System to use sun to power up

By Knoxville News Sentinel


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Biomass was the renewable fuel du jour as Oak Ridge National Laboratory talked up plans to replace its existing steam plant with a new $40 million system powered by wood waste and by-products.

But just west of ORNL's visitor center on Bethel Valley Road, workers are busy on another project that will tap another of nature's gifts - the sun.

Construction has begun on a 288-foot-long, 51.25 kilowatt solar system that will supply power to the office building that houses researchers associated with ORNL's buildings technology programs. The solar system, coupled with planned energy-efficiency improvements, should supply nearly all the power needs of the building. As a result, after spending the last few years developing the zero-energy home concept, the lab should debut its first zero-energy office building sometime next year.

The project is a relatively small piece of ORNL's larger sustainability initiative that includes the above-mentioned biomass-powered project, part of an $88.1 million energy-savings contract with Johnson Controls that includes a variety of energy-efficiency measures. (See related article in the Business section.)

Construction of the array plus other energy-efficiency improvements such as more efficient air-conditioning units and occupancy sensors for controlling lighting in the building will cost $500,000 to $750,000, according to Greg Palko, energy-efficiency manager for ORNL.

The solar collectors are being installed by Lightwave Solar Electric in Nashville and will operate at 18.7 percent efficiency - much more efficient than the lab's first solar installation near the visitor center, which operates at about 13 percent efficiency.

"The (national) laboratories in general are under a mandate to include more renewable energy in their energy portfolios," said Curtis Maxey, solar researcher at ORNL who, along with Palko, is working on the project. For now the panels will simply be tied into the local node that supplies the building with electricity, Maxey said. Eventually, he said, ORNL may pursue status as a generation partner with TVA, which would allow the lab to sell power back to the grid.

In addition to meeting DOE's renewable and energy-efficiency requirements, the project has research benefits as well, Maxey said.

"We're looking at the effective integration of solar energy into the communities," he said. Researchers will use the system to study power inverter technology and electric power distribution, he said.

For all its visibility and sex appeal, the project won't save the lab any money. The amount of power produced by the systems doesn't really offer a feasible payback, Palko said.

"Relative to building a new steam plant, dollar for dollar it's not comparable," he said. "In our case, it's more of modeling the possible."

Related News

Analysis: Out in the cold: how Japan's electricity grid came close to blackouts

Japan Electricity Crunch exposes vulnerabilities in a liberalised power market as LNG shortages, JEPX price spikes, snow-hit solar, and weak hedging strain energy security and retail providers amid cold snap demand and limited reserve capacity.

 

Key Points

A winter demand shock and LNG shortfalls sent JEPX to records, exposing gaps in hedging, data, and energy security.

✅ JEPX wholesale prices spiked to an all-time high

✅ LNG inventories and procurement proved insufficient

✅ Snow disabled solar; new entrants lacked hedging

 

Japan's worst electricity crunch since the aftermath of the Fukushima crisis has exposed vulnerabilities in the country's recently liberalised power market, although some of the problems appear self-inflicted.

Power prices in Japan hit record highs last month, mirroring UK peak power prices during tight conditions, as a cold snap across northeast Asia prompted a scramble for supplies of liquefied natural gas (LNG), a major fuel for the country's power plants. Power companies urged customers to ration electricity to prevent blackouts, although no outages occurred.

The crisis highlighted how many providers were unprepared for such high demand. Experts say LNG stocks were not topped up ahead of winter and snow disabled solar power farms, while China's power woes strained solar supply chains.

The hundreds of small power companies that sprang up after the market was opened in 2016 have struggled the most, saying the government does not disclose the market data they need to operate. The companies do not have their own generators, instead buying electricity on the wholesale market.

Prices on the Japan Electric Power Exchange (JEPX) hit a record high of 251 yen ($2.39) per kilowatt hour in January, equating to $2,390 per megawatt hour of electricity, above record European price surges seen recently and the highest on record anywhere in the world. One megawatt hour is roughly what an average home in the U.S. would consume over 35 days.

But the vast majority of the new, smaller companies are locked into low, fixed rates they set to lure customers from bigger players, crushing them financially during a price spike like the one in January.

More than 50 small power providers wrote on Jan. 18 to Japan's industry minister, Hiroshi Kajiyama, who oversees the power sector, asking for more accessible data on supply and demand, reserve capacity and fuel inventories.

"By organising and disclosing this information, retail electricity providers will be able to bid at more appropriate prices," said the companies, led by Looop Co.

They also called on Kajiyama to require transmission and distribution companies to pass on some of the unexpected profits from price spikes to smaller operators.

The industry ministry said it had started releasing more timely market data, and is reviewing the cause of the crunch and considering changes, echoing calls by Fatih Birol to keep electricity options open amid uncertainty.

Japan reworked its power markets after the Fukushima nuclear disaster in 2011, liberalizing the sector in 2016 while pushing for more renewables.

But Japan is still heavily reliant on LNG and coal, and only four of 33 nuclear reactors are operating. The power crisis has led to growing calls to restart more reactors.

Kazuno Power, a small retail provider controlled by a municipality of the same name in northern Japan, where abundant renewable energy is locally produced, buys electricity from hydropower stations and JEPX.

During the crunch, the company had to pay nearly 10 times the usual price, Kazuno Power president Takao Takeda said in an interview. Like most other new providers, it could not pass on the costs, lost money, and folded. The local utility has taken over its customers.

"There is a contradiction in the current system," Takeda said. "We are encouraged to locally produce power for local consumption as well as use more renewable energy, but prices for these power supplies are linked to wholesale prices, which depend on the overall power supply."

The big utilities, which receive most of their LNG on long-term contracts, blamed the power shortfall on a tight spot market and glitches at generation units.

"We were not able to buy as much supply as we wanted from the spot market because of higher demand from South Korea and China, where power cuts have tightened supply," Kazuhiro Ikebe, the head of the country's electricity federation, said recently.

Ikebe is also president of Kyushu Electric Power, which supplies the southern island of Kyushu.

Utilities took extreme measures - from burning polluting fuel oil in coal plants to scavenging the dregs from empty LNG tankers - to keep the grid from breaking down.

"There is too much dependence on JEPX for procurement," said Bob Takai, the local head of European Energy Exchange, where electricity pricing reforms are being discussed, and which started offering Japan power futures last year. He added that new entrants were not hedging against sharp price moves.

Three people, who requested anonymity because of the sensitivity of the matter, were more blunt. One called the utilities arrogant in assuming they could find LNG cargoes in a pinch. Prices were already rising as China snapped up supplies, the sources noted.

"You had volatility caused by people saying 'Oh, well, demand is going to be weak because of coronavirus impacts' and then saying 'we can rely more on solar than in the past,' but solar got snowed out," said a senior executive from one generator. "We have a problem of who is charge of energy security in Japan."

Inventories of LNG, generally about two weeks worth of supplies, were also not topped up enough to prepare for winter, a market analyst said.

The fallout from the crunch has become more apparent in recent days, with new power companies like Rakuten Inc suspending new sales and Tokyo Gas, along with traditional electricity utilities, issuing profit downgrades or withdrawing their forecasts.

Although prices have fallen sharply as temperatures warmed up slightly and more generation units have come back online, the power generator executive said, "we are not out of the woods yet."
 

 

Related News

View more

Canadian Manufacturers and Exporters Congratulates the Ontario Government for Taking Steps to Reduce Electricity Prices

Ontario Global Adjustment Deferral offers COVID-19 electricity bill relief to industrial and commercial consumers not on the RPP, aligning GA to March levels for Class A and Class B manufacturers to improve cash flow.

 

Key Points

A temporary GA deferral easing electricity costs for Ontario industrial and commercial users not on the RPP.

✅ Sets Class B GA at $115/MWh; Class A gets equal percentage cut.

✅ Applies April-June 2020; automatic bill adjustments and credits.

✅ Deferred charges repaid over 12 months starting January 2021.

 

Manufacturers welcome the Government of Ontario's decision to defer a portion of Global Adjustment (GA) charges as part of support for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan.

"Manufacturers are pleased the government listened to Canadian Manufacturers & Exporters (CME) member recommendations and is taking action to reduce Ontario electricity bills immediately," said Dennis Darby, President & CEO of CME.

"The majority of manufacturers have identified cash flow as their top concern during the crisis, "added Darby. "The GA system would have caused a nearly $2 billion cost surge to Ontario manufacturers this year. This new initiative by the government is on top of the billions in support already provided to help manufacturers weather this unprecedented storm, while other provinces accelerate British Columbia's clean energy shift to drive long-term competitiveness. All these measures are a great start in helping businesses of all sizes stay afloat during the crisis and, keeping Ontarians employed."

"We call on the Ontario government to continue to consider the impact of electricity costs on the manufacturing sector, even after the COVID-19 crisis is resolved," stated Darby. "High prices are putting Ontario manufacturers at a significant competitive disadvantage and, discourages investments." A recent report from London Economics International (LEI) found that when compared to jurisdictions with similar manufacturing industries, Ontario's electricity prices can be up to 75% more expensive, underscoring the importance of planning for Toronto's growing electricity needs to maintain affordability.

To provide companies with temporary immediate relief on their electricity bills, the Ontario government is deferring a portion of Global Adjustment (GA) charges for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP), starting from April 2020, as some regions saw reduced electricity demand from widespread remote work during the pandemic. The GA rate for smaller industrial and commercial consumers (i.e., Class B) has been set at $115 per megawatt-hour, which is roughly in line with the March 2020 value. Large industrial and commercial consumers (i.e., Class A) will receive the same percentage reduction in GA charges as Class B consumers.

The Ontario government intends to keep this relief in place through the end of June 2020, alongside investments like smart grid technology in Sault Ste. Marie to support reliability, subject to necessary extensions and approvals to implement this initiative.

Industrial and commercial electricity consumers will automatically see this relief reflected on their bills. Consumers who have already received their April bill should see an adjustment on a future bill.

Related initiatives include developing cyber standards for electricity sector IoT devices to strengthen system security.

The government intends to bring forward subsequent amendments that would, if approved, recover the deferred GA charges (excluding interest) from industrial and commercial electricity consumers, as Toronto prepares for a surge in electricity demand amid continued growth, over a 12-month period beginning in January 2021.

 

Related News

View more

Hydropower Plants to Support Solar and Wind Energy

Solar-Wind-Water West Africa integrates hydropower with solar and wind to boost grid flexibility, clean electricity, and decarbonization, leveraging the West African Power Pool and climate data modeling reported in Nature Sustainability.

 

Key Points

A strategy using hydropower to balance solar and wind, enabling reliable, low-carbon electricity across West Africa.

✅ Hydropower dispatch covers solar and wind shortfalls.

✅ Regional interconnection via West African Power Pool.

✅ Cuts CO2 versus gas while limiting new dam projects.

 

Hydropower plants can support solar and wind power, rather unpredictable by nature, in a climate-friendly manner. A new study in the scientific journal Nature Sustainability has now mapped the potential for such "solar-wind-water" strategies for West Africa: an important region where the power sector is still under development, amid IEA investment needs for universal access, and where generation capacity and power grids will be greatly expanded in the coming years. "Countries in West Africa therefore now have the opportunity to plan this expansion according to strategies that rely on modern, climate-friendly energy generation," says Sebastian Sterl, energy and climate scientist at Vrije Universiteit Brussel and KU Leuven and lead author of the study. "A completely different situation from Europe, where power supply has been dependent on polluting power plants for many decades - which many countries now want to rid themselves of."

Solar and wind power generation is increasing worldwide and becoming cheaper and cheaper. This helps to keep climate targets in sight, but also poses challenges. For instance, critics often argue that these energy sources are too unpredictable and variable to be part of a reliable electricity mix on a large scale, though combining multiple resources can enhance project performance.

"Indeed, our electricity systems will have to become much more flexible if we are to feed large amounts of solar and wind power into the grid. Flexibility is currently mostly provided by gas power plants. Unfortunately, these cause a lot of CO2 emissions," says Sebastian Sterl, energy and climate expert at Vrije Universiteit Brussel (VUB) and KU Leuven. "But in many countries, hydropower plants can be a fossil fuel-free alternative to support solar and wind energy. After all, hydropower plants can be dispatched at times when insufficient solar and wind power is available."

The research team, composed of experts from VUB, KU Leuven, the International Renewable Energy Agency (IRENA), and Climate Analytics, designed a new computer model for their study, running on detailed water, weather and climate data. They used this model to investigate how renewable power sources in West Africa could be exploited as effectively as possible for a reliable power supply, even without large-scale storage, in line with World Bank support for wind in developing countries. All this without losing sight of the environmental impact of large hydropower plants.

"This is far from trivial to calculate," says Prof. Wim Thiery, climate scientist at the VUB, who was also involved in the study. "Hydroelectric power stations in West Africa depend on the monsoon; in the dry season they run on their reserves. Both sun and wind, as well as power requirements, have their own typical hourly, daily and seasonal patterns. Solar, wind and hydropower all vary from year to year and may be impacted by climate change, including projections that wind resources shift southward in coming years. In addition, their potential is spatially very unevenly distributed."

West African Power Pool

The study demonstrates that it will be particularly important to create a "West African Power Pool", a regional interconnection of national power grids to serve as a path to universal electricity access across the region. Countries with a tropical climate, such as Ghana and the Ivory Coast, typically have a lot of potential for hydropower and quite high solar radiation, but hardly any wind. The drier and more desert-like countries, such as Senegal and Niger, hardly have any opportunities for hydropower, but receive more sunlight and more wind. The potential for reliable, clean power generation based on solar and wind power, supported by flexibly dispatched hydropower, increases by more than 30% when countries can share their potential regionally, the researchers discovered.

All measures taken together would allow roughly 60% of the current electricity demand in West Africa to be met with complementary renewable sources, despite concerns about slow greening of Africa's electricity, of which roughly half would be solar and wind power and the other half hydropower - without the need for large-scale battery or other storage plants. According to the study, within a few years, the cost of solar and wind power generation in West Africa is also expected to drop to such an extent that the proposed solar-wind-water strategies will provide cheaper electricity than gas-fired power plants, which currently still account for more than half of all electricity supply in West Africa.

Better ecological footprint

Hydropower plants can have a considerable negative impact on local ecology. In many developing countries, piles of controversial plans for new hydropower plants have been proposed. The study can help to make future investments in hydropower more sustainable. "By using existing and planned hydropower plants as optimally as possible to massively support solar and wind energy, one can at the same time make certain new dams superfluous," says Sterl. "This way two birds can be caught with one stone. Simultaneously, one avoids CO2 emissions from gas-fired power stations and the environmental impact of hydropower overexploitation."

Global relevance

The methods developed for the study are easily transferable to other regions, and the research has worldwide relevance, as shown by a US 80% study on high variable renewable shares. Sterl: "Nearly all regions with a lot of hydropower, or hydropower potential, could use it to compensate shortfalls in solar and wind power." Various European countries, with Norway at the front, have shown increased interest in recent years to deploy their hydropower to support solar and wind power in EU countries. Exporting Norwegian hydropower during times when other countries undergo solar and wind power shortfalls, the European energy transition can be advanced.

 

Related News

View more

Electric Ferries Power Up B.C. with CIB Help

BC Ferries Electrification accelerates zero-emission vessels, Canada Infrastructure Bank financing, and fast charging infrastructure to cut greenhouse gas emissions, lower operating costs, and reduce noise across British Columbia's Island-class routes.

 

Key Points

BC Ferries Electrification is the plan to deploy zero-emission ferries and charging, funded by CIB, to reduce emissions.

✅ $75M CIB loan funds four electric ferries and chargers

✅ Cuts 9,000 tonnes CO2e annually on short Island-class routes

✅ Quieter service, lower operating costs, and redeployed hybrids

 

British Columbia is taking a significant step towards a cleaner transportation future with the electrification of its ferry fleet. BC Ferries, the province's ferry operator, has secured a $75 million loan from the Canada Infrastructure Bank (CIB) to fund the purchase of four zero-emission ferries and the necessary charging infrastructure to support them.

This marks a turning point for BC Ferries, which currently operates a fleet reliant on diesel fuel. The new Island-class electric ferries will be deployed on shorter routes, replacing existing hybrid ships on those routes. These hybrid ferries will then be redeployed on routes that haven't yet been converted to electric, maximizing their lifespan and efficiency.

Environmental Benefits

The transition to electric ferries is expected to deliver significant environmental benefits. The new vessels are projected to eliminate an estimated 9,000 tonnes of greenhouse gas emissions annually, and electric ships on the B.C. coast already demonstrate similar gains, contributing to British Columbia's ambitious climate goals. Additionally, the quieter operation of electric ferries will create a more pleasant experience for passengers and reduce noise pollution for nearby communities.

Economic Considerations

The CIB loan plays a crucial role in making this project financially viable. The low-interest rate offered by the CIB will help to keep ferry fares more affordable for passengers. Additionally, the long-term operational costs of electric ferries are expected to be lower than those of diesel-powered vessels, providing economic benefits in the long run.

Challenges and Opportunities

While the electrification of BC Ferries is a positive development, there are some challenges to consider. The upfront costs of electric ferries and charging infrastructure are typically higher than those of traditional options, though projects such as the Kootenay Lake ferry show growing readiness. However, advancements in battery technology are constantly lowering costs, making electric ferries a more cost-effective choice over time.

Moreover, the transition presents opportunities for job creation in the clean energy sector, with complementary initiatives like the hydrogen project broadening demand. The development, construction, and maintenance of electric ferries and charging infrastructure will require skilled workers, potentially creating a new avenue for economic growth in British Columbia.

A Pioneering Example

BC Ferries' electrification initiative sets a strong precedent for other ferry operators worldwide, including Washington State Ferries pursuing hybrid-electric upgrades. This project demonstrates the feasibility and economic viability of transitioning to cleaner marine transportation solutions. As battery technology and charging infrastructure continue to develop, we can expect to see more widespread adoption of electric ferries across the globe.

The collaboration between BC Ferries and the CIB paves the way for a greener future for BC's transportation sector, where efforts like Harbour Air's electric aircraft complement marine electrification. With cleaner air, quieter operation, and a positive impact on climate change, this project is a win for the environment, the economy, and British Columbia as a whole.

 

Related News

View more

Nigeria's Electricity Crisis

Nigeria Electricity Crisis undermines energy access as aging grid, limited generation, and transmission losses cause power outages, raising costs for businesses and public services; renewables, microgrids, and investment offer resilient, inclusive solutions.

 

Key Points

A nationwide power gap from weak infrastructure, low generation, and grid losses that disrupt services and growth.

✅ Aging grid and underinvestment drive frequent power outages

✅ Businesses face higher costs, lost productivity, weak competitiveness

✅ Renewables, microgrids, and regulatory reform can expand access

 

In Nigeria, millions of residents face persistent challenges with access to reliable electricity, a crisis that has profound implications for businesses, public services, and overall socio-economic development. This article explores the root causes of Nigeria's electricity deficit, drawing on 2021 electricity lessons to inform analysis, its impact on various sectors, and potential solutions to alleviate this pressing issue.

Challenges with Electricity Access

The issue of inadequate electricity access in Nigeria is multifaceted. The country's electricity generation capacity falls short of demand due to aging infrastructure, inadequate maintenance, and insufficient investment in power generation and distribution, a dynamic echoed when green energy supply constraints emerge elsewhere as well. As a result, many Nigerians, particularly in rural and underserved urban areas, experience frequent power outages or have limited access to electricity altogether.

Impact on Businesses

The unreliable electricity supply poses significant challenges to businesses across Nigeria. Manufacturing industries, small enterprises, and commercial establishments rely heavily on electricity to operate machinery, maintain refrigeration for perishable goods, and power essential services. Persistent power outages disrupt production schedules, increase operational costs, and, as grids prepare for new loads from electric vehicle adoption worldwide, hinder business growth and competitiveness in both domestic and international markets.

Public Services Strain

Public services, including healthcare facilities, schools, and government offices, also grapple with the consequences of Nigeria's electricity crisis. Hospitals rely on electricity to power life-saving medical equipment, maintain proper sanitation, and ensure patient comfort. Educational institutions require electricity for lighting, technological resources, and administrative functions. Without reliable power, the delivery of essential public services is compromised, impacting the quality of education, healthcare outcomes, and overall public welfare.

Socio-economic Impact

The electricity deficit in Nigeria exacerbates socio-economic disparities and hampers poverty alleviation efforts, even as debates continue over whether access alone reduces poverty in every context. Lack of access to electricity limits economic opportunities, stifles entrepreneurship, and perpetuates income inequality. Rural communities, where access to electricity is particularly limited, face greater challenges in accessing educational resources, healthcare services, and economic opportunities compared to urban counterparts.

Government Initiatives and Challenges

The Nigerian government has implemented various initiatives to address the electricity crisis, including privatization of the power sector, investment in renewable energy projects, and regulatory reforms aimed at improving efficiency and accountability, while examples like India's village electrification illustrate rapid expansion potential too. However, progress has been slow, and challenges such as corruption, bureaucratic inefficiencies, and inadequate funding continue to impede efforts to expand electricity access nationwide.

Community Resilience and Adaptation

Despite these challenges, communities and businesses in Nigeria demonstrate resilience and adaptability in navigating the electricity crisis. Some businesses invest in alternative power sources such as generators, solar panels, or hybrid systems to mitigate the impact of power outages, while utilities weigh shifts signaled by EVs' impact on utilities for future planning. Community-led initiatives, including local cooperatives and microgrids, provide decentralized electricity solutions in underserved areas, promoting self-sufficiency and resilience.

Path Forward

Addressing Nigeria's electricity crisis requires a concerted effort from government, private sector stakeholders, and international partners, informed by UK grid transformation experience as well. Key priorities include increasing investment in power infrastructure, enhancing regulatory frameworks to attract private sector participation, and promoting renewable energy deployment. Improving energy efficiency, reducing transmission losses, and expanding electricity access to underserved communities are critical steps towards achieving sustainable development goals and improving quality of life for all Nigerians.

Conclusion

The electricity crisis in Nigeria poses significant challenges to businesses, public services, and socio-economic development. Addressing these challenges requires comprehensive strategies that prioritize infrastructure investment, regulatory reform, and community empowerment. By working together to expand electricity access and promote sustainable energy solutions, Nigeria can unlock its full economic potential, improve living standards, and create opportunities for prosperity and growth across the country.

 

Related News

View more

Growing pot sucks up electricity and pumps out an astounding amount of carbon dioxide — it doesn't have to

Sustainable Cannabis Cultivation leverages greenhouse design, renewable energy, automation, and water recapture to cut electricity use, emissions, and pesticides, delivering premium yields with natural light, smart sensors, and efficient HVAC and irrigation control.

 

Key Points

A data-driven, low-impact method that cuts energy, water, and chemicals while preserving premium yields.

✅ 70-90% less electricity vs. conventional indoor grows

✅ Natural light, solar, and rainwater recapture reduce footprint

✅ Automation, sensors, and HVAC stabilize microclimates

 

In the seven months since the Trudeau government legalized recreational marijuana use, licensed producers across the country have been locked in a frenetic race to grow mass quantities of cannabis for the new market.

But amid the rush for scale, questions of sustainability have often taken a back seat, and in Canada, solar adoption has lagged in key sectors.

According to EQ Research LLC, a U.S.-based clean-energy consulting firm, cannabis facilities can need up to 150 kilowatt-hours of electricity per year per square foot. Such input is on par with data centres, which are themselves 50 to 200 times more energy-intensive than a typical office building, and achieving zero-emission electricity by 2035 would help mitigate the associated footprint.

At the Lawrence Berkley National Laboratory in California, a senior scientist estimated that one per cent of U.S. electricity use came from grow ops. The same research — published in 2012 — also found that the procedures for refining a kilogram of weed emit around 4,600 kilograms of carbon dioxide to the atmosphere, equivalent to operating three million cars for a year, though a shift to zero-emissions electricity by 2035 could substantially cut those emissions.

“All factors considered, a very large expenditure of energy and consequent ‘environmental imprint’ is associated with the indoor cultivation of marijuana,” wrote Ernie Small, a principal research scientist for Agriculture and Agri-Food Canada, in the 2018 edition of the Biodiversity Journal.

Those issues have left some turning to technology to try to reduce the industry’s footprint — and the economic costs that come with it — even as more energy sources make better projects for forward-looking developers.

“The core drawback of most greenhouse environments is that you’re just getting large rooms, which are harder to control,” says Dan Sutton, the chief executive officer of Tantalus Labs., a B.C.-based cannabis producer. “What we did was build a system specifically for cannabis.”

Sutton is referring to SunLab, the culmination of four years of construction, and at present the main site where his company nurtures rows of the flowering plant. The 120,000-square foot structure was engineered for one purpose: to prove the merits of a sustainable approach.

“We’re actually taking time-series data on 30 different environmental parameters — really simple ones like temperature and humidity — all the way down to pH of the soil and water flow,” says Sutton. “So if the temperature gets a little too cold, the system recognizes that and kicks on heaters, and if the system senses that the environment is too hot in the summertime, then it automatically vents.”

A lot is achieved without requiring much human intervention, he adds. Unlike conventional indoor operations, SunLab demands up to 90 per cent less electricity, avoids using pesticides, and draws from natural light and recaptured rainwater to feed its crops.

The liquid passes through a triple-filtration process before it is pumped into drip irrigation tubing. “That allows us to deliver a purity of water input that is cleaner than bottled water,” says Sutton.

As transpiration occurs, a state-of-the-art, high-capacity airflow suspended below the ceiling cycles air at seven-minute intervals, repeatedly cooling the air and preventing outbreaks of mould, while genetically modified “guardian” insects swoop in to eliminate predatory pests.

“When we first started, people never believed we would cultivate premium quality cannabis or cannabis that belongs on the top shelf, shoulder to shoulder with the best in the world and the best of indoor,” says Sutton.

Challenges still exist, but they pale in comparison to the obstacles that American companies with an interest in adopting greener solutions persistently face, and in provinces like Alberta, an Alberta renewable energy surge is reshaping the opportunity set.

Although cannabis is legal in a number of states, it remains illegal federally, which means access to capital and regulatory clarity south of the border can be difficult to come by.

“Right now getting a new project built is expensive to do because you can’t get traditional bank loans,” says Canndescent CEO Adrian Sedlin, speaking by phone from California.

In retrofitting the company’s farm to accommodate a sizeable solar field, he struggled to secure investors, even as a solar-powered cannabis facility in Edmonton showcased similar potential.

“We spent over a year and a half trying to get it financed,” says Sedlin. “Finding someone was the hard part.”

Decriminalizing the drug would ultimately increase the supply of capital and lower the costs for innovative designs, something Sedlin says would help incentivize producers to switch to more effective and ecologically sound techniques.

Some analysts argue that selling renewable energy in Alberta could become a major growth avenue that benefits energy-intensive industries like cannabis cultivation.

Canndescent, however, is already there.

“We’re now harnessing the sun to reduce our reliance on fossil fuels and going to sustainable, or replenishable, energy sources, while leveraging the best and most efficient water practices,” says Sedlin. “It’s the right thing to do.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.