NB Power eyes rate freeze proposal

By CBC.ca


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
NB Power is developing a plan to implement a three-year freeze on electricity rates, according to the Progressive Conservative government's first throne speech.

The Progressive Conservatives promised during the fall election campaign that electricity rates would be frozen for three years.

The throne speech commits that "work is underway" to fulfill the pledge.

Alward told a news conference that NB Power will implement the rate freeze. But there are no other details on how the plan will move forward.

Alward has already appointed an energy commission, which is being led by Jeannot Volpé, a former Tory leader, and Bill Thompson, a former deputy minister of energy.

The commission will issue a report in 2011 with recommendations for a 10-year energy strategy.

The throne speech said the commission will "develop a progressive, long-term provincial energy policy and provide guidance on both the future direction of NB Power and New Brunswick's energy sector."

The Alward government is also setting a legislative committee to watch over the delayed Point Lepreau refurbishment project.

"Your government will put in place a legislative committee to ensure that the refurbishment of Point Lepreau is the number one priority for NB Power and help bring that project to a successful close," the throne speech said.

Atlantic Canada's only nuclear reactor was supposed to be back functioning in 2009 but it is now delayed until 2012.

Atomic Energy of Canada Ltd., the federal nuclear corporation, is now expected to finish its portion of the refurbishment project in May 2012.

The nuclear refurbishment project will be turned over to NB Power to complete the remainder of the refurbishment with a target date of fall 2012 for the reactor returning to service.

It is estimated that NB Power spends $1 million a day to purchase replacement fuel for each day the nuclear reactor is delayed.

Related News

China's nuclear energy on steady development track, say experts

China Nuclear Power Expansion accelerates with reactor approvals, Hualong One and CAP1400 deployments, rising gigawatts, clean energy targets, carbon neutrality goals, and grid reliability benefits to meet coastal demand and reduce emissions.

 

Key Points

An accelerated reactor buildout to add clean capacity, curb emissions, and improve grid reliability nationwide.

✅ Approvals surge for Hualong One and CAP1400 third-gen reactors

✅ Capacity targets approach 100 GW installed by 2030

✅ Supports carbon neutrality, energy security, and lower costs

 

While China has failed to accomplish its 2020 nuclear target of 58 gigawatts under operation and 30 GW under construction, insiders are optimistic about prospects for the nonpolluting energy resource in China over the next five years as the country has stepped up nuclear approvals and construction since 2020.

China expects to record 49 operating nuclear facilities and capacity of more than 51 GW as of the end of 2020. Nuclear power currently makes up around 2.4 percent of the country's total installed energy capacity, said the China Nuclear Energy Association. There are 19 facilities that have received approval and are under construction, with capacity exceeding 20 GW, ranking top globally as nuclear project milestones worldwide continue, it said.

"With surging power demand from coastal regions, more domestic technology, including next-gen nuclear, will be adopted with installations likely nearing 100 GW by the end of 2030," said Wei Hanyang, a power market analyst at Bloomberg New Energy.

Following the Fukushima nuclear reactor disaster in 2011 in Japan, China has, like many countries including Japan, Germany and Switzerland, suspended nuclear power project approvals for a period, including construction of the pilot project of Shidaowan nuclear power plant in Shandong province that uses CAP1400 technology, based on third-generation Westinghouse AP1000 reactor technology.

As China promotes greener development and prioritizes safety and security of nuclear power plant construction, it has pledged to hit peak emissions before 2030 and achieve carbon neutrality by 2060, with electricity meeting 60% of energy use by 2060 according to Shell, the Shidaowan plant, originally scheduled to launch construction in 2014 and enter service in 2018, is expected to start fuel loading and begin operations this year.

Joseph Jacobelli, an independent energy analyst and executive vice-president for Asia business at Cenfura Ltd, a smart energy services company, said recent developments confirm China's ongoing commitment to further boost the country's nuclear sector.

"The nuclear plants can help meet China's goal of reducing greenhouse gas emissions as the country reduces coal power production and provide air pollution-free energy at a lower cost to consumers. China's need for clean energy means that nuclear power generation definitely has an important place in the long-term energy mix," Jacobelli said.

He added that Chinese companies' cost control capabilities and technological advancements, and operational performance improvements such as the AP1000 refueling outage record, are also likely to continue providing domestic companies with advantages, as the cost per kilowatt-hour is very important, especially as solar, wind and other clean energy solutions become even cheaper over the next few years.

China approved two nuclear projects in 2020- Hainan Changjiang nuclear power plant unit 2 and Zhejiang San'ao nuclear power plant unit 1. This is after the country launched three new nuclear power plants in 2019 in the provinces of Shandong, Fujian and Guangdong, which marked the end of a moratorium on new projects.

The Zhejiang San'ao nuclear power plant saw concrete poured for unit 1 on Dec 31, according to its operator China General Nuclear. It will be the first of six Hualong One pressurized water reactors to be built at the site as well as the first Chinese nuclear power plant project to involve private capital.

Jointly invested, constructed and operated by CGN, Zheneng Electric Power, Wenzhou Nuclear Energy Development, Cangnan County Haixi Construction Development and Geely Maijie Investment, the project creates a new model of mixed ownership of nuclear power enterprises, said CGN.

The world's first Hualong One reactor at unit 5 of China National Nuclear Corp's Fuqing nuclear plant in Fujian province was connected to the grid in November. With the start of work on San'ao unit 1, China now has further seven Hualong One units under construction, including Fuqing 6, which is scheduled to go online this year.

CNNC is also constructing one unit at Taipingling in Guangdong and two at Zhangzhou in Fujian province. CGN is building two at its Fangchenggang site in Guangxi Zhuang autonomous region. In addition, two Hualong One units are under construction at Karachi in Pakistan, while CGN proposes to use a UK version of the Hualong One at Bradwell in the United Kingdom, aligning with the country's green industrial revolution strategy.

 

Related News

View more

Is Ontario's Power Cost-Effective?

Ontario Nuclear Power Costs highlight LCOE, capex, refurbishment outlays, and waste management, compared with renewables, grid reliability, and emissions targets, informing Australia and Peter Dutton on feasibility, timelines, and electricity prices.

 

Key Points

They include high capex and LCOE from refurbishments and waste, offset by reliable, low-emission baseload.

✅ Refurbishment and maintenance drive lifecycle and LCOE variability.

✅ High capex and long timelines affect consumer electricity prices.

✅ Low emissions, but waste and safety compliance add costs.

 

Australian opposition leader Peter Dutton recently lauded Canada’s use of nuclear power as a model for Australia’s energy future. His praise comes as part of a broader push to incorporate nuclear energy into Australia’s energy strategy, which he argues could help address the country's energy needs and climate goals. However, the question arises: Is Ontario’s experience with nuclear power as cost-effective as Dutton suggests?

Dutton’s endorsement of Canada’s nuclear power strategy highlights a belief that nuclear energy could provide a stable, low-emission alternative to fossil fuels. He has pointed to Ontario’s substantial reliance on nuclear power, and the province’s exploration of new large-scale nuclear projects, as an example of how such an energy mix might benefit Australia. The province’s energy grid, which integrates a significant amount of nuclear power, is often cited as evidence that nuclear energy can be a viable component of a diversified energy portfolio.

The appeal of nuclear power lies in its ability to generate large amounts of electricity with minimal greenhouse gas emissions. This characteristic aligns with Australia’s climate goals, which emphasize reducing carbon emissions to combat climate change. Dutton’s advocacy for nuclear energy is based on the premise that it can offer a reliable and low-emission option compared to the fluctuating availability of renewable sources like wind and solar.

However, while Dutton’s enthusiasm for the Canadian model reflects its perceived successes, including recent concerns about Ontario’s grid getting dirtier amid supply changes, a closer look at Ontario’s nuclear energy costs raises questions about the financial feasibility of adopting a similar strategy in Australia. Despite the benefits of low emissions, the economic aspects of nuclear power remain complex and multifaceted.

In Ontario, the cost of nuclear power has been a topic of considerable debate. While the province benefits from a stable supply of electricity due to its nuclear plants, studies warn of a growing electricity supply gap in coming years. Ontario’s experience reveals that nuclear power involves significant capital expenditures, including the costs of building reactors, maintaining infrastructure, and ensuring safety standards. These expenses can be substantial and often translate into higher electricity prices for consumers.

The cost of maintaining existing nuclear reactors in Ontario has been a particular concern. Many of these reactors are aging and require costly upgrades and maintenance to continue operating safely and efficiently. These expenses can add to the overall cost of nuclear power, impacting the affordability of electricity for consumers.

Moreover, the development of new nuclear projects, as seen with Bruce C project exploration in Ontario, involves lengthy and expensive construction processes. Building new reactors can take over a decade and requires significant investment. The high initial costs associated with these projects can be a barrier to their economic viability, especially when compared to the rapidly decreasing costs of renewable energy technologies.

In contrast, the cost of renewable energy has been falling steadily, even as debates over nuclear power’s trajectory in Europe continue, making it a more attractive option for many jurisdictions. Solar and wind power, while variable and dependent on weather conditions, have seen dramatic reductions in installation and operational costs. These lower costs can make renewables more competitive compared to nuclear energy, particularly when considering the long-term financial implications.

Dutton’s praise for Ontario’s nuclear power model also overlooks some of the environmental and logistical challenges associated with nuclear energy. While nuclear power generates low emissions during operation, it produces radioactive waste that requires long-term storage solutions. The management of nuclear waste poses significant environmental and safety concerns, as well as additional costs for safe storage and disposal.

Additionally, the potential risks associated with nuclear power, including the possibility of accidents, contribute to the complexity of its adoption. The safety and environmental regulations surrounding nuclear energy are stringent and require continuous oversight, adding to the overall cost of maintaining nuclear facilities.

As Australia contemplates integrating nuclear power into its energy mix, it is crucial to weigh these financial and environmental considerations. While the Canadian model provides valuable insights, the unique context of Australia’s energy landscape, including its existing infrastructure, energy needs, and the costs of scrapping coal-fired electricity in comparable jurisdictions, must be taken into account.

In summary, while Peter Dutton’s endorsement of Canada’s nuclear power model reflects a belief in its potential benefits for Australia’s energy strategy, the cost-effectiveness of Ontario’s nuclear power experience is more nuanced than it may appear. The high capital and maintenance costs associated with nuclear energy, combined with the challenges of managing radioactive waste and ensuring safety, present significant considerations. As Australia evaluates its energy future, a comprehensive analysis of both the benefits and drawbacks of nuclear power will be essential to making informed decisions about its role in the country’s energy strategy.

 

Related News

View more

Wind Denmark - Danish electricity generation sets a new green record

Denmark 2019 electricity CO2 intensity shows record-low emissions as renewable energy surges, wind power dominates, offshore wind expands, and coal phase-out accelerates Denmark's energy transition and grid decarbonization, driven by higher CO2 prices and flexibility.

 

Key Points

It is 135 g CO2/kWh, a record low enabled by wind power growth, offshore wind, and a sharp coal decline.

✅ Average emissions fell to 135 g CO2/kWh, the lowest on record

✅ Wind and solar supplied 49.9% of national electricity use

✅ Coal consumption dropped 46% as CO2 allowance prices rose

 

Danish electricity producers set a new green record in 2019, when an average produced kilowatt-hour emitted 135 gr CO2 / kWh.

It is the lowest CO2 emission ever measured in Denmark and about one-seventh of what the electricity producers emitted in 1990.

Never has a kilowatt-hour produced emitted as little CO2 as it did in 2019. And that's according to Energinet's recently published annual Environmental Report on Danish electricity generation and cogeneration, two primary causes.

One reason is that more green power has been produced because the Horns Rev 3 offshore wind farm, which can produce electricity for 425,000 households, was commissioned in 2019. The other is that Danish coal consumption fell by 46 percent from 2018 to 2019, as coal phase-out plans gathered pace across the sector. the dramatic decline in coal consumption is partly due a significant increase in the price of CO2 quotas, and thus also the price of CO2 emissions.

'Historically, 135 gr CO2 / kWh is a really, really low figure, showing the impressive green travel that the Danish electricity system has been on. In 1990, a kilowatt-hour produced emitted over 1000 grams of CO2, ie about seven times as much as today, 'says Hanne Storm Edlefsen, area manager in Energinet Power Systems Responsibility.

Wind energy is the dominant form of electricity generation in Denmark, a pattern the UK wind beat coal in 2016 when shifting away from fossil fuels.

17.1 TWh. Danish wind turbines and solar cells generated so much electricity in 2019, corresponding to 49.9 per cent. of Danish electricity consumption, reflecting broader EU wind and solar growth trends as well. An increase of 15 per cent. The wind turbines alone produced 16 TWh, which is not only a new green record, but also puts a thick line that wind energy is by far the most dominant form of electricity generation in Denmark.

'Thanks to our large wind resources, turbines are by far the largest supplier of renewable energy in Denmark, and this will be for many years to come. The large price drop in new wind energy in recent years - for both onshore and offshore winds - will ensure that wind energy will drive a large part of the growth in renewable energy in the coming years, as new wind generation records are set in markets like the UK, 'says Soren Klinge, electricity market manager at Wind Denmark.

Conversely, total electricity generation from fossil and bio-based fuels decreased by 26 PJ (petajoule ed.), Corresponding to 34 per cent. from 2018 to 2019, mirroring renewables overtaking coal in Germany. Nevertheless, net electricity generation was just under 30 TWh both years.

'It is worth noting that while fossil fuels are being phased out, Denmark maintains its annual net production of electricity. The green, so to speak, replaces the black. It once again underpins that green conversion, high security of supply and an affordable electricity price can go hand in hand, 'says Hanne Storm Edlefsen.

Danish power system is ready for a green future

Including trade in electricity with neighboring countries, 1 kWh in a Danish outlet generates 145 gr CO2 / kWh.

'There has been a very significant development in the Danish electricity system in recent years, where the electricity system can now be operated solely on the renewable energy. It is a remarkable development, also from an international perspective where low-carbon progress stalled in the UK in 2019, that one would not have thought possible for just a few years ago, 'he says.

More than expected have phased out coal

The electricity from the Danish sockets will be greener , predicts Energinet's environmental report , which expects CO2 intensity in the coming years. This is explained by an expectation of increased electrification of energy consumption, together with a continued expansion with wind and solar.

'Wind energy is the cornerstone of the green transition. With the commissioning of the Kriegers Flak offshore wind farm and several major onshore wind turbine projects within the next few years, we can well expect that only the wind's share of electricity consumption will exceed 50 per cent hopefully as early as 2021,' concludes Soren Klinge.

 

Related News

View more

IAEA Warns of Nuclear Risks from Russian Attacks on Ukraine Power Grids

Ukraine nuclear safety risks escalate as IAEA warns of power grid attacks threatening reactor cooling, diesel generators, and Zaporizhzhia oversight, prompting UN calls for demilitarized zones to prevent radioactive releases and accidents.

 

Key Points

Escalating threats from grid attacks and outages that jeopardize reactor cooling, IAEA oversight, and public safety.

✅ Power grid strikes threaten reactor cooling systems.

✅ Emergency diesel generators are last defense lines.

✅ Calls grow for demilitarized zones around plants.

 

In early February 2025, Rafael Grossi, Director General of the International Atomic Energy Agency (IAEA), expressed grave concerns regarding the safety of Ukraine's nuclear facilities amid ongoing Russian attacks on the country's power grids, as Kyiv warned of a difficult winter without power after deadly strikes on energy infrastructure. Grossi's warnings highlight the escalating risks to nuclear safety and the potential for catastrophic accidents.

The Threat to Nuclear Safety

Ukraine's nuclear infrastructure, including the Zaporizhzhia Nuclear Power Plant—the largest in Europe—relies heavily on a stable power supply to maintain critical cooling systems and other safety measures. Russian military operations targeting Ukraine's energy infrastructure have led to power outages, and created hazards akin to those highlighted in downed power line safety guidance during emergency repairs, jeopardizing the safe operation of these facilities. Grossi emphasized that such disruptions could result in severe nuclear accidents if cooling systems fail.

IAEA's Response and Actions

In response to these threats, the IAEA has been actively involved in monitoring and assessing the situation. Grossi visited Kyiv to inspect electrical substations and discuss safety measures with Ukrainian officials. He underscored the necessity of ensuring uninterrupted power to nuclear plants and the critical role of emergency diesel generators as a last line of defense, and noted that maintaining staffing continuity, including measures such as staff living on site at critical facilities, may be necessary. The IAEA has also postponed the rotation of its mission at the Zaporizhzhia plant due to security concerns, as reported by Reuters.

International Concerns and Diplomatic Efforts

The international community has expressed deep concern over the potential for nuclear accidents in Ukraine, echoing earlier grid overseer warnings about systemic risks in other crises that stress energy systems. The United Nations and various countries have called for the establishment of a demilitarized zone around nuclear facilities to prevent military activities that could compromise their safety. Diplomatic efforts are ongoing to facilitate dialogue between Russia and Ukraine, aiming to ensure the protection of nuclear sites and the safety of surrounding populations.

The Zaporizhzhia Nuclear Power Plant

The Zaporizhzhia Nuclear Power Plant, located in southeastern Ukraine, has been under Russian control since early in the conflict, with Rosatom cooperation agreements reflecting broader nuclear policy priorities that frame Moscow's approach to the sector. The plant consists of six reactors and has been a focal point of international concern due to its size and the potential consequences of any incident. The IAEA has been working to maintain oversight and ensure the plant's safety amid the ongoing conflict.

Potential Consequences of Nuclear Accidents

A nuclear accident at any of Ukraine's nuclear facilities could have catastrophic consequences, including the release of radioactive materials, displacement of populations, and long-term environmental damage, with communities potentially facing weeks without electricity and basic services in the aftermath. The proximity of these plants to densely populated areas further amplifies the risks. The international community continues to monitor the situation closely, emphasizing the need for immediate action to safeguard nuclear facilities.

The ongoing conflict in Ukraine has introduced unprecedented challenges to nuclear safety. The IAEA's warnings and actions underscore the critical need for international cooperation to protect nuclear facilities from the dangers posed by military activities. Ensuring the safety of these sites is paramount to prevent potential disasters that could have far-reaching humanitarian and environmental impacts, and sustained attention to nuclear workers' safety concerns helps maintain operational readiness under strain.

 

Related News

View more

More Managers Charged For Price Fixing At Ukraine Power Producer

DTEK Rotterdam+ price-fixing case scrutinizes alleged collusion over coal-based electricity tariffs in Ukraine, with NABU probing NERC regulators, market manipulation, consumer overpayment, and wholesale pricing tied to imported coal benchmarks.

 

Key Points

NABU probes alleged DTEK-NERC collusion to inflate coal power tariffs via Rotterdam+; all suspects deny wrongdoing.

✅ NABU alleges tariff manipulation tied to coal import benchmarks.

✅ Four DTEK execs and four NERC officials reportedly charged.

✅ Probe centers on 2016-2017 overpayments; defendants contest.

 

Two more executives of DTEK, Ukraine’s largest private power and coal producer and recently in energy talks with Octopus Energy, have been charged in a criminal case on August 14 involving an alleged conspiracy to fix electricity prices with the state energy regulator, Interfax reported.

They are Ivan Helyukh, the CEO of subsidiary DTEK Grid, which operates as Ukraine modernizes its network alongside global moves toward a smart electricity grid, and Borys Lisoviy, a top manager of power generation company Skhidenergo, according to Kyiv-based Concorde Capital investment bank.

Ukraine’s Anti-Corruption Bureau (NABU) alleges that now four DTEK managers “pressured” and colluded with four regulators at the National Energy and Utilities Regulatory Commission to manipulate tariffs on electricity generated from coal that forced consumers to overpay, reflecting debates about unjustified profits in the UK, $747 million in 2016-2017.

 

DTEK allegedly benefited $560 million in the scheme.

All eight suspects are charged with “abuse of office” and deny wrongdoing, similar to findings in a B.C. Hydro regulator report published in Canada.

There is “no legitimate basis for suspicions set out in the investigation,” DTEK said in an August 8 statement.

Suspect Dmytro Vovk, the former head of NERC, dismissed the investigation as a “wild goose chase” on Facebook.

In separate statements over the past week, DTEK said the managers who are charged have prematurely returned from vacation to “fully cooperate” with authorities in order to “help establish the truth.”

A Kyiv court on August 14 set bail at $400,000 for one DTEK manager who wasn’t named, as enforcement actions like the NT Power penalty highlight regulatory consequences.

The so-called Rotterdam+ pricing formula that NABU has been investigating since March 2017, similar to federal scrutiny of TVA rates, was in place from April 2016 until July of this year.

It based the wholesale price of electricity by Ukrainian thermal power plants on coal prices set in the Rotterdam port plus delivery costs to Ukraine.

NABU alleges that at certain times it has not seen documented proof that the purchased coal originated in Rotterdam, insisting that there was no justification for the price hikes, echoing issues around paying for electricity in India in some markets.

Ukraine started facing thermal-coal shortages after fighting between government forces and Russia-backed separatists in the eastern part of the country erupted in April 2014. A vast majority of the anthracite-coal mines on which many Ukrainian plants rely are located on territory controlled by the separatists.

Overnight, Ukraine went from being a net exporter of coal to a net importer and started purchasing coal from as far away as South Africa and Australia.

 

Related News

View more

Paying for electricity in India: Power theft can't be business as usual

India Power Sector Payment Crisis strains utilities with electricity theft, discom arrears, coal dues, and subsidy burdens, triggering outages, load-shedding, and tariff stress as record heatwave demand tests grid reliability, billing compliance, and infrastructure upgrades.

 

Key Points

Linked payment shortfalls, theft, and subsidies driving arrears, outages, and planning gaps across Indias power grid.

✅ Discom arrears surpass Rs 1 lakh crore, straining cash flow

✅ Coal India unpaid, fuel risk rises and tariffs face pressure

✅ Outages and load-shedding worsen amid heatwave demand spike

 

India is among the world leaders in losing money to electricity theft. The country’s power sector also has a peculiar pattern of entities selling without getting the money on time, or nothing at all, while Manitoba Hydro debt highlights similar strains elsewhere. Coal India is owed about Rs 12,300 crore by power generation companies, which themselves have not been paid over Rs 1 lakh crore by distribution companies. The figures of losses suffered by discoms are much higher, even as UK network profits have drawn criticism, underscoring divergent market outcomes. The circuit does get completed somehow, but the uneven transaction, which defies business sense, introduces a disruptive strand that limits the scope for any future planning. Regular and unannounced shutdowns become the norm as the power supply falls short of demand, which this time is expected to touch record highs of 215-220 gigawatts amid the scorching heatwave, and cases like deferred BC Hydro costs illustrate how financial pressures accumulate.

In debt-ridden Punjab, the power subsidy bill is over Rs 10,000 crore, a large portion of which serves farmers. The AAP government plans to provide free electricity up to 300 units for every household from July 1, even as power bill cuts in Thailand show alternative approaches to affordability. The generous giveaways cannot camouflage the state of affairs. Thirty-three government departments had outstanding electricity bills of Rs 62 crore as on March 31, the end of the last financial year. With arrears of Rs 22.48 crore, the biggest defaulter was the Water and Sanitation Department. According to the Punjab State Power Corporation Limited, around 40 police stations and posts have been found to be stealing power or failing to clear the bills, while utility impersonation scams target consumers elsewhere. Customary warnings have been issued of snapping supply if the dues are not paid, even as utility penalties for disconnection delays underscore enforcement challenges, but ‘public interest’ and ‘essential services’ will ensure that such an eventuality does not arise.

The substantial fine imposed on a dera stealing power in Tarn Taran, along with the registration of an FIR, is exemplary action that needs to be carried forward. Change is tough, but a new way of working begins with those in positions of power leading by example, be it fixing the payment mechanism, upgrading infrastructure with smart grid initiatives in mind, minimising the use of electricity or a gradual switch to alternative energy sources.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified