The high cost of green power

By Globe and Mail


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ontario has a power problem.

A strategy to subsidize the province's nascent green energy industry is starting to sting businesses and many households that find themselves paying the biggest markups on electricity pricing in the country.

Even as electricity demand — and market prices — dropped last year with the global economic downturn, electricity bills have risen steadily on the back of generous contracts signed by the province's power planning agency. Now, the government of Premier Dalton McGuinty is preparing for a looming political backlash.

What's at stake is an industrial strategy that's on a collision course with a century-old policy of delivering electricity to consumers at the lowest possible cost. After the loss of hundreds of thousands of jobs in the manufacturing heartland, Mr. McGuinty vowed to create more than 50,000 new ones through the Green Energy Act. But he is building this new sector — and burnishing his green credentials — by ratcheting up electricity costs.

The average market price for electricity in Ontario is at its lowest level since the market was opened up in 2002. It is currently 3.3 cents a kilowatt hour, compared with a record high average of 9.97 cents in September, 2005. But customers are not reaping the benefits of lower prices because the government is recovering the cost of new projects from power users.

The government is luring green-energy investors with the promise of generous long-term contracts that include a guaranteed revenue stream. Every time a new deal is inked with a gas-fired plant, a wind farm or solar-panel manufacturer, the costs go up for customers. During several months last year, rates for large industrial users jumped nearly 20 per cent. The question emerging is whether this is politically sustainable.

The government is sitting on a "political time bomb," said Toronto energy lawyer Peter Murphy. "While renewable energy is a great thing for the environment, it's also expensive."

Mr. McGuinty's government began eyeing the development of new, clean energy sources in 2006, when the province was facing a shortage of electricity. He intrinsically linked the province's economic fortunes to combating climate change, saying it is not a matter of choosing between prosperity and the environment.

Former energy minister George Smitherman was the driving force behind the strategy, pushing renewable energy projects with little regard for cost, according to industry sources. He resigned to run for mayor of Toronto, leaving his successor, Gerry Phillips, to deal with the fallout from that strategy.

Mr. Phillips is acutely aware that electricity prices are a growing issue.

"We are not as clear as we need to be about the price of the production of electricity," he said in an interview.

Ontario does not have the highest electricity costs on the continent, but it stands out for the gap between the market price of power and the price charged to consumers. Toronto ranked in the middle of the pack among North American cities, according to a study of consumer prices done by Hydro-Québec last April. But industry observers say prices will increase substantially in Ontario over the next two years as the cost of higher priced renewable energy flows through to consumers.

The Ontario Power Authority, the government's planning arm, says it managed 47 large-scale electricity supply contracts worth a total of $14.1-billion last year. Contract holders receive a fixed price over 20 years for the electricity they produce — 13.5 cents a kilowatt hour for on-shore wind farms and up to 80.2 cents for solar power. While wind and solar make up only a small portion of electricity supply today, the rates are well above the average of 4.5 cents that government-owned Ontario Power Generation receives for most of its electricity output.

"Somebody has to pay the price of subsidizing an energy policy that this government seems bent on pursuing for largely political reasons as opposed to energy supply," said Ontario Progressive Conservative energy critic John Yakabuski.

Electricity consumers pay for these contracts through what is called a global adjustment — which covers the difference between the market price for electricity and the rates paid to companies under the guaranteed revenue contracts. As the market price falls, the global adjustment rises. The global adjustment averaged 2.91 cents a kilowatt hour in 2009, on top of 3.16 cents for the electricity itself.

Adam White, president of the Association of Major Power Consumers in Ontario, said the situation is not sustainable because it will leave companies paying higher rates than competitors in other jurisdictions.

For most residential consumers, the cost of the global adjustment is hidden because it is rolled into the electricity rate set by the province's energy regulator, one that has risen only modestly in recent years.

But homeowners who signed contracts with electricity retailers are getting hit hard. Retailers are now passing on the global adjustment, which is not included in the contracted fixed rate for electricity. A typical customer who used 1,000 kilowatts of power in December would have paid an extra $38.

COST OF ELECTRICITY IN SELECTED CITIES (all figures are in Canadian dollars) HOUSEHOLD (1,000 kWh):

City / Cost per kWh (as of April 1, 2009) / Average Monthly Bill

Montreal / 6.87¢ / $68.70

Winnipeg / 6.94¢ / $69.40

Vancouver / 7.13¢ / $71.32

Seattle / 8.34¢ / $83.39

Edmonton / 10.22¢ / $102.23

Regina / 10.91¢ / $109.11

Portland, Ore./ 11.01¢ / $110.10

St. John's / 11.02¢ / $110.19

Ottawa / 11.27¢ / $112.74

Toronto / 11.46¢ / $114.58

Moncton / 11.66¢ / $116.63

Calgary / 12.13¢ / $121.31

Nashville / 12.25¢ / $122.49

Halifax / 12.88¢ / $128.79

Miami 13.50¢ / $135.04

Chicago / 15.05¢ / $150.49

Detroit / 15.38¢ / $154.80

Charlottetown / 17.29¢ / $172.87

San Francisco / 24.54¢ / $245.36

New York / 25.32¢ / $253.18

Boston / 25.99¢ / $259.89

Generation costs:

3.16¢ Average market price of electricity in Ontario last year, per kilowatt hour;

2.91¢ Average "adjustment" added by the province;

4.5¢ Average rate the province paid government-owned Ontario Power Generation for most of its output;

13.5¢ Rate for power from on-shore wind farms;

10.4 - 19.5¢ Rate for biogas plants;

44.3 - 80.2¢ Rate for solar power.

Related News

Turkish powership to generate electricity from LNG in Senegal

Karpowership LNG powership in Senegal will supply 15% of the grid, a 235 MW floating power plant bound for Dakar, enabling fast deployment, base-load electricity, and cleaner natural gas generation for West Africa.

 

Key Points

A 235 MW floating plant supplying 15% of Senegal's grid with fast, reliable, lower-emission LNG electricity.

✅ 235 MW LNG-ready floating plant meets 15% of Senegal's demand

✅ Rapid deployment: commercial operations expected early October

✅ Cleaner natural gas conversion planned after six months

 

Turkey's Karpowership company, the designer and builder of the world's first floating power plants and the global brand of Karadeniz Holding, will meet 15% of Senegal's electricity needs from liquefied natural gas (LNG) with the 235-megawatt (MW) powership Ayşegül Sultan, which started its voyage from Turkey to Senegal, where an African Development Bank review of a coal plant is underway, on Sunday.

Karpowership, operating 22 floating power plants in more than 10 countries around the world, where France's first offshore wind turbine is now producing electricity, has invested over $5 billion in this area.

In a statement to members of the press at Karmarine Shipyard, Karpowership Trade Group Chair Zeynep Harezi said they aimed to provide affordable electricity to countries in need of electricity quickly and reliably, as projects like the Egypt-Saudi power link expand regional grids, adding that they could commission energy ships capable of generating the base electric charge of the countries, as tidal power in Nova Scotia begins supplying the grid, in a period of about a month.

Harezi recalled that Karpowership commissioned the first floating energy ship in 2007 in Iraq, followed by Lebanon, Ghana, Indonesia, Mozambique, Zambia, Gambia, Sierra Leone, Sudan, Cuba, Guinea Bissau and Senegal, while Scottish tidal power demonstrates marine potential as well. "We meet the electricity needs of 34 million people in many countries," she stressed. Harezi stated that the energy ships, all designed and produced by Turkish engineers, use liquid fuel, but all ships can covert to the second fuel.

Considering the impact of electricity production on the environment, Harezi noted that they plan to convert the entire fleet from liquid fuel to natural gas, with complementary approaches like power-to-gas in Europe helping integrate renewables. "With a capacity of 480 megawatts each, the world's largest floating energy vessels operate in Indonesia and Ghana. The conversion to gas has been completed in our project in Indonesia. We have also initiated the conversion of the Ghana vessel into gas," she said.

Harezi explained that they would continue to convert their fleets to natural gas in the coming period. "Our 235-MW floating electric vessel, the Ayşegül Sultan, sets sail today to meet 15% of Senegal's electricity needs on its own. After an approximately 20-day cruise, the vessel will reach Dakar, the capital of Senegal, and will begin commercial operation in early October," Harezi continued. "We plan to use liquid fuel as bridging fuel in the first six months. At the end of the first six months, we will start to produce electricity from LNG on our ship. Thus, Ayşegül Sultan will be the first project to generate electricity from LNG in Africa, while the world's most powerful tidal turbine is delivering power to the grid, officials said. Our floating power plant to be sent to Mozambique is designed to generate electricity from LNG. It is also scheduled to start operations in the next year."

 

Related News

View more

TCA Electric Leads Hydrogen Crane Project at Vancouver Port

Hydrogen Fuel Cell Crane Port of Vancouver showcases zero-emission RTG technology by DP World, TCA Electric, and partners, using hydrogen-electric fuel cells, battery energy storage, and regenerative capture to decarbonize container handling operations.

 

Key Points

A retrofitted RTG crane powered by hydrogen fuel cells, batteries, and regeneration to cut diesel use and CO2 emissions.

✅ Dual fuel cell system charges high-voltage battery

✅ Regenerative capture reduces energy demand and cost

✅ Pilot targets zero-emission RTG fleets by 2040

 

In a groundbreaking move toward sustainable logistics, TCA Electric, a Chilliwack-based industrial electrical contractor, is at the forefront of a pioneering hydrogen fuel cell crane project at the Port of Vancouver. This initiative, led by DP World in collaboration with TCA Electric and other partners, marks a significant step in decarbonizing port operations and showcases the potential of hydrogen technology in heavy-duty industrial applications.

A Vision for Zero-Emission Ports

The Port of Vancouver, Canada's largest port, has long been a hub for international trade. However, its operations have also contributed to substantial greenhouse gas emissions, even as DP World advances an all-electric berth in the U.K., primarily from diesel-powered Rubber-Tired Gantry (RTG) cranes. These cranes are essential for container handling but are significant sources of CO₂ emissions. At DP World’s Vancouver terminal, 19 RTG cranes account for 50% of diesel consumption and generate over 4,200 tonnes of CO₂ annually. 

To address this, the Vancouver Fraser Port Authority and the Province of British Columbia have committed to transforming the port into a zero-emission facility by 2050, supported by provincial hydrogen investments that accelerate clean energy infrastructure across B.C. This ambitious goal has spurred several innovative projects, including the hydrogen fuel cell crane pilot. 

TCA Electric’s Role in the Hydrogen Revolution

TCA Electric's involvement in this project underscores its expertise in industrial electrification and commitment to sustainable energy solutions. The company has been instrumental in designing and implementing the electrical systems that power the hydrogen fuel cell crane. This includes integrating the Hydrogen-Electric Generator (HEG), battery energy storage system, and regenerative energy capture technologies. The crane operates using compressed gaseous hydrogen stored in 15 pressurized tanks, which feed a dual fuel cell system developed by TYCROP Manufacturing and H2 Portable. This system charges a high-voltage battery that powers the crane's electric drive, significantly reducing its carbon footprint. 

The collaboration between TCA Electric, TYCROP, H2 Portable, and HTEC represents a convergence of local expertise and innovation. These companies, all based in British Columbia, have leveraged their collective knowledge to develop a world-first solution in the industrial sector, while regional pioneers like Harbour Air's electric aircraft illustrate parallel progress in aviation. TCA Electric's leadership in this project highlights its role as a key enabler of the province's clean energy transition. 

Demonstrating Real-World Impact

The pilot project began in October 2023 with the retrofitting of a diesel-powered RTG crane. The first phase included integrating the hydrogen-electric system, followed by a one-year field trial to assess performance metrics such as hydrogen consumption, energy generation, and regenerative energy capture rates. Early results have been promising, with the crane operating efficiently and emitting only steam, compared to the 400 kilograms of CO₂ produced by a comparable diesel unit. 

If successful, this project could serve as a model for decarbonizing port operations worldwide, mirroring investments in electric trucks at California ports that target landside emissions. DP World plans to consider converting its fleet of RTG cranes in Vancouver and Prince Rupert to hydrogen power, aligning with its global commitment to achieve carbon neutrality by 2040.

Broader Implications for the Industry

The success of the hydrogen fuel cell crane pilot at the Port of Vancouver has broader implications for the shipping and logistics industry. It demonstrates the feasibility of transitioning from diesel to hydrogen-powered equipment in challenging environments, and aligns with advances in electric ships on the B.C. coast. The project's success could accelerate the adoption of hydrogen technology in other ports and industries, contributing to global efforts to reduce carbon emissions and combat climate change.

Moreover, the collaboration between public and private sectors in this initiative sets a precedent for future partnerships aimed at advancing clean energy solutions. The support from the Province of British Columbia, coupled with the expertise of companies like TCA Electric and utility initiatives such as BC Hydro's vehicle-to-grid pilot underscore the importance of coordinated efforts in achieving sustainability goals.

Looking Ahead

As the field trial progresses, stakeholders are closely monitoring the performance of the hydrogen fuel cell crane. The data collected will inform decisions on scaling the technology and integrating it into broader port operations. The success of this project could pave the way for similar initiatives in other regions, complementing the province's move to electric ferries with CIB support, promoting the widespread adoption of hydrogen as a clean energy source in industrial applications.

TCA Electric's leadership in this project exemplifies the critical role of skilled industrial electricians in driving the transition to sustainable energy solutions. Their expertise ensures the safe and efficient implementation of complex systems, making them indispensable partners in the journey toward a zero-emission future.

The hydrogen fuel cell crane pilot at the Port of Vancouver represents a significant milestone in the decarbonization of port operations. Through innovative partnerships and local expertise, this project is setting the stage for a cleaner, more sustainable future in global trade and logistics.

 

 

Related News

View more

Tesla Expands Charging Network in NYC

Tesla NYC Supercharger Expansion adds rapid EV charging across Manhattan, Brooklyn, and Queens, strengthening infrastructure, easing range anxiety, and advancing New York City sustainability goals with fast chargers at strategic commercial and residential-adjacent locations.

 

Key Points

Tesla's plan to add rapid EV charging across NYC, boosting access, easing range anxiety, and advancing climate targets.

✅ New Superchargers in Manhattan, Brooklyn, and Queens

✅ Faster charging to cut downtime and range anxiety

✅ Partnerships with businesses to expand public access

 

In a significant move to enhance the EV charging infrastructure across the city, Tesla has announced plans to expand its network of charging stations throughout New York City. This investment is set to bolster the availability of charging options, making it more convenient for EV owners while encouraging more residents to consider electric vehicles as a viable alternative to traditional gasoline-powered cars.

The Growing Need for Charging Infrastructure

As the demand for electric vehicles continues to rise amid the American EV boom across the country, the need for a robust charging infrastructure has become increasingly critical. With New York City setting ambitious goals to reduce greenhouse gas emissions, the expansion of EVs is seen as a crucial component of its sustainability strategy. Currently, the city aims to have 50% of all vehicles electrified by 2030, a target that necessitates a significant increase in charging stations.

Tesla’s initiative to install more charging points in NYC aligns perfectly with these goals and reflects how charging networks are competing nationwide to expand access, drawing more drivers to consider electric vehicles. By enhancing the charging network, Tesla is not only catering to its existing customers but also appealing to potential EV buyers who may have previously hesitated due to range anxiety or limited charging options.

A Look at the Expansion Plans

The details of Tesla's expansion include adding several new Supercharger stations across key locations in Manhattan, Brooklyn, and Queens, as US automakers move to build 30,000 public chargers nationwide to boost coverage. These stations will be strategically placed to ensure maximum accessibility, especially in densely populated areas where residents may not have easy access to home charging.

Tesla’s Superchargers are known for their rapid charging capabilities, allowing EV drivers to recharge their vehicles in a fraction of the time it would take at a standard charging station. This efficiency will be particularly beneficial in a bustling urban environment like NYC, where convenience and time are of the essence.

Moreover, Tesla is also exploring partnerships with local businesses and property owners to install charging stations at commercial locations. This initiative would not only create more charging opportunities but also encourage businesses to attract EV-driving customers, further promoting electric vehicle adoption.

Impact on EV Adoption in NYC

The expansion of Tesla's charging network is expected to have a positive ripple effect on the adoption of electric vehicles in New York City. With more charging stations available, potential buyers will feel more confident in making the switch to electric. The convenience of accessible charging can significantly reduce range anxiety, a common concern among potential EV buyers.

Additionally, this expansion will likely encourage other automakers to invest in charging infrastructure, as utilities pursue a bullish course on charging to support deployment, leading to a more interconnected network of charging options across the city. As more drivers embrace electric vehicles, the demand for charging will continue to grow, a trend that will test state power grids in the coming years, further solidifying the need for a comprehensive and reliable infrastructure.

Supporting Sustainable Initiatives

Tesla's investment in NYC's charging infrastructure is also part of a broader commitment to sustainability. As cities grapple with the challenges of climate change and air pollution, transitioning to electric vehicles is seen as a vital strategy for reducing emissions. Electric vehicles produce zero tailpipe emissions, which contributes to cleaner air and a healthier urban environment.

Moreover, with the increasing push towards renewable energy sources, the integration of electric vehicles into the city’s transportation system can help reduce reliance on fossil fuels, with energy storage and mobile charging adding flexibility to support the grid. As more charging stations utilize renewable energy, the overall carbon footprint of electric vehicles will continue to decrease, aligning with New York City's climate goals.

Looking Ahead

As Tesla moves forward with its expansion plans in New York City, the implications for both the automotive industry and urban sustainability are profound. By enhancing the charging infrastructure, Tesla is not only facilitating the growth of electric vehicles but also playing a crucial role in the city’s efforts to combat climate change.

 

Related News

View more

Why the Texas Power Grid Is Facing Another Crisis

Texas Power Grid Reliability faces record peak demand as ERCOT balances renewable energy, wind and solar variability, gas-fired generation, demand response, and transmission limits to prevent blackouts during heat waves and extreme weather.

 

Key Points

Texas Power Grid Reliability is ERCOT's capacity to meet peak demand with diverse resources while limiting outages.

✅ Record heat drives peak demand across ERCOT.

✅ Variable wind/solar need firm, flexible capacity.

✅ Demand response and reserves reduce blackout risk.

 

The electric power grid in Texas, which collapsed dramatically during the 2021 winter storm across the state, is being tested again as the state suffers unusually hot summer weather. Demand for electricity has reached new records at a time of rapid change in the mix of power sources as wind and solar ramp up. That’s feeding a debate about the dependability of the state’s power. 

1. Why is the Texas grid under threat again? 

Already the biggest power user in the nation, electricity use in the second most-populous state surged to record levels during heat waves this summer. The jump in demand comes as the state becomes more dependent on intermittent renewable power sources, raising concerns among some critics that more reliance on wind and solar will leave the grid more vulnerable to disruption. Green sources will produce almost 40% of the power in Texas this year, US Energy Information Administration data show. While that trails California’s 52%, Texas is a bigger market. It’s already No. 1 in wind, making it the largest clean energy market in the US. 

2. How is Texas unique? 

The spirit of defiance of the Lone Star State extends to its power grid as well. The Electric Reliability Council of Texas, or Ercot as the grid operator is known, serves about 90% of the state’s electricity needs and has very few high-voltage transmission lines connecting to nearby grids. It’s a deliberate move to avoid federal oversight of the power market. That means Texas has to be mainly self-reliant and cannot depend on neighbors during extreme conditions. That vulnerability is a dramatic twist for a state that’s also the energy capital of the US, thanks to vast oil and natural gas producing fields. Favorable regulations are also driving a wind and solar boom in Texas. 

3. Why the worry? 

The summer of 2023 will mark the first time all of the state’s needs cannot be met by traditional power plants, like nuclear, coal and gas. A sign of potential trouble came on June 20 when state officials urged residents to conserve power because of low supplies from wind farms and unexpected closures of fossil-fuel generators amid supply-chain constraints that limited availability. As of late July, the grid was holding up, thanks to the help of renewable sources. Solar generation has been coming in close to expected summer capacity, or exceeding it on most days. This has helped offset the hours in the middle of the day when wind speeds died down in West Texas. 

4. Why didn’t the grid’s problems get fixed? 

There is no easy fix. The Texas system allows the price of electricity to swing to match supply and demand. That means high prices — and high profits — drive the development of new power plants. At times spot power prices have been as low as $20-$50 a megawatt-hour versus more than $4,000 during periods of stress. The limitation of this pricing structure was laid bare by the 2021 winter blackouts. Since then, state lawmakers have passed market reforms that require weatherization of critical infrastructure and changed rules to put more money in the pockets of the owners of power generation.  

5. What’s the big challenge? 

There’s a real clash going on over what the grid of the future should look like in Texas and across the country, especially as severe heat raises blackout risks nationally. The challenge is to make sure nuclear and fossil fuel plants that are needed right now don’t retire too early and still allow newer, cleaner technologies to flourish. Some conservative Republicans have blamed renewable energy for destabilizing the grid and have pushed for more fossil-fuel powered generators. Lawmakers passed a controversial $10 billion program providing low-interest loans and grants to build new gas-fired plants using taxpayer money, but Texans ultimately have to vote on the subsidy. 


6. Why do improvements take so long? 

Figuring out how to keep the lights on without overburdening consumers is becoming a greater challenge amid more extreme weather fueled by climate change. As such, changing the rules is often a hotly contested process pitting utilities, generators, manufacturers, electricity retailers and other groups against one another. The process became more politicized after the storm in 2021 with Republican Gov. Greg Abbott and lawmakers ordering Ercot to make changes. Building more transmission lines and connecting to other states can help, but such projects are typically tied up for years in red tape.

7. What can be done? 

The price cap for electricity was cut from $9,000/MWh to $5,000 to help avoid the punitive costs seen in the 2021 storm, though prices are allowed to spike more easily. Ercot is also contracting for more reserves to be online to help avoid supply shortfalls and improve reliability for customers, which added $1.7 billion in consumer costs alone last year. Another rule helps some gas generators pay for their fuel costs, while a more recent reform put in price floors when reserves fall to certain levels. Many power experts say that the easiest solution is to pay people to reduce their energy consumption during times of grid stress through so-called demand response programs. Factories, Bitcoin miners and other large users are already compensated to conserve during tight grid conditions.

 

Related News

View more

Ontario Poised to Miss 2030 Emissions Target

Ontario Poised to Miss 2030 Emissions Target highlights how rising greenhouse gas emissions from electricity generation and natural gas power plants threaten Ontario’s climate goals, environmental sustainability, and clean energy transition efforts amid growing economic and policy challenges.

 

Why is Ontario Poised to Miss 2030 Emissions Target?

Ontario Poised to Miss 2030 Emissions Target examines the province’s setback in meeting climate goals due to higher power-sector emissions and shifting energy policies.

✅ Rising greenhouse gas emissions from gas-fired electricity generation

✅ Climate policy uncertainty and missed environmental targets

✅ Balancing clean energy transition with economic pressures

Ontario’s path toward meeting its 2030 greenhouse gas emissions target has taken a sharp turn for the worse, according to internal government documents obtained by Global News. The province, once on track to surpass its reduction goals, is now projected to miss them—largely due to rising emissions from electricity generation, even as the IEA net-zero electricity report highlights rising demand nationwide.

In October 2024, the Ford government’s internal analysis indicated that Ontario was on track to reduce emissions by 28 percent below 2005 levels by 2030, effectively exceeding its target. But a subsequent update in January 2025 revealed a grim reversal. The new forecast showed an increase of about eight megatonnes (Mt) of emissions compared to the previous model, with most of the rise attributed to the province’s energy policies.

“This forecast is about 8 Mt higher than the October 2024 forecast, mainly due to higher electricity sector emissions that reflect the latest ENERGY/IESO energy planning and assumptions,” the internal document stated.

While the analysis did not specify which policy shifts triggered the change, experts point to Ontario’s growing reliance on natural gas. The use of gas-fired power plants has surged to fill temporary gaps created by nuclear refurbishment projects and other grid constraints, even as renewable energy’s role grows. In fact, natural gas generation in early 2025 reached its highest level since 2012.

The internal report cited “changing electricity generation,” nuclear power refurbishment, and “policy uncertainty” as major risks to achieving the province’s climate goals. But the situation may be even worse than the government’s updated forecast suggests.

On Wednesday, Ontario’s auditor general warned that the January projections were overly optimistic. The watchdog’s new report concluded the province could fall even further behind its 2030 emissions target, noting that reductions had likely been overestimated in several sectors, including transportation—such as electric vehicle sales—and waste management. “An even wider margin” of missed goals was now expected, the auditor said.

Environment Minister Todd McCarthy defended the government’s position, arguing that climate goals must be balanced against economic realities. “We cannot put families’ financial, household budgets at risk by going off in a direction that’s not achievable,” McCarthy said.

The minister declined to commit to new emissions targets beyond 2030—or even to confirm that the existing goals would be met—but insisted efforts were ongoing. “We are continuing to meet our commitment to at least try to meet our commitment for the 2030 target,” he told reporters. “But targets are not outcomes. We believe in achievable outcomes, not unrealistic objectives.”

Environmental advocates warn that Ontario’s reliance on fossil-fuel generation could lock the province into higher emissions for years, undermining national efforts to decarbonize Canada’s electricity grid. With cleaning up Canada’s electricity expected to play a central role in both industrial growth and climate action, the province’s backslide represents a significant setback for Canada’s overall emissions strategy.

Other provinces face similar challenges; for example, B.C. is projected to miss its 2050 targets by a wide margin.

As Ontario weighs its next steps, the tension between energy security, affordability, and environmental responsibility continues to define the province’s path toward a lower-carbon future and Canada’s 2050 net-zero target over the long term.

 

Related Articles

 

View more

Coalition pursues extra $7.25B for DOE nuclear cleanup, job creation

DOE Environmental Management Funding Boost seeks $7.25B to accelerate nuclear cleanup, upgrade Savannah River Site infrastructure, create jobs, and support small businesses, echoing ARRA 2009 results and expediting DOE EM waste remediation nationwide.

 

Key Points

A proposed $7.25B stimulus for DOE's EM to accelerate nuclear cleanup, modernize infrastructure, and create jobs.

✅ $7.25B one-time stimulus for DOE EM cleanup and infrastructure.

✅ Targets Savannah River Site; supports jobs and small businesses.

✅ Builds on ARRA 2009; accelerates nuclear waste remediation.

 

A bloc of local governments and nuclear industry, nuclear innovation efforts, labor and community groups are pressing Congress to provide a one-time multibillion-dollar boost to the U.S. Department of Energy Office of Environmental Management, the remediation-focused Savannah River Site landlord.

The organizations and officials -- including Citizens For Nuclear Technology Awareness Executive Director Jim Marra and Savannah River Site Community Reuse Organization President and CEO Rick McLeod -- sent a letter Friday to U.S. House and Senate leadership "strongly" supporting a $7.25 billion funding injection, even as ACORE challenges coal and nuclear subsidies in separate regulatory proceedings, arguing it "will help reignite the national economy," help revive small businesses and create thousands of new jobs despite the novel coronavirus crisis.

More than 30 million Americans have filed unemployment claims in the past two months, with additional clean energy job losses reported, too. Hundreds of thousands of claims have been filed in South Carolina since mid-March, compounding issues like unpaid utility bills in neighboring states.

The requested money could, too, speed Environmental Management's nuclear waste cleanup missions and be used to fix ailing infrastructure and strengthen energy security for rural communities nationwide -- some of which dates back to the Cold War -- at sites across the country. That's a "rare" opportunity, reads the letter, which prominently features the Energy Communities Alliance logo and its chairman's signature.

Similar funding programs, like what was done with the 2009 American Recovery and Reinvestment Act and recent clean energy funding initiatives, have been successful.

At the time, amid a staggering economic downturn nationwide, Environmental Management contractors "hired over 20,000 new workers," putting them "to work to reduce the overall cleanup complex footprint by 688 square miles while strengthening local economies," the Friday letter reads.

The Energy Department's cleanup office estimates the $6 billion investment years ago reduced its environmental liability by $13 billion, according to a 2012 report.

Such a leap forward, the coalition believes, is repeatable, a view reflected in current plans to revitalize coal communities with clean energy projects across the country.

"We are confident that DOE can successfully manage increased funding and leverage it for future economic development as it has in the past," the letter states. It continues: "We take pride in working together to support jobs and development of infrastructure and work that make our country stronger and assists us to recover from the impacts of COVID-19."

As of Monday afternoon, 8,942 cases of COVID-19, the disease caused by the novel coronavirus, have been logged in South Carolina. Aiken County is home to 155 of those cases.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.