Ontario saves 900 MW during Earth Hour

By Toronto Star


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Hundreds of thousands of Toronto area residents powered down for Earth Hour March 29, accounting for almost half of the 900-megawatt drop in electricity consumption recorded province-wide.

Across the GTA, according to calculations by the various hydro utilities, Earth Hour saved about 434 megawatts between 8 and 9 p.m. on Saturday, when Canadians joined millions around the world in making a symbolic statement about conservation and climate change by turning their lights off.

The electricity saved is enough to power about 434,450 homes, based on a benchmark of 1kw per average home, chosen by the Star after consultation with utilities.

Of course, most households observing Earth Hour did not power down completely – leaving fridges and other appliances humming – so the actual number of participating homes could be much higher.

Complicating comparisons is the variety of ways the various utilities compared the power savings, given variations in sunset times, weather and other factors. Some utilities compared 8 to 9 p.m. last Saturday with the same hour on the previous Saturday. Others compared it with an average of all March Saturdays, and others with the last Saturday of March 2007.

But however the numbers shake out, they do show that suburban municipalities played a significant role, with smaller towns like Milton and Newmarket leading the way – showing a remarkable 15 per cent and 14 per cent drop in consumption, respectively.

"We saw quite a dip," said Paul Ferguson of Newmarket Hydro. "I'm still saying ‘Wow!' It's quite outstanding."

"I was quite impressed," added Veridian Connections spokesperson George Armstrong, whose utility covers eastern municipalities such as Pickering and Ajax. "Customers seem to have taken this to heart."

Most GTA municipalities had declared their support, and many used Earth Hour as an opportunity to showcase their use of efficient and sustainable technologies. Aurora, for example, boasts a new recreation complex with technology that reclaims heat shed in making ice and transfers it to the pool, air and a snow-melting reservoir.

The survey shows significant differences among municipalities. On a per capita basis, for example, Markham did much better than similarly sized Vaughan as well as much larger Mississauga.

Earth Hour organizers had set a goal of a 5 per cent reduction, which was exceeded in much of the GTA, but said from the beginning that the event's main goal was to raise awareness about how Canadians can personally and corporately do more to fight climate change.

Some 100,000 Canadians signed up officially on the Earth Hour website (earthhour.org), the second highest in the world per capita. Results of a survey later this week are expected to give an indication of how many actually participated.

Related News

A tenth of all electricity is lost in the grid - superconducting cables can help

High-Temperature Superconducting Cables enable lossless, high-voltage, underground transmission for grid modernization, linking renewable energy to cities with liquid nitrogen cooling, boosting efficiency, cutting emissions, reducing land use, and improving resilience against disasters and extreme weather.

 

Key Points

Liquid-nitrogen-cooled power cables delivering electricity with near-zero losses, lower voltage, and greater resilience.

✅ Near-lossless transmission links renewables to cities efficiently

✅ Operate at lower voltage, reducing substation size and cost

✅ Underground, compact, and resilient to extreme weather events

 

For most of us, transmitting power is an invisible part of modern life. You flick the switch and the light goes on.

But the way we transport electricity is vital. For us to quit fossil fuels, we will need a better grid, with macrogrid planning connecting renewable energy in the regions with cities.

Electricity grids are big, complex systems. Building new high-voltage transmission lines often spurs backlash from communities, as seen in Hydro-Que9bec power line opposition over aesthetics and land use, worried about the visual impact of the towers. And our 20th century grid loses around 10% of the power generated as heat.

One solution? Use superconducting cables for key sections of the grid. A single 17-centimeter cable can carry the entire output of several nuclear plants. Cities and regions around the world have done this to cut emissions, increase efficiency, protect key infrastructure against disasters and run powerlines underground. As Australia prepares to modernize its grid, it should follow suit with smarter electricity infrastructure initiatives seen elsewhere. It's a once-in-a-generation opportunity.


What's wrong with our tried-and-true technology?
Plenty.

The main advantage of high voltage transmission lines is they're relatively cheap.

But cheap to build comes with hidden costs later. A survey of 140 countries found the electricity currently wasted in transmission accounts for a staggering half-billion tons of carbon dioxide—each year.

These unnecessary emissions are higher than the exhaust from all the world's trucks, or from all the methane burned off at oil rigs.

Inefficient power transmission also means countries have to build extra power plants to compensate for losses on the grid.

Labor has pledged A$20 billion to make the grid ready for clean energy, and international moves such as US-Canada cross-border approvals show the scale of ambition needed. This includes an extra 10,000 kilometers of transmission lines. But what type of lines? At present, the plans are for the conventional high voltage overhead cables you see dotting the countryside.

System planning by Australia's energy market operator shows many grid-modernizing projects will use last century's technologies, the conventional high voltage overhead cables, even as Europe's HVDC expansion gathers pace across its network. If these plans proceed without considering superconductors, it will be a huge missed opportunity.


How could superconducting cables help?
Superconduction is where electrons can flow without resistance or loss. Built into power cables, it holds out the promise of lossless electricity transfer, over both long and short distances. That's important, given Australia's remarkable wind and solar resources are often located far from energy users in the cities.

High voltage superconducting cables would allow us to deliver power with minimal losses from heat or electrical resistance and with footprints at least 100 times smaller than a conventional copper cable for the same power output.

And they are far more resilient to disasters and extreme weather, as they are located underground.

Even more important, a typical superconducting cable can deliver the same or greater power at a much lower voltage than a conventional transmission cable. That means the space needed for transformers and grid connections falls from the size of a large gym to only a double garage.

Bringing these technologies into our power grid offers social, environmental, commercial and efficiency dividends.

Unfortunately, while superconductors are commonplace in Australia's medical community (where they are routinely used in MRI machines and diagnostic instruments) they have not yet found their home in our power sector.

One reason is that superconductors must be cooled to work. But rapid progress in cryogenics means you no longer have to lower their temperature almost to absolute zero (-273℃). Modern "high temperature" superconductors only need to be cooled to -200℃, which can be done with liquid nitrogen—a cheap, readily available substance.

Overseas, however, they are proving themselves daily. Perhaps the most well-known example to date is in Germany's city of Essen. In 2014, engineers installed a 10 kilovolt (kV) superconducting cable in the dense city center. Even though it was only one kilometer long, it avoided the higher cost of building a third substation in an area where there was very limited space for infrastructure. Essen's cable is unobtrusive in a meter-wide easement and only 70cm below ground.

Superconducting cables can be laid underground with a minimal footprint and cost-effectively. They need vastly less land.

A conventional high voltage overhead cable requires an easement of about 130 meters wide, with pylons up to 80 meters high to allow for safety. By contrast, an underground superconducting cable would take up an easement of six meters wide, and up to 2 meters deep.

This has another benefit: overcoming community skepticism. At present, many locals are concerned about the vulnerability of high voltage overhead cables in bushfire-prone and environmentally sensitive regions, as well as the visual impact of the large towers and lines. Communities and farmers in some regions are vocally against plans for new 85-meter high towers and power lines running through or near their land.

Climate extremes, unprecedented windstorms, excessive rainfall and lightning strikes can disrupt power supply networks, as the Victorian town of Moorabool discovered in 2021.

What about cost? This is hard to pin down, as it depends on the scale, nature and complexity of the task. But consider this—the Essen cable cost around $20m in 2014. Replacing the six 500kV towers destroyed by windstorms near Moorabool in January 2020 cost $26 million.

While superconducting cables will cost more up front, you save by avoiding large easements, requiring fewer substations (as the power is at a lower voltage), and streamlining approvals.


Where would superconductors have most effect?
Queensland. The sunshine state is planning four new high-voltage transmission projects, to be built by the mid-2030s. The goal is to link clean energy production in the north of the state with the population centers of the south, similar to sending Canadian hydropower to New York to meet demand.

Right now, there are major congestion issues between southern and central Queensland, and subsea links like Scotland-England renewable corridors highlight how to move power at scale. Strategically locating superconducting cables here would be the best location, serving to future-proof infrastructure, reduce emissions and avoid power loss.

 

Related News

View more

Canada in top 10 for hydropower jobs, but doesn't rank on other renewables

Canada Renewable Energy Jobs rank top 10 in hydropower, says IRENA, but trail in solar PV, wind power, and liquid biofuels; clean tech growth, EV manufacturing, and Canada Infrastructure Bank funding signal broader carbon-neutral opportunities.

 

Key Points

Canada counts 61,130 clean energy roles, top 10 in hydropower, with potential in solar, wind, biofuels, and EV manufacturing.

✅ 61,130 clean energy jobs in Canada per IRENA

✅ Top 10 share in hydropower employment

✅ Growth expected in solar, wind, biofuels, and EVs

 

Canada has made the top 10 list of countries for the number of jobs in hydropower, but didn’t rank in three other key renewable energy technologies, according to new international figures.

Although Canada has only two per cent of the global workforce, it had one of the 10 largest slices of the world’s jobs in hydropower in 2019, says the Abu Dhabi-based International Renewable Energy Agency (IRENA)

Canada didn’t make IRENA’s other top-10 employment lists, for solar photovoltaic (PV) technology, where solar power lags by international standards, liquid biofuels or wind power, released Sept. 30. Figures from the agency show the whole sector represents 61,130 jobs across Canada, or 0.5 per cent of the world’s 11.5 million jobs in renewables.

The numbers show Canada needs to move faster to minimize the climate crisis, including by joining trade blocs that put tariffs on high-carbon goods, argued the Victoria-based BC Sustainable Energy Association after reviewing IRENA’s report. The Canadian Renewable Energy Association also said it showed the country has untapped job creation potential, even as growth projections were scaled back after Ontario scrapped a clean energy program.

But other clean tech advocates say there’s more to the story. When tallying clean energy jobs, it's worth a broader look, Clean Energy Canada argued, pointing to the recent Ford-Unifor deal that includes a $1.8-billion commitment to produce electric vehicles in Oakville, Ont.

Natural Resources Minister Seamus O'Regan’s office also pointed out the renewables employment figures from IRENA are proportional to global population. “While Canada's share of the global clean energy job market is in line with our population size, we produce almost 2.7 per cent of the world’s total primary renewable energy supply. As only 0.5 per cent of the global population, we punch above our weight,” said O'Regan's press secretary, Ian Cameron.

Canada joined IRENA in January 2019 and the country has been described by the association as an “important market” for renewables over the long term.

On Thursday, Prime Minister Justin Trudeau announced a new $10-billion “Growth Plan” to be run by the Canada Infrastructure Bank that would include “$2.5 billion for clean power to support renewable generation and storage and to transmit clean electricity between provinces, territories, and regions, including to northern and Indigenous communities.” The infrastructure bank's plan is expected to create 60,000 jobs, the government said, and in Alberta an Alberta renewables surge could power 4,500 jobs as projects scale up.

World ‘building the renewable energy revolution now’

A powerful renewables sector is not just about job creation. It is also imperative if we are to meet global climate objectives, according to the Intergovernmental Panel on Climate Change. Renewable energy sources have to make up at least a 63 per cent share of the global electricity market by mid-century to battle the more extreme effects of climate change, it said.

“The IRENA report shows that people all over of the world are building the renewable energy revolution now,” said Tom Hackney, policy adviser for the BC Sustainable Energy Association.

“Many people in Canada are doing so, too. But we need to move faster to minimize climate change. For example, at the level of trade policy, a great idea would be to develop low-carbon trading blocs that put tariffs on goods with high embodied carbon emissions.”

Canadian Renewable Energy Association president and CEO Robert Hornung said the IRENA jobs review highlights “significant job creation potential” in Canada. As governments explore how to stimulate economic recovery from the impact of the COVID-19 pandemic, said Hornung, it's important to “capitalize on Canada's untapped renewable energy resources.”

In Canada, 82 per cent of the electricity grid is already non-emitting, noted Sarah Petrevan, policy director for Clean Energy Canada.

With the federal government committing to a 90 per cent non-emitting grid by 2030, said Petrevan, more wind and solar deployment can be expected, even though solar demand has lagged in recent years, especially in the Prairies where renewables are needed to help with Canada’s coal-fired power plant phase out.

One example of renewables in the Prairies, where the provinces are poised to lead growth, is the Travers Solar project, which is expected to be constructed in Alberta through 2021, and is being touted as “Canada's largest solar farm.”

But renewables are only “one part of the broader clean energy sector,” said Petrevan. Clean Energy Canada has outlined how Canada could be electric and clean with the right choices, and has calculated clean tech supports around 300,000 jobs, projected to grow to half a million by 2030.

“We’re talking about a transition of our energy system in every sense — not just in the power we produce. So while the IRENA figures provide global context, they reflect only a portion of both our current reality and the opportunity for Canada,” she said.

The organization’s research has shown that manufacturing of electric vehicles would be one of the fastest-growing job creators over the next decade. Putting a punctuation mark on that is a recent $1.8-billion deal with Ford Motor Company of Canada to produce five models of electric vehicles in Oakville, Ont.

China ‘remains the clear leader’ in renewables jobs

With 4.3 million renewable energy jobs in 2019, or 38 per cent of all renewables jobs, China “remains the clear leader in renewable energy employment worldwide,” the IRENA report states. China has the world's largest population and the second-largest GDP.

The country is also by far the world’s largest emitter of carbon pollution, at 28 per cent of global greenhouse gas emissions, and has significant fossil fuel interests. Chinese President Xi Jinping called for a “green revolution” last month, and pledged to “achieve carbon neutrality before 2060.”

China holds the largest proportion of jobs in hydropower, with 29 per cent of all jobs, followed by India at 19 per cent, Brazil at 11 per cent and Pakistan at five per cent, said IRENA.

Canada, with 32,359 jobs in the industry, and Turkey and Colombia hold two per cent each of the world’s hydropower jobs, while Myanmar and Russia hold three per cent each and Vietnam has four per cent.

China also dominates the global solar PV workforce, with 59 per cent of all jobs, followed by Japan, the United States, India, Bangladesh, Vietnam, Malaysia, Brazil, Germany and the Philippines. There are 4,261 jobs in solar PV in Canada, IRENA calculated, and the country is set to hit a 5 GW solar milestone as capacity expands, out of a global workforce of 3.8 million jobs.

In wind power, China again leads, with 44 per cent of all jobs. Germany, the United States and India come after, with the United Kingdom, Denmark, Mexico, Spain, the Philippines and Brazil following suit. Canada has 6,527 jobs in wind power out of 1.17 million worldwide.

As for liquid biofuels, Brazil leads that industry, with 34 per cent of all jobs. Indonesia, the United States, Colombia, Thailand, Malaysia, China, Poland, Romania and the Philippines fill out the top 10. There are 17,691 jobs in Canada in liquid biofuels.

 

Related News

View more

New York State Moratorium on Utility Disconnections During Emergencies

New York Utility Disconnection Ban protects residents during state emergencies, covering electric, gas, water, telecommunications, cable, and internet services, with penalties for noncompliance and options like deferred payment agreements and consumer protections.

 

Key Points

A proposed law barring shutoffs in state emergencies across electric, gas, water, telecom, cable, and internet.

✅ Applies during declared state and local emergencies statewide.

✅ Covers electric, gas, water, telecom, cable, and internet services.

✅ Noncompliance triggers penalties; payment plans required for arrears.

 

Governor Andrew M. Cuomo has announced a proposal to prohibit utility disconnections in regions that are under a state of emergency, addressing the energy insecurity many households face, as part of the 2021 State of the State. The Governor will propose legislation that will apply to electric, gas, water, telecommunications, cable and internet services. Utilities that fail to comply will be subject to penalties.

“In a year in which we dealt with an unprecedented pandemic, ferocious storms added insult to injury by knocking out power for hundreds of thousands of New Yorkers,” Governor Cuomo said. “Utility companies provide essential services, and we need to make sure they continue to provide them, rain or shine. That’s why we’re proposing legislation to make sure that New Yorkers, especially those living in regions under states of emergency, have access to these critical services to provide for themselves and their families.”

Governor Cuomo has taken a series of actions to protect New Yorkers’ access to utilities during the COVID-19 pandemic, including a suspension of shut-offs in New York and New Jersey, among other measures. Last year, the Governor signed legislation extending a moratorium that prevents utility companies from disconnecting utilities to residential households that are struggling with their bills due to the COVID-19 pandemic, a move mirrored by reconnection efforts in Ontario by Hydro One. Utility companies must instead offer these individuals a deferred payment agreement on any past-due balance. 

On November 19, Governor Cuomo announced that Con Edison now faces $25 million in penalties and possible license revocation from the New York State Public Service Commission, amid a broader review of retail energy markets by state regulators, following an investigation into the utility’s failed response during large-scale power outages in Manhattan and Brooklyn in July 2019. On November 2, Governor Cuomo announced that more than $328 million in home heating aid is now available, similar to Ontario bill support during the pandemic, for low- and middle-income New Yorkers who need assistance keeping their homes warm during the coming winter season.

The Governor has previously enacted some of the strongest and most progressive consumer protection and assistance programs in the country, including smart streetlights in Syracuse that reduce energy costs, and other initiatives. Governor Cuomo established New York’s energy affordability policy in 2016, as states pursue renewable energy ambitions that can affect rates, underscoring the need for affordability. The policy extended energy bill support to more than 152,000 additional New York families, ensuring that more than 920,000 New York families spend no more than 6 percent of their income on energy bills. Through this program, New York commits more than $238 million annually helping to keep the lights and heat on for our most vulnerable New Yorkers, while actively striving to expand coverage to additional families.

 

Related News

View more

National Energy Board hears oral traditional evidence over Manitoba-Minnesota transmission line

Manitoba-Minnesota Transmission Line connects Bipole III to Minnesota, raising export capacity, as NEB hearings weigh Indigenous rights, treaty obligations, environmental assessment, cumulative effects, and cross-border hydroelectric infrastructure impacts, land access, socio-economic concerns, and regulatory review.

 

Key Points

A cross-border hydro line linking Manitoba to Minnesota under review on Indigenous rights and environment concerns.

✅ Connects Bipole III to Minnesota to boost exports

✅ NEB hearings include Indigenous rights and treaty issues

✅ Environmental and access impacts debated in regulatory review

 

Concerned Indigenous groups asked the National Energy Board this week to take into consideration existing and future impacts and treaty rights, which have prompted a halt to Site C work elsewhere, when considering whether to OK a new hydro transmission line between Manitoba and Minnesota.

Friday was the last day of the oral traditional evidence hearings in Winnipeg on Manitoba Hydro's Manitoba-Minnesota Transmission project.

The international project will connect Manitoba Hydro's Bipole III transmission line to Minnesota and increase the province's electricity export capacity to 3185 MW from 2300 MW.

#google#

During the hearings Indigenous groups brought forward concerns and evidence of environmental degradation, echoing Site C dam opponents in other regions, and restricted access to traditional lands.

Ramona Neckoway, a member of the Nelson House First Nation, talked about her concern about the scope of Manitoba Hydro's application to the NEB.

"It's only concerned with a narrow 213 km corridor and thus it erases the histories, socio-economic impacts and the environmental degradation attached to this energy source," said Neckoway.

Prior to the hearings the board stated it did not intend to assess the environmental and socio-economic impacts of upstream or downstream facilities associated with electricity production, even as a utilities watchdog on Site C stability raised questions elsewhere.

However, the board did hear evidence from upstream and downstream affected communities despite objection from Manitoba Hydro lawyers.

"Manitoba Hydro objected to us being here, saying that we are irrelevant, but we are not irrelevant," said Elder Tommy Monias from Cross Lake First Nation.

Manitoba Hydro representative Bruce Owen said, "We respect the NEB hearing process and look forward to the input of all interested parties."

The hearings provided a rare opportunity for First Nations communities, similar to Ontario First Nations urging action, to voice their concerns about the line on a federal level.

"One of the hopes is that this project can't be built until a system-wide assessment is made," said Dr. Peter Kulchyski, an expert witness for the southern chiefs organization and professor of Native Studies at the University of Manitoba.

 

Hearings continue

The line is already under construction on the American side of the border as the NEB public hearings continue until June 22 with cross examinations and final arguments from Manitoba Hydro and intervenor groups.

The NEB's final decision on the Manitoba-Minnesota transmission line, amid an energy board delay recommendation, will be made before March 2019.

 

Related News

View more

International Atomic Energy Agency agency commends China's nuclear security

IAEA Nuclear Security Mission in China reviews regulatory frameworks, physical protection, and compliance at nuclear power plants, endorsing CAEA efforts, IPPAS guidance, and capacity building to strengthen safeguards, risk management, and global cooperation.

 

Key Points

An IAEA advisory visit assessing China's nuclear security, physical protection, and regulatory frameworks.

✅ Reviews laws, regulations, and physical protection measures

✅ Endorses CAEA, COE, and IPPAS-aligned best practices

✅ Recommends accelerated rulemaking for expanding reactors

 

The International Atomic Energy Agency commended China's efforts and accomplishments in nuclear security after conducting its first nuclear security advisory mission to the nation, according to the China Atomic Energy Authority.

The two-week International Physical Protection Advisory Service mission, from Aug 28to Saturday, reviewed the legislative and regulatory framework for nuclear security as well as the physical protection of nuclear material and facilities, including worker safety protocols during health emergencies.

An eight-member expert team led by Joseph Sandoval of the United States' Sandia National Laboratories visited Fangjiashan Nuclear Power Plant, part of the Qinshan Nuclear Power Station in Zhejiang province, to examine security arrangements and observe physical protection measures, where recognized safety culture practices can reinforce performance.

The experts also met with officials from several Chinese government bodies involved in nuclear security such as the China Atomic Energy Authority, National Nuclear Safety Administration and Ministry of Public Security.

The international agency has carried out 78 of the protection missions in 48 member states since 1995. This was the first in China, it said.

The China Atomic Energy Authority said on Tuesday that a report by the experts highly approves of the Chinese government's continuous efforts to strengthen nuclear safety, to boost the sustainable development of the nuclear power industry and to help establish a global nuclear security system.

The report identifies the positive roles played by the State Nuclear Security Technology Center and its subsidiary, the Center of Excellence on Nuclear Security, in enhancing China's nuclear security capability and supporting regional and global cooperation in the field, such as bilateral cooperation agreements that advance research and standards, officials at the China Atomic Energy Authority said.

"A strong commitment to nuclear security is a must for any state that uses nuclear power for electricity generation and that is planning to significantly expand this capacity by constructing new power reactors," said Muhammad Khaliq, head of the international agency's nuclear security of materials and facilities section. "China'sexample in applying IAEA nuclear security guidance and using IAEA advisory services demonstrates its strong commitment to nuclear security and its enhancement worldwide."

The report notes that along with the rapid growth of China's nuclear power sector, challenges have emerged when it comes to the country's nuclear security mechanism and management, as highlighted by grid reliability warnings during pandemics in other markets.

It suggests that the Chinese government accelerate the making of laws and regulations to better govern this sector.

Deng Ge, director of the State Nuclear Security Technology Center, said the IAEAmission would help China strengthen its nuclear security since the nation could learn from other countries' successful experience, including on-site staffing measures to maintain critical operations, and find out its weaknesses for rectification.

Deng added that the mission's report can help the international community understand China's contributions to the global nuclear security system and also offer China's best practices to other nations.

 

Related News

View more

Energy Vault Lands $110M From SoftBank’s Vision Fund for Gravity Storage

Energy Vault Gravity Storage uses crane-stacked concrete blocks to deliver long-duration, grid-scale renewable energy; a SoftBank Vision Fund-backed, pumped-hydro analog enabling baseload power and a lithium-ion alternative with proprietary control algorithms.

 

Key Points

Gravity-based cranes stack blocks to store and dispatch power for hours, enabling grid-scale, low-cost storage.

✅ 4 MW/35 MWh modules; ~9-hour duration

✅ Estimated $200-$250/kWh; lower LCOE than lithium-ion

✅ Backed by SoftBank Vision Fund; Cemex and Tata support

 

Energy Vault, the Swiss-U.S. startup that says it can store and discharge electrical energy through a super-sized concrete-and-steel version of a child’s erector set, has landed a $110 million investment from Japan’s SoftBank Vision Fund to take its technology to commercial scale.

Energy Vault, a spinout of Pasadena-based incubator Idealab and co-founded by Idealab CEO and billionaire investor Bill Gross, unstealthed in November with its novel approach to using gravity to store energy.

Simply put, Energy Vault plans to build storage plants — dubbed “Evies” — consisting of a 35-story crane with six arms, surrounded by a tower consisting of thousands of concrete bricks, each weighing about 35 tons.

This plant will “store” energy by using electricity to run the cranes that lift bricks from the ground and stack them atop of the tower, and “discharge” energy by reversing that process. It’s a mechanical twist on the world’s most common energy storage technology, pumped hydro, which “stores” energy by pumping water uphill, and lets it fall to spin turbines when electricity is needed, even as California funds 100-hour long-duration storage pilots to expand flexibility worldwide.

But behind this simplicity lies some heavy-duty software to orchestrate the cranes and blocks, with a "unique stack of proprietary algorithms" to balance energy supply and demand, volatility, grid stability, weather elements and other variables.

CEO and co-founder Robert Piconi said in a November interview with GTM that the standard array would deliver 4 megawatts/35 megawatt-hours of storage, which translates to nearly 9 hours of duration — the equivalent of building the tower to its height, and then reducing it to ground level. It can be built on-site in partnership with crane manufacturers and recycled concrete material, and can run fully automated for decades with little deterioration, he said.

And the cost, which Piconi pegged in the $200 to $250 per kilowatt-hour range, with room to decline further, is roughly 50 percent below the upfront price of the conventional storage market today, and 80 percent below it on levelized cost, he said, a trend utilities see benefits in as they plan resources.

The result, according to Wednesday’s statement, is a technology that could allow “renewables to deliver baseload power for less than the cost of fossil fuels 24 hours a day,” in applications such as community microgrids serving low-income housing.

Wednesday’s announcement builds on a recent investment from Mexico's Cemex Ventures, the corporate venture capital unit of building materials giant Cemex, along with a promise of deployment support from Cemex's strategic network, and also follows project financing for a California green hydrogen microgrid led by the company. Piconi said in November that the company had sufficient investment from two funding rounds to carry it through initial customer deployments, though he declined to disclose figures.

This is the first energy storage investment for Vision Fund, the $100 billion venture fund set up by SoftBank founder Masayoshi Son. While large by startup standards, it’s in keeping with the capital costs that Energy Vault will face in scaling up its technology to meet its commitments, amid mounting demand in regions like Ontario energy storage that face supply crunches. Those include a 35 megawatt-hour order with Tata Power Company, the energy-producing arm of the Indian industrial conglomerate, first unveiled in November, as well as plans to demonstrate its first storage tower in northern Italy in 2019.

For Vision Fund, it’s also an unusual choice for a storage investment, given that the vast majority of venture capital in the industry today is being directed toward lithium-ion batteries, and even Mercedes-Benz energy storage ventures targeting the U.S. market. Lithium-ion batteries are limited in terms of how many hours they can provide cost-effectively, with about 4 hours being seen as the limit today.

The search for long-duration energy storage has driven investment into flow battery technologies such as grid-scale vanadium systems deployed on utility networks, compressed-air energy storage and variations on gravity-based storage, including a previous startup backed by Gross and Idealab, Energy Cache, whose idea of using a ski lift carrying buckets of gravel up a hill to store energy petered out with a 50-kilowatt pilot project.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.