Remembering the blackout of 2003

By New York Times


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The blackout of 2003 knocked out power in the northeast, affecting cities in eight states and Ontario, Canada. This article appeared in the August 15, 2003 edition of the New York Times:

A surge of electricity to western New York and Canada touched off a series of power failures and enforced blackouts yesterday that left parts of at least eight states in the Northeast and the Midwest without electricity. The widespread failures provoked the evacuation of office buildings, stranded thousands of commuters and flooded some hospitals with patients suffering in the stifling heat.

In an instant that one utility official called ''a blink-of-the-eye second'' shortly after 4 p.m., the grid that distributes electricity to the eastern United States became overloaded. As circuit breakers tripped at generating stations from New York to Michigan and into Canada, millions of people were instantly caught up in the largest blackout in American history.

In New York City, power was shut off by officials struggling to head off a wider blackout. Cleveland and Detroit went dark, as did Toronto and sections of New Jersey, Pennsylvania, Connecticut and Massachusetts. In some areas, the power problems were scattered. The lights remained on in Albany and in Buffalo, but not in nearby suburbs.

Officials worked into the night to put the grid back in operation and restore electric service. Mayor Michael R. Bloomberg said that that the power was back on in parts of Brooklyn, the Bronx and Queens by 11 p.m. - but not Manhattan. ''We're certainly not out of the woods yet,'' the mayor said.

He said that New Yorkers should treat today ''like a snow day'' - listen to the radio and ''exercise your common sense.'' Transit officials said there would be no subway service for the rush hour this morning. Mr. Bloomberg said that he expected the subways to be running eventually today, but that traffic lights might be out of sequence.

''It wouldn't be the worst thing to do to take a day off,'' he said.

The blackout began just after the stock exchanges had closed for the day, a slow summer day of relatively light trading, as thousands of workers were about to head home. Office workers who were still at their desks watched their computer monitors blink off without warning on a hot and hazy afternoon. Soon hospitals and government buildings were switching on backup generators to keep essential equipment operating, and the police were evacuating people trapped in elevators.

Airports throughout the affected states suffered serious disruptions, including the three major airports in the New York metropolitan region, but did not close. Still, delays and cancellations rippled all the way to San Francisco. Federal Aviation Administration officials said the airports in the affected states had switched to emergency power. They said that airliners in the air had not been in danger, although many were rerouted to terminals beyond the blackout.

Thousands of subway passengers in New York City had to be evacuated from tunnels, and commuter trains also came to a halt. Gov. George E. Pataki said that 600 trains were stranded.

Officials said that the cause of the blackout was under investigation but that terrorism did not appear to have played a role. Tom Ridge, the homeland security secretary, met with his advisers in Washington. But Mayor Bloomberg said that there had been ''no evidence of any terrorism whatsoever.''

President Bush, who was in San Diego yesterday, said he planned to order a review of ''why the cascade was so significant.'' He also said the electrical grid might need to be modernized.

''It's a serious situation,'' he said.

''I have been working with federal officials to make sure the response to this situation was quick and thorough and I believe it has been,'' he told reporters.

The office of the Canadian prime minister, Jean Chrétien, initially said the power problems were caused by lightning in New York State but later retracted that. Canadian officials later expressed uncertainty about the exact cause but continued to insist the problem began on the United States side of the border. The Nuclear Regulatory Commission said that the seven nuclear plants in New York and New Jersey and two in the Midwest had shut down automatically when the failure occurred.

Telephone service was disrupted, especially calls to and from cellular phones. Most of the problems, telephone company officials said, had to do with heavy use. Officials said the trouble was compounded by power failures at some cellular transmitters. Cash-dispensing teller machines were also knocked out, so people who did not have cash on hand could not buy flashlights, batteries or other supplies.

The power failure exacted a variety of tolls in Michigan and Ohio, tying up the freeways in Detroit, forcing the cancellation of minor league baseball in Toledo, Ohio, and sending Jennifer M. Granholm, the governor of Michigan, into emergency meetings without the use of lights or computers.

In Times Square in New York, billboards instantly went dark and the city was left without traffic lights and the usual sounds of rush hour. Volunteers directed traffic with mixed success. Some stores in Manhattan closed as cashiers fumbled with registers that no longer toted up purchases. The Metropolitan Museum of Art emptied out, but not before some art lovers had pulled flashlights from backpacks and purses and trained them on paintings.

In a city still jittery from the Sept. 11 terror attack, some people worried as they tried to find their way home. ''All I could think was here we go again - it's just like Sept. 11,'' said Catherine Donnelly, who works at the New York Stock Exchange.

Mr. Pataki said he had ordered the National Guard to assist state and local authorities, but New York City officials said the Guard's aid was not necessary.

Police officials in the city said they first responded as if the power failure had been the work of terrorists, and with the concern that the city was suddenly vulnerable. Heavily armored officers were sent to likely targets and emergency command operations were begun in every borough.

The officials said that the city was mostly calm in the first hours of the blackout, and that every precinct in the city had moved to control traffic at critical intersections.

By midnight, though, the police reported several incidents of looting and bottle throwing in Lower Manhatan and Brooklyn.

So there was no air conditioning, no television, no computers. There was Times Square without its neon glow and Broadway marquees without their incandescence - all the shows were canceled. So was the Mets game against the San Francisco Giants at Shea Stadium. And there was a skyline that had never looked quite the way it did last night: the long, long taut strings of the bridges were dark, the red eyes that usually blink at the very top not red, not blinking.

As the lights came back on, officials estimated that 10 percent of the city's households again had power by 10 p.m. About that time, power was also restored in Newark and Buffalo.

''This is a very, very slow deliberate process, and you have to be very careful how you do it, or you will have the whole system fail again,'' said acting superintendent of New York State police, Wayne E. Bennett.

Mr. Bloomberg said the subways had been evacuated safely and that he believed the rescues of people from stuck elevators had gone smoothly. But one woman, after having walked down 18 flights of stairs at a Midtown office building, collapsed and died as passers-by, rescue workers and paramedics tried to save her.

As the afternoon dragged on with no lights and no word on how soon subways and trains might resume service, some hiked home. Others filled bars. A Kentucky Fried Chicken restaurant on East 14th Street near Avenue B gave away ice cream, one scoop to a customer. The Haagen-Dazs shop near Union Square had a ''power outage sale,'' selling cups and cones for $1 apiece.

Drivers, benefiting from suddenly very essential radios, flashed news bulletins to people in the street. ''It's a major grid, and it's out from Toronto to Ohio,'' Sharon Dennis told a throng that had gathered around her green Ford Taurus on West 34th Street shortly before 6 p.m. ''They say they don't know how long it will take to restore power.''

Mr. Pataki declared a state of emergency, and went to the Office of Emergency Management at the state police headquarters in Albany, where he said he would remain until power was restored.

Mr. Pataki reluctantly recalled one of the two major blackouts of the last 40 years in the Northeast - the 1965 power failure, which left an 80,000-square-mile stretch of the United States and Canada without electricity for as much as 27 hours. ''It wasn't supposed to happen again,'' he said, ''and it has happened again. And there have to be some tough questions asked as to why.''

The Nov. 9, 1965 blackout began with an overloaded relay at a hydroelectric plant in Ontario. That plunged Toronto into darkness, then Syracuse, then four of the five boroughs of New York City, which had been drawing 300,000 kilowatts from the Niagara Mohawk utility in upstate New York. The lights stayed on in parts of Brooklyn and on Staten Island, because of a generating station that was not knocked out.

On July 14, 1977, lightning hit two Con Edison transmission lines north of New York City, tripping relays that soon shut down power plants in the New York metropolitan area. Parts of the city were dark for more than 25 hours, and there was widespread looting.

Yesterday, the North American Electric Reliability Council, which was set up by the utility industry after the blackouts of 1965 to reduce the likelihood of cascading failures, said that power problems were felt throughout the entire eastern interconnection, which covers most of the country east of the Mississippi River. The South was unaffected by the blackout, the council said.

The council had issued its annual summer reliability assessment of the supply of electricity earlier in the year, concluding that the nation should have adequate resources to meet the demand for power this summer. But it warned of possible problems, particularly around New York City, if extreme weather produced unusually heavy demand.

Phillip G. Harris, who is in charge of the consortium that oversees power distribution from New Jersey to the District of Columbia, said the exact cause of the blackout would not be known for some time. ''We have to get into the forensics of it,'' he said. There was high demand for electricity yesterday, he said, ''but it was not any hotter than we had last year.''

He said that his system had recorded a ''massive outflow'' of power to northern New York or Canada shortly after 4 p.m. He said that the surge overloaded power lines that took themselves out of service.

For people with medical problems, the blackout added another layer of anxiety. Emergency rooms were flooded with patients with heat and heart ailments. At Harlem Hospital, a spokeswoman said that a number of pedestrians had been hit by cars because traffic lights were out.

At Jamaica Hospital in Queens, where even emergency power was lost for several hours, a spokeswoman said that officials there had been denied permission to divert patients to other hospitals.

In neighborhoods where memories of the 1977 blackout linger, yesterday did not bring the sounds of that long-ago evening. This time, there was little looting, officials said, and the grinding of iron store gates being forced up and the shattering of glass was absent.

In Bushwick, the Brooklyn neighborhood that was at the center of the vandalism in 1977, Mario Hernandez, a 44-year-old air-conditioner mechanic, remembered the looting well.

''I got five couches, five TV's, two stereo sets, gold chains, everything you could think of,'' he said yesterday, recalling that hot evening when he was 18. ''Even the decent people, the churchgoing people, were taking stuff back then.''

Police officers waited in the 83rd Precinct, on Knickerbocker Avenue. ''So far so good,'' an officer said. ''Nothing out of the ordinary. It's actually quieter than normal.''

There was at least one pocket of trouble: On the Lower East Side, an upscale sneaker store was broken into and one of the owners beaten and bloodied by a group of youths between 11 p.m. and midnight. ''These animals are wrecking my store,'' the owner said.

Related News

South Africa's Eskom could buy less power from wind farms during lockdown

Eskom Wind Power Curtailment reflects South Africa's lockdown-driven drop in electricity demand, prompting grid-balancing measures as Eskom signals reduced IPP procurement from renewable energy projects during low-demand hours, despite guarantees and flexible generation constraints.

 

Key Points

A temporary reduction of wind IPP purchases by Eskom to balance surplus grid capacity during the COVID-19 lockdown slump

✅ Demand drop of 7,500 MW reduced need for variable renewables.

✅ Curtailment likely during low-demand early-morning hours.

✅ IPP revenues protected via contract extensions and guarantees.

 

South African state utility Eskom has told independent wind farms that it could buy less of their power in the coming days, as electricity demand has plummeted during a lockdown, reflecting the Covid-19 impact on renewables worldwide, aimed at curbing the spread of the coronavirus.

Eskom, which is mired in a financial crisis and has struggled to keep the lights on in the past year, said on Tuesday that power demand had dropped by more than 7,500 megawatts since the lockdown started on Friday and that it had taken offline some of its own generators.

The utility supplements its generating capacity, which is mainly derived from coal, by buying power from solar and wind farms, as wind becomes a competitive source of electricity globally, under contracts signed as part of the government’s renewable energy programme.

Spokesman Sikonathi Mantshantsha said Eskom had not yet curtailed power procurement from wind farms but that it had told them, echoing industry warnings on wind investment risk seen by the sector, this could happen “for a few hours a day during the next few days, perhaps until the lockdown is lifted”.

“Most of them are able to feed power into the grid in the early hours of the day. That coincides with the lowest demand period and can highlight curtailment challenges when supply exceeds need. And we now have a lot more capacity than needed,” Mantshantsha said.

During the lockdown imposed by President Cyril Ramaphosa, businesses apart from those deemed “essential services” are closed, mirroring Spanish wind factory closures elsewhere. Many power-hungry mines and furnaces have suspended operations.

Eskom has relatively little of its own “flexible generation” capacity, which can be ramped up or down easily, unlike regions riding a renewables boom in South Australia to export power.

The government has committed to buy up to 200 billion rand ($11.1 billion) of electricity from independent power producers and has issued state guarantees for those purchases.

“They will be compensated for their losses, amid U.S. utility-solar slowdowns being reported - each day lost will be added to their contracts,” Mantshantsha said of the wind farms. “In the end they will not be worse off.”

 

Related News

View more

Hydro One shares jump 5.7 per cent after U.S. regulators reject $6.7B takeover

Hydro One Avista takeover rejection signals Washington regulators blocking a utility acquisition over governance risk, EPS dilution, and balance sheet impact, as investors applaud share price gains and a potential US$103M break fee.

 

Key Points

A regulator-led block of Hydro One's Avista bid, citing EPS dilution, balance sheet risk, and governance concerns.

✅ Washington denies approval; Idaho, Oregon decisions pending.

✅ EPS dilution avoided; balance sheet strength preserved.

✅ Shares rise 5.7%; US$103M break fee if deal collapses.

 

Opposition politicians may not like it but investors are applauding the rejection of Hydro One Ltd.'s $6.7-billion Avista takeover of U.S.-based utility Avista Corp.

Shares in the power company controlled by the Ontario government, which has also proposed a bill redesign to simplify statements, closed at $21.53, up $1.16 or 5.7 per cent, on the Toronto Stock Exchange on Thursday.

On Wednesday, Washington State regulators said they would not allow Ontario's largest utility to buy Avista over concerns about political risk that the provincial government, which owns 47 per cent of Hydro One's shares, might meddle in Avista's operations.

Financial analysts had predicted investors would welcome the news because the deal, announced in July 2017, would have eroded earnings per share and weakened Hydro One's balance sheet.

"The Washington regulator's denial of Avista is a positive development for the shares, in our opinion," said analyst Ben Pham of BMO Capital Markets in a report on Wednesday.

"While this may sound odd, we note that the Avista deal is expected to be EPS dilutive and result in a weaker balance sheet for (Hydro One). Not acquiring Avista and refocusing its attention on its core Ontario franchise ... along with related interprovincial arrangements such as the Ontario-Quebec electricity deal under discussion would likely be viewed positively if the deal ultimately breaks."

Decisions are yet to come from Idaho and Oregon state regulators, but Washington was probably the most important as the state contains customers making up about 60 per cent of Avista's rate base, Pham said.

He pointed out that a US$103-million break fee is to be paid to Avista if the deal collapses due to a failure to obtain regulatory approval.

CIBC analyst Robert Catellier raised his 12-month Hydro One target price by 25 cents and said many shareholders will feel "relieved" that the deal had failed.

He warned that the company's earnings power could deteriorate as the province seeks to reduce power bills by 12 per cent, despite an Ontario-Quebec hydro deal that may not lower costs.

 

Related News

View more

How the dirtiest power station in western Europe switched to renewable energy

Drax Biomass Conversion accelerates renewable energy by replacing coal with wood pellets, sustainable forestry feedstock, and piloting carbon capture and storage, supporting the UK grid, emissions cuts, and a net-zero pathway.

 

Key Points

Drax Biomass Conversion is Drax's shift from coal to biomass with CCS pilots to cut emissions and aid UK's net-zero.

✅ Coal units converted to biomass wood pellets

✅ Sourced from sustainable forestry residues

✅ CCS pilots target lifecycle emissions cuts

 

A power station that used to be the biggest polluter in western Europe has made a near-complete switch to renewable energy, mirroring broader shifts as Denmark's largest energy company plans to end coal by 2023.

The Drax Power Station in Yorkshire, England, used to spew out millions of tons of carbon dioxide a year by burning coal. But over the past eight years, it has overhauled its operations by converting four of its six coal-fired units to biomass. The plant's owners say it now generates 15% of the country's renewable power, as Britain recently went a full week without coal power for the first time.

The change means that just 6% of the utility's power now comes from coal, as the wider UK coal share hits record lows across the national electricity system. The ultimate goal is to stop using coal altogether.

"We've probably reduced our emissions more than any other utility in the world by transforming the way we generate power," Will Gardner, CEO of the Drax Group, told CNN Business.

Subsidies have helped finance the switch to biomass, which consists of plant and agricultural matter and is viewed as a promising substitute for coal, and utilities such as Nova Scotia Power are also increasing biomass use. Last year, Drax received £789 million ($1 billion) in government support.

 

Is biomass good for the environment?

While scientists disagree over the extent to which biomass as a fuel is environmentally friendly, and some environmentalists urge reducing biomass use amid concerns about lifecycle emissions, Drax highlights that its supplies come from from sustainably managed and growing forests.

Most of the biomass used by Drax consists of low-grade wood, sawmill residue and trees with little commercial value from the United States. The material is compressed into sawdust pellets.

Gardner says that by purchasing bits of wood not used for construction or furniture, Drax makes it more financially viable for forests to be replanted. And planting new trees helps offset biomass emissions.

Forests "absorb carbon as they're growing, once they reach maturity, they stop absorbing carbon," said Raphael Slade, a senior research fellow at Imperial College London.

But John Sterman, a professor at MIT's Sloan School of Management, says that in the short term burning wood pellets adds more carbon to the atmosphere than burning coal.

That carbon can be absorbed by new trees, but Sterman says the process can take decades.

"If you're looking at five years, [biomass is] not very good ... If you're looking at a century-long time scale, which is the sort of time scale that many foresters plan, then [biomass] can be a lot more beneficial," says Slade.

 

Carbon capture

Enter carbon capture and storage technology, which seeks to prevent CO2 emissions from entering the atmosphere and has been touted as a possible solution to the climate crisis.

Drax, for example, is developing a system to capture the carbon it produces from burning biomass. But that could be 10 years away.

 

The Coal King is racing to avoid bankruptcy

The power station is currently capturing just 1 metric ton of CO2 emissions per day. Gardner says it hopes to increase this to 10,000 metric tons per day by the mid to late 2020s.

"The technology works but scaling it up and rolling it out, and financing it, are going to be significant challenges," says Slade.

The Intergovernmental Panel on Climate Change shares this view. The group said in a 2018 report that while the potential for CO2 capture and storage was considerable, its importance in the fight against climate change would depend on financial incentives for deployment, and whether the risks of storage could be successfully managed. These include a potential CO2 pipeline break.

In the United Kingdom, the government believes that carbon capture and storage will be crucial to reaching its goal of achieving net-zero greenhouse gas emissions by 2050, even as low-carbon generation stalled in 2019 according to industry analysis.

It has committed to consulting on a market-based industrial carbon capture framework and in June awarded £26 million ($33 million) in funding for nine carbon capture, usage and storage projects, amid record coal-free generation on the British grid.

 

Related News

View more

A Texas-Sized Gas-for-Electricity Swap

Texas Heat Pump Electrification replaces natural gas furnaces with electric heating across ERCOT, cutting carbon emissions, lowering utility bills, shifting summer peaks to winter, and aligning higher loads with strong seasonal wind power generation.

 

Key Points

Statewide shift from gas furnaces to heat pumps in Texas, reducing emissions and bills while moving grid peak to winter.

✅ Up to $452 annual utility savings per household

✅ CO2 cuts up to 13.8 million metric tons in scenarios

✅ Winter peak rises, summer peak falls; wind aligns with load

 

What would happen if you converted all the single-family homes in Texas from natural gas to electric heating?

According to a paper from Pecan Street, an Austin-based energy research organization, the transition would reduce climate-warming pollution, save Texas households up to $452 annually on their utility bills, and flip the state from a summer-peaking to a winter-peaking system. And that winter peak would be “nothing the grid couldn’t evolve to handle,” according to co-author Joshua Rhodes, a view echoed by analyses outlining Texas grid reliability improvements statewide today.

The report stems from the reality that buildings must be part of any comprehensive climate action plan.

“If we do want to decarbonize, eventually we do have to move into that space. It may not be the lowest-hanging fruit, but eventually we will have to get there,” said Rhodes.

Rhodes is a founding partner of the consultancy IdeaSmiths and an analyst at Vibrant Clean Energy. Pecan Street commissioned the study, which is distilled from a larger original analysis by IdeaSmiths, at the request of the nonprofit Environmental Defense Fund.

In an interview, Rhodes said, “The goal and motivation were to put bounding on some of the claims that have been made about electrification: that if we electrify a lot of different end uses or sectors of the economy...power demand of the grid would double.”

Rhodes and co-author Philip R. White used an analysis tool from the National Renewable Energy Laboratory called ResStock to determine the impact of replacing natural-gas furnaces with electric heat pumps in homes across the ERCOT service territory, which encompasses 90 percent of Texas’ electricity load.

Rhodes and White ran 80,000 simulations in order to determine how heat pumps would perform in Texas homes and how the pumps would impact the ERCOT grid.

The researchers modeled the use of “standard efficiency” (ducted, SEER 14, 8.2 HSPF air-source heat pump) and “superior efficiency” (ductless, SEER 29.3, 14 HSPF mini-split heat pump) heat pump models against two weather data sets — a typical meteorological year, and 2011, which had extreme weather in both the winter and summer and highlighted blackout risks during severe heat for many regions.

Emissions were calculated using Texas’ power sector data from 2017. For energy cost calculations, IdeaSmiths used 10.93 cents per kilowatt-hour for electricity and 8.4 cents per therm for natural gas.

Nothing the grid can't handle
Rhodes and White modeled six scenarios. All the scenarios resulted in annual household utility bill savings — including the two in which annual electricity demand increased — ranging from $57.82 for the standard efficiency heat pump and typical meteorological year to $451.90 for the high-efficiency heat pump and 2011 extreme weather year.

“For the average home, it was cheaper to switch. It made economic sense today to switch to a relatively high-efficiency heat pump,” said Rhodes. “Electricity bills would go up, but gas bills can go down.”

All the scenarios found carbon savings too, with CO2 reductions ranging from 2.6 million metric tons with a standard efficiency heat pump and typical meteorological year to 13.8 million metric tons with the high-efficiency heat pump in 2011-year weather.

Peak electricity demand in Texas would shift from summer to winter. Because heat pumps provide both high-efficiency space heating and cooling, in the scenario with “superior efficiency” heat pumps, the summer peak drops by nearly 24 percent to 54 gigawatts compared to ERCOT’s 71-gigawatt 2016 summer peak, even as recurring strains on the Texas power grid during extreme conditions persist.

The winter peak would increase compared to ERCOT’s 66-gigawatt 2018 winter peak, up by 22.73 percent to 81 gigawatts with standard efficiency heat pumps and up by 10.6 percent to 73 gigawatts with high-efficiency heat pumps.

“The grid could evolve to handle this. This is not a wholesale rethinking of how the grid would have to operate,” said Rhodes.

He added, “There would be some operational changes if we went to a winter-peaking grid. There would be implications for when power plants and transmission lines schedule their downtime for maintenance. But this is not beyond the realm of reality.”

And because Texas’ wind power generation is higher in winter, a winter peak would better match the expected higher load from all-electric heating to the availability of zero-carbon electricity.

 

A conservative estimate
The study presented what are likely conservative estimates of the potential for heat pumps to reduce carbon pollution and lower peak electricity demand, especially when paired with efficiency and demand response strategies that can flatten demand.

Electric heat pumps will become cleaner as more zero-carbon wind and solar power are added to the ERCOT grid, as utilities such as Tucson Electric Power phase out coal. By the end of 2018, 30 percent of the energy used on the ERCOT grid was from carbon-free sources.

According to the U.S. Energy Information Administration, three in five Texas households already use electricity as their primary source of heat, much of it electric-resistance heating. Rhodes and White did not model the energy use and peak demand impacts of replacing that electric-resistance heating with much more energy efficient heat pumps.

“Most of the electric-resistance heating in Texas is located in the very far south, where they don’t have much heating at all,” Rhodes said. “You would see savings in terms of the bills there because these heat pumps definitely operate more efficiently than electric-resistance heating for most of the time.”

Rhodes and White also highlighted areas for future research. For one, their study did not factor in the upfront cost to homeowners of installing heat pumps.

“More study is needed,” they write in the Pecan Street paper, “to determine the feasibility of various ‘replacement’ scenarios and how and to what degree the upgrade costs would be shared by others.”

Research from the Rocky Mountain Institute has found that electrification of both space and water heating is cheaper for homeowners over the life of the appliances in most new construction, when transitioning from propane or heating oil, when a gas furnace and air conditioner are replaced at the same time, and when rooftop solar is coupled with electrification, aligning with broader utility trends toward electrification.

More work is also needed to assess the best way to jump-start the market for high-efficiency all-electric heating. Rhodes believes getting installers on board is key.

“Whenever a homeowner’s making a decision, if their system goes out, they lean heavily on what the HVAC company suggests or tells them because the average homeowner doesn’t know much about their systems,” he said.

More work is also needed to assess the best way to jump-start the market for high-efficiency all-electric heating, and how utility strategies such as smart home network programs affect adoption too. Rhodes believes getting installers on board is key.

 

Related News

View more

Sudbury, Ont., eco groups say sustainability is key to grid's future

Sudbury Electrification and Grid Expansion is driving record power demand, EV charging, renewable energy planning, IESO forecasts, smart grid upgrades, battery storage, and industrial electrification, requiring cleaner power plants and transmission capacity in northern Ontario.

 

Key Points

Rising electricity demand and clean energy upgrades in Sudbury to power EVs, industry, and a smarter, expanded grid.

✅ IESO projects system size may need to more than double

✅ EVs and smart devices increase peak and off-peak load

✅ Battery storage and V2G can support reliability and resiliency

 

Sudbury, Ont., is consuming more power than ever, amid an electricity supply crunch in Ontario, according to green energy organizations that say meeting the demand will require cleaner energy sources.

"This is the welfare of the entire city on the line and they are putting their trust in electrification," said David St. Georges, manager of communications at reThink Green, a non-profit organization focused on sustainability in Sudbury.

According to St. Georges, Sudbury and northern Ontario can meet the growing demand for electricity to charge clean power for EVs and smart devices. 

According to the Independent Electricity System Operator (IESO), making a full switch from fossil fuels to other renewable energy sources could require more power plants, while other provinces face electricity shortages of their own.

"We have forecasted that Ontario's electricity system will need significant expansion to meet this, potentially more than doubling in size," the IESO told CBC News in an emailed statement.

Electrification in the industrial sector is adding greater demand to the electrical grid as electric cars challenge power grids in many regions. Algoma Steel in Sault Ste. Marie and ArcelorMittal Dofasco in Hamilton both aim to get electric arc furnaces in operation. Together, those projects will require 630 megawatts.

"That's like adding four cities the size of Sudbury to the grid," IESO said.

Devin Arthur, chapter president of the Electric Vehicle society in Greater Sudbury, said the city is coming full circle with fully electrifying its power grid, reflecting how EVs are a hot topic in Alberta and beyond.

"We're going to need more power," he said.

"Once natural gas was introduced, that kind of switched back, and everyone was getting out of electrification and going into natural gas and other sources of power."

Despite Sudbury's increased appetite for electricity, Arthur added it's also easier to store now as Ontario moves to rely on battery storage solutions.

"What that means is you can actually use your electric vehicle as a battery storage device for the grid, so you can actually sell power from your vehicle that you've stored back to the grid, if they need that power," he said.

Harneet Panesar, chief operating officer for the Ontario Energy Board, told CBC the biggest challenge to going green is seeing if it can work around older infrastructure, while policy debates such as Canada's 2035 EV sales mandate shape the pace of change.

"You want to make sure that you're building in the right spot," he said.

"Consumers are shifting from combustion engines to EV drivetrains. You're also creating more dependency. At a very high level, I'm going to say it's probably going to go up in terms of the demand for electricity."

Fossil fuels are the first to go for generating electricity, said St. Georges.

"But we're not there yet, because it's not a light switch solution. It takes time to get to that, which is another issue of electrification," he said.

"It's almost impossible for us not to go that direction."

 

Related News

View more

A robot is killing weeds by zapping them with electricity

Electric weed-zapping farm robots enable precision agriculture, using autonomous mapping, per-plant targeting, and robotics to reduce pesticides, improve soil health, boost biodiversity, and lower costs with data-driven, selective weeding and seed-planting workflows.

 

Key Points

Autonomous machines that map fields, electrocute weeds per plant, and plant seeds, cutting pesticides, inputs, and costs.

✅ Precision agriculture: per-plant targeting reduces pesticide use up to 95%.

✅ Autonomous mapping robot surveys 20 hectares per day for weed data.

✅ Electric weeding and seeding improve soil health, biodiversity, and ROI.

 

On a field in England, three robots have been given a mission: to find and zap weeds with electricity, as advances in digitizing the electrical system continue to modernize power infrastructure, before planting seeds in the cleared soil.

The robots — named Tom, Dick and Harry — were developed by Small Robot Company to rid land of unwanted weeds with minimal use of chemicals and heavy machinery, complementing emerging options like electric tractors that aim to cut on-farm emissions.
The startup has been working on its autonomous weed killers since 2017, and this April launched Tom, its first commercial robot which is now operational on three UK farms. The other robots are still in the prototype stage, undergoing testing.

Small Robot says robot Tom can scan 20 hectares (49 acres) a day, collecting data, with AI-driven analysis guiding Dick, a "crop-care" robot, to zap weeds. Then it's robot Harry's turn to plant seeds in the weed-free soil.

Using the full system, once it is up and running, farmers could reduce costs by 40% and chemical usage by up to 95%, the company says, and integration with virtual power plants could further optimize energy use on electrified farms.

According to the UN Food and Agriculture Organization six million metric tons of pesticides were traded globally in 2018, valued at $38 billion.

"Our system allows farmers to wean their depleted, damaged soils off a diet of chemicals," says Ben Scott-Robinson, Small Robot's co-founder and CEO.

Zapping weeds
Small Robot says it has raised over £7 million ($9.9 million). Scott-Robinson says the company hopes to launch its full system of robots by 2023, which will be offered as a service at a rate of around £400 ($568) per hectare. The monitoring robot is placed at a farm first and the weeding and planting robots delivered only when the data shows they're needed — a setup that ultimately relies on a resilient grid, where research into preventing ransomware attacks is increasingly relevant.

To develop the zapping technology, Small Robot partnered with another UK-based startup, RootWave, while innovations like electricity from snow highlight the breadth of emerging energy tech.

"It creates a current that goes through the roots of the plant through the soil and then back up, which completely destroys the weed," says Scott-Robinson. "We can go to each individual plant that is threatening the crop plants and take it out."

"It's not as fast as it would be if you went out to spray the entire field," he says. "But you have to bear in mind we only have to go into the parts of the field where the weeds are." Plants that are neutral or beneficial to the crops are left untouched.

Small Robot calls this "per plant farming" — a type of precise agriculture where every plant is accounted for and monitored.

A business case
For Kit Franklin, an agricultural engineering lecturer from Harper Adams University, efficiency remains a hurdle, even as utilities use AI to adapt to electricity demands that could support wider on-farm electrification.

"There is no doubt in my mind that the electrical system works," he tells CNN Business. "But you can cover hundreds of hectares a day with a large-scale sprayer ... If we want to go into this really precise weed killing system, we have to realize that there is an output reduction that is very hard to overcome."

But Franklin believes farmers will adopt the technology if they can see a business case.

"There's a realization that farming in an environmentally friendly way is also a way of farming in an efficient way," he says. "Using less inputs, where and when we need them, is going to save us money and it's going to be good for the environment and the perception of farmers."

As well as reducing the use of chemicals, Small Robot wants to improve soil quality and biodiversity.

"If you treat a living environment like an industrial process, then you are ignoring the complexity of it," Scott-Robinson says. "We have to change farming now, otherwise there won't be anything to farm."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.