Study examines EV infrastructure in Alberta

By Canadian Driver


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
“Smart” charging systems for electric vehicles (EVs) in Alberta could make the most of the province’s wind resources for electricity generation, according to a new study by the University of Calgary.

Electrical engineers at the Schulich School of Engineering found that plug-in hybrid electric vehicles (PHEVs) could release 40 to 90 per cent fewer greenhouse gas emissions than conventional passenger vehicles, but the environmental impacts in the province would depend on factors such as vehicle battery size, charging time and wind production levels.

Infrastructure with “smart” charging systems would include technology with communication links to allow system operators to distribute electricity to vehicles when wind power production is at its highest, usually at night. Optimal use of clean energy is especially important in Alberta, which has the highest amount of thermally generated power in Canada. More than 90 per cent of Alberta’s electricity is produced by methods that emit greenhouse gases, including burning coal, oil or natural gas.

“The whole idea is to consume the wind power in the system as much as possible,” said Professor Mahdi Hajian, a co-author of the study. “Unfortunately, the wind is unreliable because it’s not always blowing when we need it. Smart charging systems would help us harness the wind so we can store it in the vehicles’ batteries for later use.”

The results of the study are specific to Alberta, but the researchers said the conclusions can be applied elsewhere. Other provinces should also have smart charging systems, but the need would depend on electrical load patterns and the availability of clean energy sources such as hydro.

Related News

NRC Begins Special Inspection at River Bend Nuclear Power Plant

NRC Special Inspection at River Bend reviews failures of portable emergency diesel generators, nuclear safety measures, and Entergy Operations actions after Fukushima; off-site power loss readiness, remote COVID-19 oversight, and corrective action plans are assessed.

 

Key Points

An NRC review of generator test failures at River Bend, assessing nuclear safety, root causes, and corrective actions.

✅ Evaluates failures of portable emergency diesel generators

✅ Reviews causal analyses and adequacy of corrective actions

✅ Remote COVID-19 oversight; public report expected within 45 days

 

The Nuclear Regulatory Commission has begun a special inspection at the River Bend nuclear power plant, part of broader oversight that includes the Turkey Point renewal application, to review circumstances related to the failure of five portable emergency diesel generators during testing. The plant, operated by Entergy Operations, is located in St. Francisville, La., as nations like France outage risks continue to highlight broader reliability concerns.

The generators are used to supply power to plant systems in the event of a prolonged loss of off-site electrical power coupled with a failure of the permanently installed emergency generators, a concern underscored by incidents such as the SC nuclear plant leak that shut down production for weeks. These portable generators were acquired as part of the facility's safety enhancements mandated by the NRC following the 2011 accident at the Fukushima Dai-ichi facility in Japan, and amid constraints like France limiting output from warm rivers, the emphasis on resilience remains.

The three-member NRC team will develop a chronology of the test failures and evaluate the licensee's causal analyses and the adequacy of corrective actions, informed by lessons from cases like Davis-Besse closure stakes that underscore risk management.

Due to the COVID-19 pandemic, they will complete most of their work remotely, while other regions address constraints such as high river temperatures limiting output for nuclear stations. An inspection report documenting the team's findings, released as global nuclear project milestones continue across the sector, will be publicly available within 45 days of the end of the inspection.
 

 

Related News

View more

Only one in 10 utility firms prioritise renewable electricity – global study

Utility Renewable Investment Gap highlights Oxford study in Nature Energy: most electric utilities favor fossil fuels over clean energy transition, expanding coal and gas, risking stranded assets and missing climate targets despite global decarbonization commitments.

 

Key Points

Most utilities grow fossil capacity over renewables, slowing decarbonization and jeopardizing climate goals.

✅ Only 10% expand renewables faster than coal and gas growth

✅ 60% still add fossil plants; 15% actively cut coal and gas

✅ Risks: stranded assets, missed climate targets, policy backlash

 

Only one in 10 of the world’s electric utility companies are prioritising clean energy investment over growing their capacity of fossil fuel power plants, according to research from the University of Oxford.

The study of more than 3,000 utilities found most remain heavily invested in fossil fuels despite international efforts to reduce greenhouse gas emissions and barriers to 100% renewables in the US that persist, and some are actively expanding their portfolio of polluting power plants.

The majority of the utility companies, many of which are state owned, have made little change to their generation portfolio in recent years.

Only 10% of the companies in the study, published in the research journal Nature Energy, are expanding their renewable energy capacity, mirroring global wind and solar growth patterns, at a faster rate than their gas- or coal-fired capacity.

Advertisement
Of the companies prioritising renewable energy growth, 60% have not stopped concurrently expanding their fossil fuel portfolio and only 15% of these companies are actively reducing their gas and coal capacity.

Galina Alova, the author of the report, said the research highlighted “a worrying gap between what is needed” to tackle the climate crisis, with calls for a fossil fuel lockdown gaining attention, and “what actions are being taken by the utility sector”.

The report found 10% of utilities were favouring growth in gas-fired power plants. This cluster is dominated by US utilities, even as renewables surpass coal in US generation in the broader market, eager to take advantage of the country’s shale gas reserves, followed by Russia and Germany.

Only 2% of utilities are actively growing their coal-fired power capacity ahead of renewables or gas. This cluster is dominated by Chinese utilities – which alone contributed more than 60% of coal-focused companies – followed by India and Vietnam.

The report found the majority of companies prioritising renewable energy were clustered in Europe. Many of the industry’s biggest players are investing in low-carbon energy and green technologies, even as clean energy's dirty secret prompts debate, to replace their ageing fossil fuel power plants.


Sign up to the daily Business Today email or follow Guardian Business on Twitter at @BusinessDesk
In the UK, amid UK renewables backlog that has stalled billions, coal plants are shutting at pace ahead of the government’s 2025 ban on coal-fired power in part because the UK’s domestic carbon tax on power plants make them uneconomic to run.

“Although there have been a few high-profile examples of individual electric utilities investing in renewables, this study shows that overall, the sector is making the transition to clean energy slowly or not at all,” Alova said.

“Utilities’ continued investment in fossil fuels leaves them at risk of stranded assets – where power plants will need to be retired early – and undermines global efforts to tackle climate change.”
 

 

Related News

View more

Drought, lack of rain means BC Hydro must adapt power generation

BC Hydro drought operations address climate change impacts with hydropower scheduling, reservoir management, water conservation, inflow forecasting, and fish habitat protection across the Lower Mainland and Vancouver Island while maintaining electricity generation from storage facilities.

 

Key Points

BC Hydro drought operations conserve water, protect fish, and sustain hydropower during extended heat and low inflows.

✅ Proactive reservoir releases protect downstream salmon spawning.

✅ Reduced flows at Puntledge, Coquitlam, and Ruskin/Stave facilities.

✅ System relies on northern storage to maintain electricity supply.

 

BC Hydro is adjusting its operating plans around power generation as extended heat and little forecast rain continue to impact the province, a report says.

“Unpredictable weather patterns related to climate change are expected to continue in the years ahead and BC Hydro is constantly adapting to these evolving conditions, especially after events such as record demand in 2021 that tested the grid,” said the report, titled “Casting drought: How climate change is contributing to uncertain weather and how BC Hydro’s generation system is adapting.”

The study said there is no concern with BC Hydro being able to continue to deliver power through the drought because there is enough water at its larger facilities, even as issues like crypto mining electricity use draw scrutiny from observers.

Still, it said, with no meaningful precipitation in the forecast, its smaller facilities in the Lower Mainland and on Vancouver Island will continue to see record low or near record low inflows for this time of the year.

“In the Lower Mainland, inflows since the beginning of September are ranked in the bottom three compared to historical records,” the report said.

The report said the hydroelectric system is directly impacted by variations in weather and the record-setting, unseasonably dry and warm weather this fall highlights the impacts of climate change, while demand patterns can be counterintuitive, as electricity use even increased during Earth Hour 2018 in some areas, hinting at challenges to come.

It noted symptoms of climate change include increased frequency of extreme events like drought and intense storms, and rapid glacial melt.

“With the extremely hot and dry conditions, BC Hydro has been taking proactive steps at many of our South Coast facilities for months to conserve water to protect the downstream fish habit,” spokesperson Mora Scott said. “We began holding back water in July and August at some facilities anticipating the dry conditions to help ensure we would have water storage for the later summer and early fall salmon spawning.”

Scott said BC Hydro’s reservoirs play an important role in managing these difficult conditions by using storage and planning releases to provide protection to downstream river flows. The reservoirs are, in effect, a battery waiting to be used for power.

While the dry conditions have had an impact on BC Hydro’s watersheds, several unregulated natural river systems — not related to BC Hydro — have fared worse, with rivers drying up and thousands of fish killed, the report said.

BC Hydro is currently seeing the most significant impacts on operations at Puntledge and Campbell River on Vancouver Island as well as Coquitlam and Ruskin/Stave in the Lower Mainland.

To help manage water levels on Vancouver Island, BC Hydro reduced Puntledge River flows by one-third last week and on the Lower Mainland reduced flows at Coquitlam by one-third and Ruskin/Stave by one quarter.

However, the utility company said, there are no concerns about continued power delivery.

“British Columbians benefit from BC Hydro’s integrated, provincial electricity system, which helps send power across the province, including to Vancouver Island, and programs like the winter payment plan support customers during colder months,” staff said.

Most of the electricity generated and used in B.C. is produced by larger facilities in the north and southeast of the province — and while water levels in those areas are below normal levels, there is enough water to meet the province’s power needs, even as additions like Site C's electricity remain a subject of debate among observers.

The Glacier Media investigation found a quarter of BC Hydro's power comes from the Mica, Revelstoke and Hugh Keenleyside dams on the Columbia River. Some 29% comes from dams in the Peace region, including the under-construction Site C project that has faced cost overruns. At certain points of the year, those reservoirs are reliant on glacier water.

Still, BC Hydro remains optimistic.

Forecasts are currently showing little rain in the near-term; however, historically, precipitation and inflows show up by the end of October. If that does not happen, BC Hydro said it would continue to closely track weather and inflow forecasts to adapt its operations to protect fish, while regional cooperation such as bridging with Alberta remains part of broader policy discussions.

Among things BC Hydro said it is doing to adapt are:

Continuously working to improve its weather and inflow forecasting;
Expanding its hydroclimate monitoring technology, including custom-made solutions that have been designed in-house, as well as upgrading snow survey stations to automated, real-time snow and climate stations, and;
Investing in capital projects — like spillway gate replacements — that will increase resiliency of the system to climate change.

 

Related News

View more

Nuclear plants produce over half of Illinois electricity, almost faced retirement

Illinois Zero Emission Credits support nuclear plants via tradable credits tied to wholesale electricity prices, carbon costs, created by the Future Energy Jobs Bill to avert Exelon closures and sustain low-carbon power.

 

Key Points

State credits that value nuclear power's zero-carbon output, priced by market and carbon metrics to keep plants running.

✅ Pegged to wholesale prices, carbon costs, and state averages.

✅ Created by Future Energy Jobs Bill to prevent plant retirements.

✅ Supports Exelon Quad Cities and Clinton nuclear facilities.

 

Nuclear plants have produced over half of Illinois electricity generation since 2010, but the states two largest plants would have been retired amid the debate over saving nuclear plants if the state had not created a zero emission credit (ZEC) mechanism to support the facilities.

The two plants, Quad Cities and Clinton, collectively delivered more than 12 percent of the states electricity generation over the past several years. In May 2016, however, Exelon, the owner of the plants, announced that they had together lost over $800 million dollars over the previous six years and revealed plans to retire them in 2017 and 2018, similar to the Three Mile Island closure later announced for 2019 by its owner.

In December 2016, Illinois passed the Future Energy Jobs Bill, which established a zero emission credit (ZEC) mechanism

to support the plants financially. Exelon then cancelled its plans to retire the two facilities.

The ZEC is a tradable credit that represents the environmental attributes of one megawatt-hour of energy produced from the states nuclear plants. Its price is based on a number of factors that include wholesale electricity market prices, nuclear generation costs, state average market prices, and estimated costs of the long-term effects of carbon dioxide emissions.

The bill is set to take effect in June, but faces multiple court challenges as some utilities have expressed concerns that the ZEC violates the commerce clause and affects federal authority to regulate wholesale energy prices, amid gas-fired competition in nearby markets that shapes the revenue outlook.

Illinois ranks first in the United States for both generating capacity and net electricity generation from nuclear power, a resource many see as essential for net-zero emissions goals, and accounts for approximately one-eighth of the nuclear power generation in the nation.

 

Related News

View more

Hydro One and Alectra announce major investments to strengthen electricity infrastructure and improve local reliability in the Hamilton area

Hydro One and Alectra Hamilton Grid Upgrades will modernize electricity infrastructure with new transformers, protection devices, transmission and distribution improvements, tree trimming, pole replacements, and line refurbishments to boost reliability and reduce outages across region.

 

Key Points

A $250M plan to modernize Hamilton transmission and distribution, reducing outages and improving reliability by 2022.

✅ New transformers and protection devices to cut outages

✅ Refurbished 1915 line powering Hamilton West Mountain

✅ Tree trimming and pole replacements across 1,260 km

 

Hydro One Networks Inc. (Hydro One), Ontario's largest electricity transmission and distribution company whose delivery rates recently increased, and Alectra Utilities have announced they expect to complete approximately $250 million of work in the Hamilton area by 2022 to upgrade local electricity infrastructure and improve service reliability.

As part of these plans to strengthen the electricity grid in the Hamilton region, where utilities must adapt to climate change pressures, investments are expected to include:

installing quieter, more efficient transformers in four stations across Hamilton to assist in reducing the number of outages;
replacing protection and switching devices across the city to shorten outage restoration times, reflecting how transmission line work underpins reliability;
refurbishing a power line originally installed in 1915 that is critical to powering the Hamilton West Mountain area; and,
trimming hazardous trees across more than 1,260 km of overhead powerlines and replacing more than 270 poles.
Hydro One will be working with Alectra Utilities to replace aging infrastructure at Elgin transmission station.

"A loss of power grinds life to a halt, impacting businesses, families and productivity. That's why Hydro One is partnering with Alectra Utilities to support a growing local economy in Hamilton, while improving power reliability for its residents," said Jason Fitzsimmons, Chief Corporate Affairs and Customer Care Officer. "Replacing aging infrastructure and modernizing equipment is part of our plan to build a stronger, safer and more reliable electricity system for Ontario now and into the future." 

"Partnering with Hydro One to invest in our local community will create a safer, more resilient and reliable system for the future," said Max Cananzi, President, Alectra Utilities.  "In addition to investments in the transmission system, Alectra Utilities also plans to invest $235 million over the next five years to renew, upgrade and connect customers to the electrical distribution and supporting systems in Hamilton. Investments in the transmission and distribution systems in Hamilton will contribute to the long-term sustainability of our communities."

"I am pleased to see Hydro One and Alectra investing in modernizing local electricity infrastructure and improving reliability," said Member of Provincial Parliament, Donna Skelly.  "Safe and reliable power is essential to supporting local families, businesses and our community."

Across Ontario, First Nations call for action on urgently needed transmission lines highlight the importance of timely grid investments.

Hydro One's investments included in this announcement are captured in its previously disclosed future capital expenditures, amid proposed projects like the Meaford hydro project across Ontario.

Much of Hydro One's electricity system was built in the 1950s, and replacing aging assets is critical as delays affecting a cross-border transmission line elsewhere have shown. Its three-year, $5 billion investment plan supports safe and reliable power to communities across Ontario, and strong regulatory oversight illustrated by the ATCO Electric penalty helps maintain public trust.


 

 

Related News

View more

Wind Leading Power

UK Wind Power Surpasses Gas as offshore wind and solar drive record electricity generation, National Grid milestones, and net zero progress, despite grid capacity bottlenecks, onshore planning reforms, demand from heat pumps and transport electrification.

 

Key Points

A milestone where wind turbines generated more UK electricity than gas, advancing progress toward a net zero grid.

✅ Offshore wind delivered the majority of UK wind generation

✅ Grid connection delays stall billions in green projects

✅ Planning reforms may restart onshore wind development

 

Wind turbines have generated more electricity than gas, as wind becomes the main source for the first time in the UK.

In the first three months of this year a third of the country's electricity came from wind farms, as the UK set a wind generation record that underscored the trend, research from Imperial College London has shown.

National Grid has also confirmed that April saw a record period of solar energy generation, and wind and solar outproduced nuclear in earlier milestones.

By 2035 the UK aims for all of its electricity to have net zero emissions, after a 2019 stall in low-carbon generation highlighted the challenge.

"There are still many hurdles to reaching a completely fossil fuel-free grid, but wind out-supplying gas for the first time is a genuine milestone event," said Iain Staffell, energy researcher at Imperial College and lead author of the report.

The research was commissioned by Drax Electrical Insights, which is funded by Drax energy company.

The majority of the UK's wind power has come from offshore wind farms, and the country leads the G20 for wind's electricity share according to recent analyses. Installing new onshore wind turbines has effectively been banned since 2015 in England.

Under current planning rules, companies can only apply to build onshore wind turbines on land specifically identified for development in the land-use plans drawn up by local councils. Prime Minister Rishi Sunak agreed in December to relax these planning restrictions to speed up development.

Scientists say switching to renewable power is crucial to curb the impacts of climate change, which are already being felt, including in the UK, which last year recorded its hottest year since records began.

Solar and wind have seen significant growth in the UK, with wind surpassing coal in 2016 as a milestone. In the first quarter of 2023, 42% of the UK's electricity came from renewable energy, with 33% coming from fossil fuels like gas and coal.

But BBC research revealed on Thursday that billions of pounds' worth of green energy projects are stuck on hold due to delays with getting connections to the grid, as peak power prices also climbed amid system pressures.

Some new solar and wind sites are waiting up to 10 to 15 years to be connected because of a lack of capacity in the electricity system.

And electricity only accounts for 18% of the UK's total power needs. There are many demands for energy which electricity is not meeting, such as heating our homes, manufacturing and transport.

Currently the majority of UK homes use gas for their heating - the government is seeking to move households away from gas boilers and on to heat pumps which use electricity.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.