Giving the grid some backbone

By Scientific American


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A stiff wind blows year-round in North Dakota. In Arizona the sun beats down virtually every day.

The U.S. has vast quantities of renewable electricity sources waiting to be tapped in these regions, but what it does not have there are power lines — big power lines that can carry the bountiful energy to distant cities and industries where it is needed.

The same is true beyond the windswept high plains and the sun-baked Mojave Desert: renewable supply and electricity demand are seldom in the same place, and too often the transmission lines needed to connect them are missing. The disparity exists even in New England, where hundreds of miles of high-tension wires supported by thousands of steel towers run neatly through dense areas of settlement.

When Gordon Van Wiele, chief executive of ISO New England — in charge of transmission in the six-state region — unfurls a map of the land there, large ovals show the location of the best wind sites: Vermont near the Quebec border and eastern Maine spilling over into New Brunswick. But sure enough, no transmission lines transect them.

The U.S. has the natural resources, the technology and the capital to make a massive shift to renewable energy, a step that would lower emissions of greenhouse gases and smog-forming pollutants from coal-fired power plants while also freeing up natural gas for better uses. Missing is a high-voltage transmission backbone to make that future a reality.

In some places, wind power, still in its infancy, is already running up against the gridÂ’s limits.

“Most of the potential for renewable resources tends to be in places where we don’t have robust existing transmission infrastructure,” Van Wiele says. Instead, for decades electric companies have built coal, nuclear, natural gas and oil-fired generators close to customers.

That strategy worked reasonably well until recently, when 28 state governments set “renewable portfolio standards” requiring their utilities to supply a certain portion of their electricity using renewables, such as 20 percent by 2020 or even sooner.

But as Kurt E. Yeager, former president of the Electric Power Research Institute in Palo Alto, Calif., points out, such standards “aren’t worth the paper they’re written on until we have a power system, a grid, that is capable of assimilating that intermittent energy without having to build large quantities of backup power, fossil-fueled, to enable it.”

In Colorado the utility that serves most of the state, Xcel Energy, is now building a megawatt of natural gas capacity for every megawatt of wind so that it is ready to come online quickly to provide power when the wind tails off. That plan is a carbon improvement but not really a carbon solution.

The U.S. needs a new transmission backbone that crisscrosses the country, knitting together many large wind farms, solar-energy fields, geothermal pools, hydroelectric generators and other alternative sources.

One utility company has already unveiled a grand plan for the U.S., and other experts are charting their own backbone schemes. But whichever one might prevail will require a lot of money and a lot of coordination across what are now independent areas of technological and political control.

Even before the emphasis on climate change, reasons were mounting to remake the grid. Chief among them are bottlenecks that stifle the flow of power.

North America is actually covered by four regional grids (three of which serve the U.S.). The largest is the Eastern Interconnection, an extensive complex of transmission lines that stretches from Halifax to New Orleans, with substations that step down the high-voltage electricity to lower levels so that it can be distributed locally along smaller wires.

West of the Rockies is the Western Interconnection, from British Columbia to San Diego and a small slice of Mexico. Texas, in an echo of its history as an independent republic, comprises its own grid, now called the Electric Reliability Council of Texas. And Quebec, with its separatist undercurrent, also has its own grid.

The high-voltage transmission systems in the four regions comprise about 200,000 miles of power lines, divided among a staggering 500 owners, that carry current from more than 10,000 power plants run by about 6,000 investor-owned utilities, public power systems and co-ops.

The four interconnections are linked by short, high-voltage lines, but they do not provide nearly enough capacity to move sufficient power back and forth, much less to handle the additional burden of thousands of renewable sources with output that is intermittent and sometimes hard to predict. Transmission lines within the interconnections are similarly inadequate, strained by the ever-increasing demand for electricity. As a result, the entire grid is more prone to blackouts.

“The transmission system is being used closer to its limits more of the time than at any time in the past,” says Rick Sergel, president of the North American Electric Reliability Corporation, which sets operating standards for the system in the U.S. and parts of Canada. Restructuring of the electric industry has also created many more dispersed buyers and sellers, but the conduit to connect them has barely changed.

Transmission is not faring well even within the footprint of a single large utility. Take American Electric Power (AEP), which serves a broad swath of the nationÂ’s midsection.

Throughout the 1980s a key high-voltage link near the center of its system operated like an occluded artery. The bottleneck ran between two places most electricity users have never heard of: Kanawha, Virginia, and Matt Funk, West Virginia. At times the line hobbled the entire system, limiting transfer of abundant, cheap electricity from dozens of coal plants in Illinois, Indiana, Kentucky and Ohio to the hungry markets of the East Coast, which had to rely instead on local generators fueled by more expensive natural gas or oil.

The line was rated as high as the industry goes — a 765-kilovolt leviathan with towers 13 stories high, straddling a right-of-way 200 feet wide. But it was usually limited to carrying less than half of its capacity because of the grid’s design.

The electric system always has to be operated so that no single line failure will start a cascade of failures that would lead to a blackout. If the Kanawha–Matt Funk line tripped out of service at full load, it could send a wave of power flowing to a parallel but smaller line rated at only 345 kilovolts. That line would be knocked out, and a cascade might follow.

The occlusion started in the 1980s, when for a few hours every year limits on the line prevented interregional transfers of power that would have saved consumers money. Instead new power plants had to be built or existing plants that were expensive to run were kept on when, economically speaking, they should have been shut. By 1990 the hours ran into the hundreds, and AEP reached for the obvious cure: it decided to erect a parallel line, also rated at 765 kilovolts.

On paper the project was straightforward. The company already had decades of experience operating about 2,000 miles of such lines. And construction took a modest 30 months. The new line, which cost $306 million, finally entered service in June 2006. But that came after 14 years of work to get the permits from all kinds of jurisdictions that ruled part of the route, including two states and the U.S. Forest Service.

It is even more numbing to consider that in this case the entity that wanted to build the line was the same one that wanted to send power across it. Now consider the more typical situation — in which a power producer is trying to persuade another company to build transmission — and the prospect becomes even more complicated.

During the past two decades very little transmission capacity has been built. Seventy percent of the existing high-voltage system is consequently 25 years old or more, according to the U.S. Department of Energy.

The electric system undergirds nearly every aspect of modern life, from water supplies and steel mills to traffic lights and the Internet. Although we think of it as a national institution, it is virtually a feudal system among those 500 owners. Control of the power flow is also balkanized among dozens of jurisdictions, an artifact of the gridÂ’s history; it grew together from many small systems and local regulators that to this day are not melded.

Frustrated by internal complications such as the Kanawha–Matt Funk line, AEP last year teamed up with the DOE to rethink the grid for the whole country. The result — part of the DOE’s exploration of how to get 20 percent of U.S. electricity from wind by 2030 — was a plan for a national, high-voltage transmission backbone. The 22,000-mile system would be to electricity what the interstate highway system is to transportation, enabling a different kind of energy economy suited for a carbon-conscious era.

The plan would not extend todayÂ’s transmission system, which often operates at no higher than 345 kilovolts. Rather it would be superimposed over it, with various on- and off-ramps. The backbone would move power across the continent at the extreme high-voltage rating: 765 kilovolts, which would reduce typical system losses of 3 to 8 percent to around 1 percent. The higher voltage would also require fewer lines than any lower-voltage option, meaning less real estate for rights-of-way.

To further decrease losses, some long stretches would use direct current, instead of the usual alternating current that most of the system — and virtually all households and businesses — run on. Although direct-current lines are highly efficient, the equipment that converts alternating current into direct current and back again is not, so the advantage accrues on long spans — such as those from the windy high plains and the sunny Southwest.

Those spans only make sense if they traverse sparsely populated areas, however. If the line was going from Wyoming to Chicago, notes Michael Heyeck, senior vice president of transmission at AEP, “I’m sure Iowa or other states would want to tap into it.” Otherwise the line becomes like an interstate without an interchange, hardly welcome anyplace.

High-voltage lines of both varieties have long proved reliable. And there is now reason to believe that a national backbone could be effectively controlled.

AEP recently opened a state-of-the-art transmission control center in New Albany, Ohio, near Columbus, that could serve as a model for nationwide operation. The center sits far back from a local highway, surrounded by a moat, with an unmarked gatehouse in front.

Inside, giant floor-to-ceiling computer-driven displays show all the power lines and electricity flows across AEPÂ’s entire system. The displays can show details down to the level of transformers at individual substations and circuit breakers across thousands of square miles. The wall-size monitors also generate foglike clouds over large parts of the maps of entire states to indicate general voltage trends: white is good, orange is not, and red is worse.

AEPÂ’s primary motivation for the center, through better real-time monitoring of every line, better organization of all the data and better presentation of diagnostics to the operators, is to prevent another great blackout such as the one of August 2003.

Back then, a neighboring utility, First Energy, lost track of what was running and what wasnÂ’t, which allowed a cascade to begin. In a few seconds the blackout raced across Ohio, propagated to Detroit, up through Ontario and back down into New York.

But beyond preventing such blackouts, the level of sophisticated control the center provides would also make operating a national backbone possible.

The concept of a national energy grid is not far-fetched. Indeed, the U.S. already has one that is highly successful in moving resources vast distances, notably from the Gulf of Mexico to New York and New England. But it is for natural gas, not electricity.

And it exists because in the 1940s Congress created a system of national regulation for natural gas. Electricity was left to be regulated state-by-state and sometimes town by town.

As a result, says Andrew Karsner, a former assistant secretary of energy for renewables and efficiency, the country has “Btu liquidity” but not “electron liquidity.” Scrapping feudal transmission regulations for similar national rules would require forceful leadership from Washington.

The first step, Karsner notes, is making transmission reform a priority. “Stop the blah-blah” dithering among elected officials, he says.

A regulatory lever might already exist.

The 2005 Energy Act gave the DOE “backup authority” to approve new power lines over state objections, by designating “national interest electric transmission corridors.” But some utility executives think the department has been too hesitant to use the authority.

Bureaucrats at the DOE are moving carefully, because in the two locations they have tried, one in the Northeast and one in the Southwest, they have provoked fierce reaction.

In the Northeast case, for example, Senator Robert P. Casey, Jr., a Democrat from Pennsylvania, quickly rounded up 13 other senators to ask for hearings about how the authority was being used. He said the exercise of such power showed “a level of arrogance on the part of the federal government that undermines confidence in government.”

Translation: even where the legal authority may exist to erect transmission lines, the political consensus may not.

Another issue, of course, is cost. The DOE’s wind report put the price tag for a national backbone at $60 billion — a staggering sum, at least until various federal bailouts started to come along last autumn after the stock market plummeted.

Whether a better grid would be considered an infrastructure investment worthy of stimulus spending by the Obama administration is not clear; the work would not produce legions of jobs and would create economic benefits only slowly.

But even very large investments can be modest compared with the cost of having to use expensive local generation rather than cheaper renewables from remote locations. In Connecticut, for example, Northeast Utilities recently completed a 20-mile line from Bethel to Norwalk that cost $336 million but in its first year saved nearly $150 million. The line will operate for decades. According to the DOE, the national electric bill is about $247 billion a year, meaning that a small percentage drop in costs could finance tens of billions of dollars in investments.

Implementing such broader thinking would require a true national energy strategy, not a state-by-state energy strategy. A similar problem is repeated to varying extents across the globe. Lester Brown, president of the Earth Policy Institute, says the world must replace the 40 percent of its electricity that comes from coal with a like amount from wind, with 1.5 million wind turbines rated at two megawatts each. But transmission, he acknowledges, is a “gnarled-up situation.”

Clearly, a construction of a national transmission system is within America’s capabilities. “The interstate highway system was not designed by individual states and glued together,” Brown points out. “One way or another, if it became important enough, we would do it.”

Related News

Seven small UK energy suppliers must pay renewables fees or risk losing licence

Ofgem Renewables Obligations drive supplier payments for renewables fees, feed-in tariffs, and renewable generation, with non-payment risking supply licences amid the price cap and volatile wholesale prices across the UK energy market.

 

Key Points

Mandatory payments by suppliers funding renewables via feed-in tariffs; non-payment can trigger supply licence revoking.

✅ Covers Renewables Obligation and Feed-in Tariff scheme compliance.

✅ Non-payment can lead to Ofgem action and licence loss.

✅ Affected by price cap and wholesale price volatility.

 

Seven small British energy suppliers owe a total of 34 million pounds ($43.74 million) in renewables fees, amid a renewables backlog that has stalled projects, and could face losing their supply licences if they cannot pay, energy regulator Ofgem reports.

Under Britain’s energy market rules, suppliers of energy must meet so-called renewables obligations and feed-in tariffs, including households' ability to sell solar power back to energy firms, which are imposed on them by the government to help fund renewable power generation.

Several small energy companies have gone bust over the past two years, a trend echoed by findings from a global utility study on renewable priorities, as they struggled to pay the renewables fees and as their profits were affected by a price cap on the most commonly used tariffs and fluctuating wholesale prices, even as a 10 GW contract brings new renewable capacity onto the UK grid.

Ofgem has called on the companies to make necessary payments by Oct. 31, as moves to offer community-generated power to all UK customers progress.

“If they do not pay Ofgem could start the process of revoking their licences to supply energy,” it said in a statement, as offshore wind power continues to scale nationwide.

The seven suppliers are, amid debates over clean energy impacts, Co-Operative Energy Limited; Flow Energy Limited; MA Energy Limited; Nabuh Energy Limited; Robin Hood Energy Limited; Symbio Energy Limited and Tonik Energy Limited. ($1 = 0.7773 pounds)

 

Related News

View more

PG&E Rates Set to Stabilize in 2025

PG&E 2024 Rate Hikes signal sharp increases to fund wildfire safety, infrastructure upgrades, and CPUC-backed reliability, with rates expected to stabilize in 2025, affecting rural residents, businesses, and high-risk zones across California.

 

Key Points

PG&E’s 2024 hikes fund wildfire safety and grid upgrades, with pricing expected to stabilize in 2025.

✅ Driven by wildfire safety, infrastructure, and reinsurance costs

✅ Largest impacts in rural, high-risk zones; business rates vary

✅ CPUC oversight aims to ensure necessary, justified investments

 

Pacific Gas and Electric (PG&E) is expected to implement a series of rate hikes that, amid analyses of why California electricity prices are soaring across the state, will significantly impact California residents. These increases, while substantial, are anticipated to be followed by a period of stabilization in 2025, offering a sense of relief to customers facing rising costs.

PG&E, one of the largest utility providers in the state, announced that its 2024 rate hikes are part of efforts to address increasing operational costs, including those related to wildfire safety, infrastructure upgrades, and regulatory requirements. As California continues to face climate-related challenges like wildfires, utilities like PG&E are being forced to adjust their financial models to manage the evolving risks. Wildfire-related liabilities, which have plagued PG&E in recent years, play a significant role in these rate adjustments. In response to previous fire-related lawsuits, including a bankruptcy plan supported by wildfire victims that reshaped liabilities, and the increased cost of reinsurance, PG&E has made it clear that customers will bear part of the financial burden.

These rate hikes will have a multi-faceted impact. Residential users, particularly those in rural or high-risk wildfire zones, will see some of the largest increases. Business customers will also be affected, although the adjustments may vary depending on the size and energy consumption patterns of each business. PG&E has indicated that the increases are necessary to secure the utility’s financial stability while continuing to deliver reliable service to its customers.

Despite the steep increases in 2024, PG&E's executives have assured that the company's pricing structure will stabilize in 2025. The utility has taken steps to balance the financial needs of the business with the reality of consumer affordability. While some rate hikes are inevitable given California's regulatory landscape and climate concerns, PG&E's leadership believes the worst of the increases will be seen next year.

PG&E’s anticipated stabilization comes after a year of scrutiny from California regulators. The California Public Utilities Commission (CPUC) has been working closely with PG&E to scrutinize its rate request and ensure that hikes are justifiable and used for necessary investments in infrastructure and safety improvements. The CPUC’s oversight is especially crucial given the company’s history of safety violations and the public outrage over past wildfire incidents, including reports that its power lines may have sparked fires in California, which have been linked to PG&E’s equipment.

The hikes, though significant, reflect the broader pressures facing utilities in California, where extreme weather patterns are becoming more frequent and intense due to climate change. Wildfires, which have grown in severity and frequency in recent years, have forced PG&E to invest heavily in fire prevention and mitigation strategies, including compliance with a judge-ordered use of dividends for wildfire mitigation across its service area. This includes upgrading equipment, inspecting power lines, and implementing more rigorous protocols to prevent accidents that could spark devastating fires. These investments come at a steep cost, which PG&E is passing along to consumers through higher rates.

For homeowners and businesses, the potential for future rate stabilization offers a glimmer of hope. However, the 2024 increases are still expected to hit consumers hard, especially those already struggling with high living costs. The steep hikes have prompted public outcry, with calls for action as bills soar amplifying advocacy group arguments that utilities should absorb more of the costs related to climate change and fire prevention instead of relying on ratepayers.

Looking ahead to 2025, the expectation is that PG&E’s rates will stabilize, but the question remains whether they will return to pre-2024 levels or continue to rise at a slower rate. Experts note that California’s energy market remains volatile, and while the rates may stabilize in the short term, long-term cost management will depend on ongoing investments in renewable energy sources and continued efforts to make the grid more resilient to climate-related risks.

As PG&E navigates this challenging period, the company’s commitment to transparency and working with regulators will be crucial in rebuilding trust with its customers. While the immediate future may be financially painful for many, the hope is that the utility's focus on safety and infrastructure will lead to greater long-term stability and fewer dramatic rate increases in the years to come.

Ultimately, California residents will need to brace for another tough year in terms of utility costs but can find reassurance that PG&E’s rate increases will eventually stabilize. For those seeking relief, there are ongoing discussions about increasing energy efficiency, exploring renewable energy alternatives, and expanding assistance programs for lower-income households to help mitigate the financial strain of these price hikes.

 

Related News

View more

Secret Liberal cabinet document reveals Electricity prices to soar

Ontario Hydro Rate Relief Plan delivers short-term electricity bill cuts, while leaked cabinet forecasts show inflation-linked hikes, borrowing costs, and a Clean Energy Adjustment under the province's long-term energy plan.

 

Key Points

A provincial plan that cuts bills now but defers costs, projecting rate hikes and adding a Clean Energy Adjustment.

✅ 25% cut now, after 8% HST relief; extra 17% reduction applied.

✅ Forecast: inflation-linked hikes later; borrowing adds long-term costs.

✅ Clean Energy Adjustment line to repay deferred system costs.

 

The short-term gain of a 25 per cent hydro rate cut this summer could lead to long-term pain as a leaked cabinet document forecasts prices jumping again in five years.

In the briefing materials leaked and obtained by the Progressive Conservatives, rates will start rising 6.5 per cent a year in 2022 and top out at 10.5 per cent in 2028, when average monthly bills hit $215.

That would be up from $123 this year once the rate cut — the subject of long-awaited legislation to lower electricity rates unveiled Thursday by Energy Minister Glenn Thibeault — takes full effect. There will be another 17-per-cent cut in addition to the 8 per cent taken off bills in January when the provincial portion of the HST was waived.

The leaked papers overshadowed Thibeault’s efforts to tout the price break, which will be followed with four years of hydro rate increases at 2 per cent, roughly the rate of inflation.

Thibeault charged that the Conservatives used an “outdated” document to distract from the fact that they are the only major party without a plan for dealing with skyrocketing hydro rates, with a year to go until next June’s provincial election.

“It’s not a coincidence,” he told reporters, denying any plans for an eventual 10.5-per-cent rate hike and promising the government’s new long-term energy plan, due in a few months, will have better numbers.

“We are working hard right now to continue to pull costs out of the system.”

Opposition parties said the Liberal plan doesn’t deal with the underlying problems that have made electricity expensive and simply borrows money to spread the costs over a longer period of time, with $25 billion in interest charges over 30 years.

Some observers also noted that a deal with Quebec would not reduce hydro bills, highlighting concerns about lasting affordability.

“The price of electricity is going to skyrocket after the next election,” warned Conservative MPP Todd Smith (Prince Edward—Hastings).

“The government isn’t being honest with the people of Ontario when it comes to the price of electricity.”

The documents show average monthly bills peaking at $231 in the year 2047, before falling back to $210 the following year once the 30 years of interest payments are over.

Conservative sources say they obtained the papers stamped “confidential cabinet document” from a whistleblower after Thibeault’s rate cut plan was presented to cabinet ministers at a meeting in early March.

There is no date on the document, which the energy minister alternately dismissed as “inaccurate” or possibly one of many that have been prepared with different options in mind.

“We’ve had hundreds of briefings with hundreds of documents … I can’t comment on one graph when we’ve been looking at hundreds of scenarios.”

New Democrats, who have proposed a scheme to cut rates, if elected, also called the government plan an election ploy with Liberals lagging in the polls.

“We’re going to take on a huge debt so (Premier) Kathleen Wynne can look good on the hustings in the next few months, and for decades we’re going to pay for it,” said MPP Peter Tabuns (Toronto-Danforth).

Thibeault acknowledged the Liberal plan will start repaying borrowed money in the mid- or late 2020s and it will show up separately on hydro bills as the “Clean Energy Adjustment”, a kind of electricity recovery rate that could raise costs.

 

Related News

View more

Norway Considers Curbing Electricity Exports to Avoid Shortages

Norway Electricity Export Limits weigh hydro reservoirs, energy security, EU-UK interconnectors, and record power prices amid Russia gas cuts; Statnett grid constraints and subsidies debate intensify as reservoir levels fall, threatening winter supply.

 

Key Points

Rules to curb Norway's power exports when reservoirs are very low, protecting supply security and easing extreme prices.

✅ Triggered by low hydro levels and record day-ahead prices

✅ Considers EU/UK cables, Statnett operations, seasonal thresholds

✅ Aims to secure winter supply and expand subsidies

 

Norway, one of Europe’s biggest electricity exporters, is considering measures to limit power shipments to prevent domestic shortages amid surging prices, according to local media reports.

The government may propose a rule to limit exports if the water level for Norway’s hydro reservoirs drops to “very low” levels, to ensure security of supply, said Energy Minister Terje Aasland, according NTB newswire. The limit would take account of seasonality and would differ across the about 1,800 hydro reservoirs, he said. 

Russia’s gas supply cuts in retaliation for European sanctions over the war in Ukraine have triggered the continent’s worst energy crisis in decades, with demand surging for cheap Norwegian hydro electricity. Yet the government faces increasing calls from the public and opposition to limit flows abroad. Prices are near record levels in some parts of the Nordic nation as hydro-reservoir levels have plunged in the south after a drier-than-normal spring. 

The government has been under pressure to do something about exports since before April. Flows on the cables are regulated by deals with both the European Union and the UK energy market and Norway can’t simply cut flows. It’s the latest test of European solidarity and a wake-up call for Europe when it comes to energy supplies. Hungary is trying to ban energy exports after it declared an energy emergency.

Back in May, grid operator Statnett SF warned that Norway could face a strained power situation after less snowfall than usual during the winter. At the end of last week, the level of filling in Norwegian hydro reservoirs was 66.5%, compared with a median 74.9% for the corresponding time in 2002-2021, regulator NVE said. Day-ahead electricity prices in southwest Norway soared to a record 423 euros per megawatt-hour late last month, partly due to bottlenecks in the grid limiting supply from the northern regions.

The grid operator has been asked to present by Oct. 1 possible measures that need to be taken to secure supply and infrastructure security ahead of the winter. Statnett operates cables to the UK and Germany aimed at selling surplus electricity and would likely take a financial hit if curbs were introduced. “Operations of these will always follow current laws and regulations,” Irene Meldal, a company spokeswoman, said Friday by email. 

Premier Jonas Gahr Store signaled his minority government will file proposals that also include more subsidies to families and companies and align with Europe’s emergency price measures during August, according to an interview with TV2 on Thursday. Meanwhile, opposition politicians plan to hold an extraordinary parliament meeting to discuss boosting the subsidies.

Aasland will summon the parties’ representatives to a meeting on Monday on the electricity crisis, the Aftenposten newspaper reported on Friday, without citing anyone. He intends to inform the parties about the ongoing work and aims to “avoid rushed decisions” by the parliamentary majority.

Norway Faces Pressure to Curb Power Exports as Prices Surge (1)

The nation gets almost all of its electricity from its vast hydro resources. Historically, it has been able to export a hefty surplus and still have among the lowest prices in Europe. 
 

 

Related News

View more

Group to create Canadian cyber standards for electricity sector IoT devices

Canadian Industrial IoT Cybersecurity Standards aim to unify device security for utilities, smart grids, SCADA, and OT systems, aligning with NERC CIP, enabling certification, trust marks, compliance testing, and safer energy sector deployments.

 

Key Points

National standards to secure industrial IoT for utilities and grids, enabling certification and NERC CIP alignment.

✅ Aligns with NERC CIP and NIST frameworks for energy sector security

✅ Defines certification, testing tools, and a trusted device repository

✅ Enhances OT, SCADA, and smart grid resilience against cyber threats

 

The Canadian energy sector has been buying Internet-connected sensors for monitoring a range of activities in generating plants, distribution networks facing harsh weather risks and home smart meters for several years. However, so far industrial IoT device makers have been creating their own security standards for devices, leaving energy producers and utilities at their mercy.

The industry hopes to change that by creating national cybersecurity standards for industrial IoT devices, with the goal of improving its ability to predict, prevent, respond to and recover from cyber threats, such as emerging ransomware attacks across the grid.

To help, the federal government today announced an $818,000 grant support a CIO Strategy Council project oversee the setting of standards.

In an interview council executive director Keith Jansa said the money will help a three-year effort that will include holding a set of cross-country meetings with industry, government, academics and interest groups to create the standards, tools to be able to test devices against the standards and the development of product repository of IoT safe devices companies can consult before making purchases.

“The challenge is there are a number of these devices that will be coming online over the next few years,” Jansa said. “IoT devices are designed for convenience and not for security, so how do you ensure that a technology an electricity utility secures is in fact safeguarded against cyber threats? Currently, there is no associated trust mark or certification that gives confidence associated with these devices.”

He also said the council will work with the North American Electric Reliability Corporation (NERC), which sets North American-wide utility safety procedural standards and informs efforts on protecting the power grid across jurisdictions. The industrial IoT standards will be product standards.

According to Robert Wong, vice-president and CIO of Toronto Hydro, all the big provincial utilities are subject to adhering to NERC CIP standards which have requirements for both cyber and physical security. Ontario is different from most provinces in that it has local distribution companies — like Toronto Hydro — which buy electricity in bulk and resell it to customers.  These LDCs don’t own or operate critical infrastructure and therefore don’t have to follow the NERC CIP standards.

Regional reforms, such as regulatory changes in Atlantic Canada, aim to bring greener power options to the grid.

Electricity is considered around the world as one of a country’s critical national infrastructure. Threats to the grid can be used for ransom or by a country for political pressure. Ukraine had its power network knocked offline in 2015 and 2016 by what were believed to be Russian-linked attackers operating against utilities.

All the big provincial utilities operate “critical infrastructure” and are subject to adhering to NERC CIP (critical infrastructure protection) standards, which have requirements for both cyber and physical security, as similar compromises at U.S. electric utilities have highlighted recently.  There are audited on a regular basis for compliance and can face hefty fines if they fail to meet the requirements.  The LDCs in Ontario don’t own or operate “critical infrastructure” and therefore are not required to adopt NERC CIP standards (at least for now).

The CIO Strategy Council is a forum for chief information officers that is helping set standards in a number of areas. In January it announced a partnership with the Internet Society’s Canada Chapter to create standards of practice for IoT security for consumer devices. As part of the federal government’s updated national cybersecurity strategy it is also developing a national cybersecurity standard for small and medium-sized businesses. That strategy would allow SMBs to advertise to customers that they meet minimum security requirements.

“The security of Canadians and our critical infrastructure is paramount,” federal minister of natural resources Seamus O’Regan said in a statement with today’s announcement. “Cyber attacks are becoming more common and dangerous. That’s why we are supporting this innovative project to protect the Canadian electricity sector.”

The announcement was welcomed by Robert Wong, Toronto Hydro’s vice-president and CIO. “Any additional investment towards strengthening the safeguards against cyberattacks to Canada’s critical infrastructure is definitely good news.  From the perspective of the electricity sector, the convergence of IT and OT (operational technology) has been happening for some time now as the traditional electricity grid has been transforming into a Smart Grid with the introduction of smart meters, SCADA systems, electronic sensors and monitors, smart relays, intelligent automated switching capabilities, distributed energy resources, and storage technologies (batteries, flywheels, compressed air, etc.).

“In my experience, many OT device and system manufacturers and vendors are still lagging the traditional IT vendors in incorporating Security by Design philosophies and effective security features into their products.  This, in turn, creates greater risks and challenges for utilities to protecting their critical infrastructures and ensuring a reliable supply of electricity to its customers.”

The Ontario Energy Board, which regulates the industry in the province, has led an initiative for all utilities to adopt the National Institute of Standards and Technology (NIST) Cybersecurity Framework, along with the ES-C2M2 maturity and Privacy By Design models, he noted.  Toronto Hydro has been managing its cybersecurity practice in adherence to these standards, as the city addresses growing electricity needs as well, he said.

“Other jurisdictions, such as Israel, have invested heavily on a national level in developing its cybersecurity capabilities and are seen as global leaders.  I am confident that given the availability of talent, capabilities and resources in Canada (especially around the GTA) if we get strong support and leadership at a federal level we can also emerge as a leader in this area as well.”

 

Related News

View more

Alberta's Last Coal Plant Closes, Embracing Clean Energy

Alberta Coal Phase-Out signals a clean energy transition, replacing coal with natural gas and renewables, cutting greenhouse gas emissions, leveraging a carbon levy, and supporting workers in Alberta's evolving electricity market.

 

Key Points

Alberta Coal Phase-Out moves power from coal to lower-emission natural gas and renewables to reduce grid emissions.

✅ Last coal plant closed: Genesee Generating Station, Sept 30, 2023

✅ Shift to natural gas and renewables lowers emissions

✅ Carbon levy and incentives accelerated clean power build-out

 

The closure of the Genesee Generating Station on September 30, 2023, marked a significant milestone in Alberta's energy history, as the province moved to retire coal power by 2023 ahead of its 2030 provincial deadline. The Genesee, located near Calgary, was the province's last remaining coal-fired power plant. Its closure represents the culmination of a multi-year effort to transition Alberta's electricity sector away from coal and towards cleaner sources of energy.

For decades, coal was the backbone of Alberta's electricity grid. Coal-fired plants were reliable and relatively inexpensive to operate. However, coal also has a significant environmental impact. The burning of coal releases greenhouse gases, including carbon dioxide, a major contributor to climate change. Coal plants also produce air pollutants such as sulfur dioxide and nitrogen oxide, which can cause respiratory problems and acid rain, and in some regions electricity is projected to get dirtier as gas use expands.

In recognition of these environmental concerns, the Alberta government began to develop plans to phase out coal-fired power generation in the early 2000s. The government implemented a number of policies to encourage the shift from coal to cleaner energy such as natural gas and renewable energy. These policies included providing financial incentives for the construction of new natural gas plants and renewable energy facilities, as well as imposing a carbon levy on coal-fired generation.

The phase-out of coal was also driven by economic factors. The cost of natural gas has declined significantly in recent years, making it a more competitive fuel source for electricity generation as producers switch to gas under evolving market conditions. Additionally, the Alberta government faced increasing pressure from the federal government to reduce greenhouse gas emissions.

The transition away from coal has not been without its challenges. Coal mining and coal-fired power generation have long been important parts of Alberta's economy. The closure of coal plants has resulted in job losses in the affected communities. The government has implemented programs to help workers transition to new jobs in the clean energy sector.

Despite these challenges, the closure of the Genesee Generating Station is a positive development for Alberta's environment and climate. Coal-fired power generation is one of the largest sources of greenhouse gas emissions in Alberta, and recent wind generation outpacing coal underscores the sector's transformation. The closure of the Genesee is expected to result in a significant reduction in emissions, helping Alberta to meet its climate change targets.

The transition away from coal also presents opportunities for Alberta. The province has vast natural gas resources, which can be used to generate electricity with lower emissions than coal. Alberta is also well-positioned to develop renewable energy sources, such as wind power and solar power. These renewable energy sources can help to further reduce emissions and create new jobs in the clean energy sector.

The closure of the Genesee Generating Station is a significant milestone in Alberta's energy history. It represents the end of an era for coal-fired power generation in the province, a shift mirrored by the UK's last coal station going offline earlier this year. However, it also marks the beginning of a new era for Alberta's energy sector. By transitioning to cleaner sources of energy, Alberta can reduce its environmental impact and create a more sustainable energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.