated.

 

The global energy finance sector, worth a staggering $1.4 trillion, is undergoing a significant transformation, largely due to former President Donald Trump's renewed support for the oil, gas, and coal industries. Wall Street, which had previously aligned itself with global climate initiatives and the energy transition and net-zero goals, is now reassessing its strategy and pivoting toward a more fossil-fuel-friendly stance.

This shift represents a major change from the earlier stance, where many of the largest U.S. banks and financial institutions took a firm stance on decarbonization push, including limiting their exposure to fossil-fuel projects. Just a few years ago, these institutions were vocal supporters of the global push for a sustainable future, with many committing to support clean energy solutions and abandon investments in high-carbon energy sources.

However, with the change in administration and the resurgence of support for traditional energy sectors under Trump’s policies, these same banks are now rethinking their strategies. Financial institutions are increasingly discussing the possibility of lifting long-standing restrictions that limited their investments in controversial fossil-fuel projects, including coal mining, where emissions drop as coal declines, and offshore drilling. The change reflects a broader realignment within the energy finance sector, with Wall Street reexamining its role in shaping the future of energy.

One of the most significant developments is the Biden administration’s policy reversal, which emphasized reducing the U.S. carbon footprint in favor of carbon-free electricity strategies. Under Trump, however, there has been a renewed focus on supporting the traditional energy sectors. His administration has pushed to reduce regulatory burdens on fossil-fuel companies, particularly oil and gas, while simultaneously reintroducing favorable tax incentives for the coal and gas industries. This is a stark contrast to the Biden administration's efforts to incentivize the transition toward renewable energy and zero-emissions goals.

Trump's policies have, in effect, sent a strong signal to financial markets that the fossil-fuel industry could see a resurgence. U.S. banks, which had previously distanced themselves from financing oil and gas ventures due to the pressure from environmental activists and ESG (Environmental, Social, and Governance) investors, as seen in investor pressure on Duke Energy, are now reconsidering their positions. Major players like JPMorgan Chase and Goldman Sachs are reportedly having internal discussions about revisiting financing for energy projects that involve high carbon emissions, including controversial oil extraction and gas drilling initiatives.

The implications of this shift are far-reaching. In the past, a growing number of institutional investors had embraced ESG principles, with the goal of supporting the transition to renewable energy sources. However, Trump’s pro-fossil fuel stance appears to be emboldening Wall Street’s biggest players to rethink their commitment to green investing. Some are now advocating for a “balanced approach” that would allow for continued investment in traditional energy sectors, while also acknowledging the growing importance of renewable energy investments, a trend echoed by European oil majors going electric in recent years.

This reversal has led to confusion among investors and analysts, who are now grappling with how to navigate a rapidly changing landscape. Wall Street's newfound support for the fossil-fuel industry comes amid a backdrop of global concerns about climate change. Many investors, who had previously embraced policies aimed at curbing the effects of global warming, are now finding it harder to reconcile their environmental commitments with the shift toward fossil-fuel-heavy portfolios. The reemergence of fossil-fuel-friendly policies is forcing institutional investors to rethink their long-term strategies.

The consequences of this policy shift are also being felt by renewable energy companies, which now face increased competition for investment dollars from traditional energy sectors. The shift towards oil and gas projects has made it more challenging for renewable energy companies to attract the same level of financial backing, even as demand for clean energy continues to rise and as doubling electricity investment becomes a key policy call. This could result in a deceleration of renewable energy projects, potentially delaying the progress needed to meet the world’s climate targets.

Despite this, some analysts remain optimistic that the long-term shift toward green energy is inevitable, even if fossil-fuel investments gain a temporary boost. As the world continues to grapple with the effects of climate change, and as technological advancements in clean energy continue to reduce costs, the transition to renewables is likely to persist, regardless of the political climate.

The shift in Wall Street’s approach to energy investments, spurred by Trump’s pro-fossil fuel policies, is reshaping the $1.4 trillion global energy finance market. While the pivot towards fossil fuels may offer short-term gains, the long-term trajectory for energy markets remains firmly in the direction of renewables. The next few years will be crucial in determining whether financial institutions can balance the demand for short-term profitability with their long-term environmental responsibilities.

 

Related News

View more

Europe's EV Slump Sounds Alarm for Climate Goals

Europe EV Sales Slowdown signals waning incentives, economic uncertainty, and supply chain constraints, threatening climate targets and net-zero emissions goals while highlighting the need for charging infrastructure, affordable batteries, and policy support across key markets.

 

Key Points

Europe's early-2024 EV registrations fell as incentives waned and supply gaps persisted, putting climate targets at risk.

✅ Fewer subsidies and tax breaks cut EV affordability

✅ Inflation and recession fears dampen car purchases

✅ Supply-chain and lithium constraints limit availability

 

A recent slowdown in Europe's electric vehicle (EV) sales raises serious concerns about the region's ability to achieve its ambitious climate targets.  After years of steady growth, new EV registrations declined in key markets like Norway, Germany, and the U.K. in early 2024. Experts are warning that this slump jeopardizes the transition away from fossil fuels and could undermine Europe's commitment to a net-zero emissions future.

 

Factors Behind the Decline

Several factors are contributing to the slowdown in EV sales:

  • Reduced Incentives: Many European countries have scaled back generous subsidies and tax breaks for EV purchases. While these incentives played a crucial role in driving early adoption, their reduction has made EVs less financially attractive for some consumers, with many U.K. buyers citing higher prices even after discounts.
  • End of ICE Ban Support: Public support for phasing out gasoline and diesel-powered cars by 2035, a key European Union policy, appears to be waning in some areas. Without robust support for this measure, consumers may be less inclined to embrace the transition to electric vehicles.
  • Economic Uncertainty: Rising inflation and fears of a recession in Europe have made consumers hesitant to invest in big-ticket purchases like new cars, regardless of fuel type. This economic uncertainty is impacting both electric and conventional vehicle sales.
  • Supply Chain Constraints: Ongoing supply chain disruptions and shortages of raw materials like lithium continue to impact the availability of affordable electric vehicles. This means potential buyers face long wait times or inflated prices even when they're ready to embrace EVs.

 

Consequences for Europe's Green Agenda

The decline in EV sales threatens Europe's plans to reduce carbon emissions and become the first climate-neutral continent by 2050, aligning with a broader push for electricity to address the climate dilemma across Europe. The transportation sector is a major contributor to greenhouse gas emissions, and the rapid electrification of vehicles is a pillar of Europe's decarbonization strategy.

The current slump highlights the need for continued policy support for the EV market, as EVs still trail gas models in many markets today, to ensure long-term growth and affordability for consumers. Without action, experts fear that Europe may find itself locked into a dependence on fossil fuels for decades to come, making its climate targets unreachable.

 

A Global Concern

Europe is a leader in electric vehicle policies and technology, during a period when global EV sales climbed markedly. The recent slowdown, however, sends a worrying signal to other regions around the world aiming to accelerate their transition to electric vehicles, including the U.S. market's Q1 dip as a cautionary example. It underscores the importance of sustained government support, investment in charging infrastructure and overcoming supply chain challenges to secure a future of widespread electric vehicle use, with many forecasts suggesting mass adoption within a decade if support continues.

 

Related News

View more

N.L., Ottawa agree to shield ratepayers from Muskrat Falls cost overruns

Muskrat Falls Financing Restructuring redirects megadam benefits to ratepayers, stabilizes electricity rates, and overhauls federal provincial loan guarantees for the hydro project, addressing cost overruns flagged by the Public Utilities Board in Newfoundland and Labrador.

 

Key Points

A revised funding model shifting benefits to ratepayers to curb rate hikes linked to Muskrat Falls cost overruns.

✅ Shields ratepayers from megadam cost overruns

✅ Revises federal provincial loan guarantees

✅ Targets stable electricity rates by 2021 and beyond

 

Ottawa and Newfoundland and Labrador say they will rewrite the financial structure of the Muskrat Falls hydro project to shield ratepayers from paying for the megadam's cost overruns.

Federal Natural Resources Minister Seamus O'Regan and Premier Dwight Ball announced Monday that their two governments would scrap the financial structure agreed upon in past federal-provincial loan agreements, moving to a model that redirects benefits, such as a lump sum credit, to ratepayers.

Both politicians called the announcement, which was light on dollar figures, a major milestone in easing residents' fears that electricity rates will spike sharply, as seen with Nova Scotia's debated 14% hike, when the over-budget dam comes fully online next year.
"We are in a far better place today thanks to this comprehensive plan," Ball said.

Ball has said the issue of electricity rates is a top priority for his government, and he has pledged to keep rates near existing levels, but rate mitigation talks with Ottawa have dragged on since April.

A report by the province's Public Utilities Board released Friday forecast an "unprecedented" 75 per cent increase in average domestic rates for island residents in 2021, while Nova Scotia's regulator approved a 14% hike, and reported concerns from industrial customers about their ability to remain competitive.

Costs of the Muskrat Falls megadam on Labrador's Lower Churchill River have ballooned to more than $12.7 billion since the project was approved in 2012, according to the latest estimate of Crown corporation Nalcor Energy.

The dam is set to produce more power than the province can sell. Its existing financial structure would have left electricity ratepayers paying for Muskrat Falls to make up the difference starting in 2021, an issue both governments said Monday has been resolved with the relaunch of financing talks.

"Essentially, you won't pay this on your monthly light bills," Ball said.

But details of how the project will meet financing requirements in coming decades to make up the gap in funds are still to be worked out.

Both Ball and O'Regan criticized previous governments for sanctioning the poorly planned development and again pledged their commitment to easing the burden on residents.

"We promised we would be there to help, and we will be," O'Regan said before announcing a "relaunch" of negotiations around the project's financial structure.

He did not say how much the new setup might cost the federal government, despite earlier federal funding commitments, stressing that the new focus will be on the project's long-term sustainability. "There's no single piece of policy ... that can resolve such a large and complicated mess," O'Regan said.

The two governments also said they will work towards electrifying federal buildings to reduce an anticipated power surplus in the province.

In the short term, the federal government said it would allow for "flexibility" in upcoming cash requirements related to debt servicing, allowing deferral of payments if necessary.

Ball said that flexibility was built in to ensure the plan would still be applicable if costs continue to rise before Muskrat Falls is commissioned.

Political opponents criticized Monday's plan as lacking detail.

"What I heard talked about was an agreement that in the future, there's going to be an agreement," said Progressive Conservative Leader Ches Crosbie. "This was an occasion to reassure people that there's a plan in place to make life here affordable, and I didn't see that happen today."

Others addressed the lingering questions about the project's final cost.

Nalcor's latest financial update has remained unchanged since 2017, though the Muskrat Falls project has seen additional delays related to staffing and software issues.

Dennis Browne, the province's consumer advocate, said the switch to a cost of service model is a significant move that will benefit ratepayers, but he said it's impossible to truly restructure the project while it's a work in progress. "We need to know what the figures are, and we don't have them," he said.

 

Related News

View more

Sens. Wyden, Merkley Introduce Bill to Ensure More Wildfire Resilient Power Grid

Wildfire Resilient Power Grid Act proposes DOE grants for utility companies to fund wildfire mitigation, grid resilience upgrades, undergrounding power lines, fast-tripping protection, weather monitoring, and vegetation management, prioritizing rural electric cooperatives.

 

Key Points

A federal bill funding utility wildfire mitigation and grid hardening via DOE grants, prioritizing rural utilities.

✅ $1B DOE matching grants for grid upgrades and wildfire mitigation.

✅ Prioritizes rural utilities; supports undergrounding and hardening.

✅ Funds fast-tripping protection, weather stations, vegetation management.

 

U.S. Sens. Ron Wyden and Jeff Merkley today introduced new legislation, amid transmission barriers that persist, to incentivize utility companies to do more to reduce wildfire risks as aging power infrastructure ignite wildfires in Oregon and across the West.

Wyden and Merkley's Wildfire Resilient Power Grid Act of 2020 would ensure power companies do their part to reduce the risk of wildfires through power system upgrades, even as California utility spending crackdown seeks accountability, such as the undergrounding of power lines, fire safety equipment installation and proper vegetation management.

"First and foremost, this is a public safety issue. Fire after fire ignited this summer because the aging power grid could not withstand a major windstorm during the season's hottest and driest days," Wyden said. "Many utility companies are already working to improve the resiliency of their power grid, but the sheer costs of these investments must not come at the expense of equitable regulation for rural utility customers. Congress must do all that it can to stop the catastrophic wildfires decimating the West, and that means improving rural infrastructure. By partnering with utilities around the country, we can increase wildfire mitigation efforts at a modest cost -- a fire prevention investment that will pay dividends by saving lives, homes and businesses."

"When this year's unprecedented wildfire event hit, I drove hundreds of miles across our state to see the damage firsthand and to hear directly from impacted communities, so that I could go back to D.C. and work for the solutions they need," said Merkley. "What I saw was apocalyptic--and we have to do everything we can to reduce the risk of this happening again. That means we have to work with our power companies to get critical upgrades and safety investments into place as quickly as possible."

The Wildfire Resilient Power Grid Act of 2020:

* Establishes a $1 billion-per-year matching grant program for power companies through the Department of Energy, even as ACORE opposed DOE subsidy proposals, to reduce the risk of power lines and grid infrastructure causing wildfires.

* Gives special priority to smaller, rural electric companies to ensure mitigation efforts are targeted to forested rural areas.

* Promotes proven methods for reducing wildfire risks, including undergrounding of lines, installing fast-tripping protection systems, and constructing weather monitoring stations to respond to electrical system fire risks.

* Provides for hardening of overhead power lines and installation of fault location equipment where undergrounding of power lines is not a favorable option.

* Ensures fuels management activities of power companies are carried out in accordance with Federal, State, and local laws and regulations.

* Requires power companies to have "skin in the game" by making the program a 1-to-1 matching grant, with an exception for smaller utilities where the matching requirement is one third of the grant.

* Delivers accountability on the part of utilities and the Department of Energy by generating a report every two years on efforts conducted under the grant program.

Portland General Electric President and CEO Maria Pope: "We appreciate Senator Wyden's and Senator Merkley's leadership in proposing legislation to provide federal funding that will help protect Oregon from devastating wildfires. When passed, this will help make Oregon's electric system safer, faster, without increasing customer prices. That is especially important given the economy and hotter, drier summers and longer wildfire seasons that Oregon will continue to face."

Lane County Commission Chair Heather Butch: " In a matter of hours, the entire Lane County community of Blue River was reduced to ashes by the Holiday Farm Fire. Since the moment I first toured that devastation I've been committed to building it back better. I applaud Senators Wyden and Merkley for drafting the Wildfire Resilient Power Grid Act, as it could well provide the path towards meeting this important goal. Moreover, the resultant programs will better protect rural communities from the increasing dangers of wildfires through a number of preventative measures that would otherwise be difficult to implement."

Linn County Commissioner Roger Nyquist: "This legislation is a smart strategic investment for the future safety of our residents as well as the economic vitality of our community."

Marion County Commissioner Kevin Cameron: "After experiencing a traumatic evacuation during the Beachie Creek and Lion's Head wild fires, I understand the need to strengthen the utility Infrastructure. The improvements resulting from Senator Wyden and Merkley's bill will reduce disasters in the future, but improve everyday reliability for our citizens who live, work and protect the environment in potential wildfire areas."

Edison Electric Institute President Tom Kuhn: "EEI thanks Senator Wyden and Senator Merkley for their leadership in introducing the Wildfire Resilient Power Grid Act. This bill will help support and accelerate projects already planned and underway to enhance energy grid resiliency and mitigate the risk of wildfire damage to power lines. Electric companies across the country are committed to working with our government partners and other stakeholders on preparation and mitigation efforts that combat the wildfire threat and on the rapid deployment of technology solutions, including aggregated DERs at FERC, that address wildfire risks, while still maintaining the safe, reliable, and affordable energy we all need."

Oregon Rural Electric Cooperative Association Executive Director Ted Case: "Oregon's electric cooperatives support the Wildfire Resilient Power Grid Act and appreciate Senator Wyden's and Senator Merkley's leadership and innovative approach to wildfire mitigation, particularly for small, rural utilities. This legislation includes targeted assistance that will help us to continue to provide affordable, reliable and safe electricity to over 500,000 Oregonians."

Sustainable Northwest Director of Government Affairs & Program Strategy Dylan Kruse: "In recent years, the West has seen too many wildfires originate due to poorly maintained or damaged electric utility transmission and distribution infrastructure. This legislation plays an important role to ensure that power lines do not contribute to wildfire starts, while providing safe and reliable power to communities during wildfire events. Utilities must, even as Wyoming clean energy bill proposals emerge, live up to their legal requirements to maintain their infrastructure, but this bill provides welcome resources to expedite and prioritize risk reduction, while preventing cost increases for ratepayers."

Oregon Wild Wilderness Program Manager Erik Fernandez: "2020 taught Oregon the lesson that California learned in the Paradise Fire, and SCE wildfire lawsuits that followed underscore the stakes. Addressing the risk of unnaturally caused powerline fires is an increasingly important critical task. I appreciate Senator Ron Wyden's efforts to protect our homes and communities from powerline fires."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified