NB Power plans smart grid research project

By CBC News


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The federal government is investing $15.9 million in a research project led by NB Power into smart grid technology that could lead to more renewable energy being used in the Maritimes.

The four-year research project will see a total investment of $32 million, of which $15.9 million with come from the federal Clean Energy Fund and $2 million will be paid for by the New Brunswick government.

The project will study the changing patterns of power consumption and help electricity companies alter energy production to reduce their share of greenhouse gas emissions.

With the push to put more wind power onto transmission grids, utilities are studying how to balance their power loads when the wind isn't blowing.

Gaetan Thomas, the president and chief executive officer of NB Power, said that is one issue that will be studied in the research project.

"We will be able to minimize the impact on heavy fuel oil that needs to replace when the wind is down," Thomas said.

"And the customers will benefit from cleaner energy and also we'll be able to do it without interrupting the benefits of their electricity."

Smart grids track all electricity in a given system and they increase efficiency by shifting energy use from peak times to reduce demand. This could mean using a dishwasher or dryer when demand for electricity is lower.

NB Power will be joined by Nova Scotia Power and the University of New Brunswick in the research project.

Liuchen Chang, a professor at the University of New Brunswick and the project's lead researcher, said the intent of the initiative is to make renewable energy resources, such as wind, which are unpredictable, more economically viable.

"This project is all about shifting the residential and commercial loads, to facilitate the variation of generation," Chang said.

If the project is successful, NB Power's president said that could pay off for customers.

"If we can reduce our dependence on heavy fuel oil, it has the potential impact to reduce rate increases," Thomas said.

The project is being led by a consortium of companies known as PowerShift Atlantic.

Alan Richardson, the vice-president of integrated customer service at Nova Scotia Power, will be the chairman of PowerShift Atlantic.

National Revenue Minister Keith Ashfield, the minister of the Atlantic Canada Opportunities Agency, said the investment in the smart grid will create job opportunities in the region.

"Our government is investing in this smart grid project to encourage clean energy innovation and to help create high-quality jobs for Atlantic Canadians," Ashfield said in a statement.

Related News

Ontario Government Consults On Changes To Industrial Electricity Pricing And Programs

Ontario electricity pricing consultations will gather business input on OEB rate design, Industrial Conservation Initiative, dynamic pricing, global adjustment, and system costs through online feedback and sector-specific in-person sessions province-wide.

 

Key Points

Consultations gathering business input on rates, programs, and OEB policy to improve fairness and reduce system costs.

✅ Consults on ICI, GA, dynamic pricing structures

✅ Seeks views on OEB C&I rate design changes

✅ In-person sessions across key industrial sectors

 

The Ontario government has announced plans to hold consultations to seek input from businesses about industrial electricity pricing and programs. This will be done through Ontario's online consultations directory and though in-person sector-specific consultation sessions across the province. The in-person sessions will be held in all areas of Ontario, and will target "key industries," including automotive and the build-out of electric vehicle charging stations infrastructure, forestry, mining, agriculture, steel, manufacturing and chemicals.

On April 1, 2019, the Ontario government published a consultation notice for this process, confirming that it is looking for input on "electricity rate design, existing tax-based incentives, reducing system costs and regulatory and delivery costs," including related proposals such as the hydrogen rate reduction proposal under discussion. The consultation process includes a list of nine questions for respondents (and presumably participants in the in-person sessions) to address. These include questions about:

The benefits of the Industrial Conservation Initiative (described below), including how it could be changed to improve fairness and industrial competitiveness, and how it could complement programs like the Hydrogen Innovation Fund that support industrial innovation.

Dynamic pricing structures that allow for lower rates in return for responding to price signals versus a flat rate structure that potentially costs more, but is more stable and predictable, as Ontario's energy storage expansion accelerates.

Interest in an all-in commodity contract with an electricity retailer, even if it involves a risk premium.

Interested parties are invited to submit their comments before May 31, 2019.

The government's consultation announcement follows recent developments in the Ontario Energy Board's (OEB) review of electricity ratemaking for commercial and industrial customers, and intertie projects such as the Lake Erie Connector that could affect market dynamics.

In December 2018, the OEB published a paper from its Market Surveillance Panel (MSP) examining the Industrial Conservation Initiative (ICI), and potential alternative approaches. The ICI is a program that allows qualifying large industrial customers to base their global adjustment (GA) payments on their consumption during five peak demand hours in a year. Customers who find ways to reduce consumption at those times, perhaps through DERs and enabling energy storage options, will reduce their electricity costs. This shifts GA costs to other customers. The MSP found that the ICI does not fairly allocate costs to those who cause them and/or benefit from them, and recommends that a better approach should be developed.

In February 2019, the OEB released its Staff Report to the Board on Rate Design for Commercial and Industrial Electricity Customers, setting out recommendations for new rate designs for electricity commercial and industrial (C&I) rate classes as Ontario increasingly turns to battery storage to meet rising demand. As described in an earlier post, the Staff Report includes recommendations to: (i) establish a fixed distribution charge for commercial customers with demands under 10 kW; (ii) implement a demand charge (rather than the current volumetric charge) for C&I customers with demands between 10kW and 50kW; and (iii) introduce a "capacity reserve charge" for customers with load displacement generation to replace stand-by charges and provide for recognition of the benefits of this generation on the system. The OEB held a stakeholder information session in mid-March on this initiative, and interested parties are now filing submissions in response to the Staff Report.

Whether and how the OEB's processes will fit together with the government's consultation process remains to be seen.

 

Related News

View more

Canada Extends Net-Zero Target to 2050

Canada Clean Electricity Regulations 2050 balance net-zero goals with grid reliability and affordability, setting emissions caps, enabling offset credits, and flexible provincial pathways, including support for non-grid facilities during the clean energy transition.

 

Key Points

A federal plan for a net-zero grid by 2050 with emissions caps, offsets, and flexible provincial compliance.

✅ Emissions cap targeting 181 Mt CO2 from the power sector by 2050

✅ Offset credits and annual limits enable compliance flexibility

✅ Support for remote, non-grid facilities and regional pathways

 

In December 2024, the Government of Canada announced a significant policy shift regarding its clean electricity objectives. The initial target to achieve a net-zero electricity grid by 2035 has been extended to 2050. This decision reflects the government's response to feedback from provinces and energy industry stakeholders, who expressed concerns about the feasibility of meeting the 2035 deadline.

Revised Clean Electricity Regulations

The newly finalized Clean Electricity Regulations (CER) outline the framework for Canada's transition to a net-zero electricity grid by 2050, advancing the goal of 100 per cent clean electricity nationwide.

  • Emissions Reduction Targets: The regulations set a cap on emissions from the electricity sector, targeting a reduction of 181 megatonnes of CO₂ by 2050. This is a decrease from the previous goal of 342 megatonnes, reflecting a more gradual approach to emissions reduction.

  • Flexibility Mechanisms: To accommodate the diverse energy landscapes across provinces, the CER introduces flexibility measures. These include annual emissions limits and the option to use offset credits, allowing provinces to tailor their strategies while adhering to national objectives.

  • Support for Non-Grid Connected Facilities: Recognizing the unique challenges of remote and off-grid communities, the regulations provide accommodations for certain non-grid connected facilities, ensuring that all regions can contribute to the national clean electricity goals.

Implications for Canada's Energy Landscape

The extension of the net-zero electricity target to 2050 signifies a strategic recalibration of Canada's energy policy. This adjustment acknowledges the complexities involved in transitioning to a clean energy future, including:

  • Grid Modernization: Upgrading the electrical grid to accommodate renewable energy sources and ensure reliability is a critical component of the transition, especially as Ontario's EV wave accelerates across the province.

  • Economic Considerations: Balancing environmental objectives with economic impacts is essential. The government aims to create over 400,000 clean energy jobs, fostering economic growth while reducing emissions, supported by ambitious EV goals in the transport sector.

  • Regional Variations: Provinces have diverse energy profiles and resources, and British Columbia's power supply challenges highlight planning constraints. The CER's flexibility mechanisms are designed to accommodate these differences, allowing for tailored approaches that respect regional contexts.

Public and Industry Reactions

The policy shift has elicited varied responses:

  • Environmental Advocates: Some environmental groups express concern that the extended timeline may delay critical climate action, while debates over Quebec's push for EV dominance underscore policy trade-offs. They emphasize the need for more ambitious targets to address the escalating impacts of climate change.

  • Industry Stakeholders: The energy sector generally welcomes the extended timeline, viewing it as a pragmatic approach that allows for a more measured transition, particularly amid criticism of the 2035 EV mandate in transportation policy. The flexibility provisions are particularly appreciated, as they provide the necessary leeway to adapt to evolving market and technological conditions.

Looking Forward

As Canada moves forward with the implementation of the Clean Electricity Regulations, the focus will be on:

  • Monitoring Progress: Establishing robust mechanisms to track emissions reductions and ensure compliance with the new targets.

  • Stakeholder Engagement: Continuing dialogue with provinces, industry, and communities to refine strategies and address emerging challenges, including coordination on EV sales regulations as complementary measures.

  • Innovation and Investment: Encouraging the development and deployment of clean energy technologies through incentives and support programs.

The extension of Canada's net-zero electricity target to 2050 represents a strategic adjustment aimed at achieving a balance between environmental goals and practical implementation considerations. The Clean Electricity Regulations provide a framework that accommodates regional differences and industry concerns, setting the stage for a sustainable and economically viable energy future.

 

Related News

View more

Michigan utilities propose more than $20M in EV charging programs

Michigan EV time-of-use charging helps DTE Energy and Consumers Energy manage off-peak demand, expand smart charger rebates, and build DC fast charging infrastructure, lowering grid costs, emissions, and peak load impacts across Michigan's distribution networks.

 

Key Points

Michigan utility programs using time-based EV rates to shift charging off-peak and ease grid load via charger rebates.

✅ Off-peak rates cut peak load and distribution transformer stress.

✅ Rebates support home smart chargers and DC fast charging sites.

✅ DTE Energy and Consumers Energy invest to expand EV infrastructure.

 

The two largest utilities in the state of Michigan, DTE Energy and Consumers Energy, are looking at time-of-use charging rates in two proposed electric vehicle (EV) charging programs, aligned with broader EV charging infrastructure trends among utilities, worth a combined $20.5 million of investments.

DTE Energy last month proposed a $13 million electric vehicle (EV) charging program, which would include transformer upgrades/additions, service drops, labor and contractor costs, materials, hardware and new meters to provide time-of-use charging rates amid evolving charging control dynamics in the market. The Charging Forward program aims to address customer education and outreach, residential smart charger support and charging infrastructure enablement, DTE told regulators in its 1,100-page filing. The utility requested that rebates provided through the program be deferred as a regulatory asset.

Consumers Energy in 2017 withdrew a proposal to install 800 electric vehicle charging ports in its Michigan service territory after questions were raised over how to pay for the $15 million plan. According to Energy News Network, the utility has filed a modified proposal building on the former plan and conversations over the last year that calls for approximately half of the original investment.

Utilities across the country are viewing new demand from EVs as a potential boon to their systems, a shift accelerated by the Model 3's impact on utility planning, potentially allowing greater utilization and lower costs. But that will require the vehicles to be plugged in when other demand is low, to avoid the need for extensive upgrades and more expensive power purchases. Michigan utilities' proposal focuses on off-peak EV charging, as well as on developing new EV infrastructure.

While adoption has remained relatively low nationally, last year the Edison Electric Institute and the Institute for Electric Innovation forecast 7 million EVs on United States' roads by the end of 2025. But unless those EVs can be coordinated, state power grids could face increased stress, the National Renewable Energy Laboratory has said distribution transformers may need to be replaced more frequently and peak load could push system limits — even with just one or two EVs on a neighborhood circuit. 

In its application, DTE told regulators that electrification of transportation offers a range of benefits including "reduced operating costs for EV drivers and affordability benefits for utility customers."

"Most EV charging takes place overnight at home, effectively utilizing distribution and generation capacity in the system during a low load period," the utility said. "Therefore, increased EV adoption puts downward pressure on rates by spreading fixed costs over a greater volume of electric sales."

DTE added that other benefits include reduced carbon emissions, improved air quality, increased expenditures in local economies and reduced dependency on foreign oil for the public at large.

A previous proposal from Consumers Energy included 60 fast charging DC stations along major highways in the Lower Peninsula and 750 240-volt AC stations in metropolitan areas. Consumers' new plan will offer rebates for charger installation, as U.S. charging networks jostle for position amid federal electrification efforts, including residential and DC fast-charging stations.

 

Related News

View more

Next Offshore Wind in U.S. Can Compete With Gas, Developer Says

Offshore Wind Cost Competitiveness is rising as larger turbines boost megawatt output, cut LCOE, and trim maintenance and installation time, enabling projects in New England to rival natural gas pricing while scaling reliably.

 

Key Points

It describes how larger offshore turbines lower LCOE and O&M, making U.S. projects price competitive with natural gas.

✅ Larger turbines boost MW output and reduce LCOE.

✅ Lower O&M and faster installation cut lifecycle costs.

✅ Competes with gas in New England bids, per BNEF.

 

Massive offshore wind turbines keep getting bigger, as projects like the biggest UK offshore wind farm come online, and that’s helping make the power cheaper — to the point where developers say new projects in U.S. waters can compete with natural gas.

The price “is going to be a real eye-opener,” said Bryan Martin, chairman of Deepwater Wind LLC, which won an auction in May to build a 400-megawatt wind farm southeast of Rhode Island.

Deepwater built the only U.S. offshore wind farm, a 30-megawatt project that was completed south of Block Island in 2016. The company’s bid was selected by Rhode Island the same day that Massachusetts picked Vineyard Wind to build an 800-megawatt wind farm in the same area, while international investors such as Japanese utilities in UK projects signal growing confidence.

#google#

Bigger turbines that make more electricity have cut the cost per megawatt by about half, a trend aided by higher-than-expected wind potential in many markets, said Tom Harries, a wind analyst at Bloomberg New Energy Finance. That also reduces maintenance expenses and installation time. All of this is helping offshore wind vie with conventional power plants.

“You could not build a thermal gas plant in New England for the price of the wind bids in Massachusetts and Rhode Island,” Martin said Friday at the U.S. Offshore Wind Conference in Boston. “It’s very cost-effective for consumers.”

The Massachusetts project could be about $100 to $120 a megawatt hour, according to a February estimate from Harries, though recent UK price spikes during low wind highlight volatility. The actual prices there and in Rhode Island weren’t disclosed.

For comparison, a new U.S. combine-cycle gas turbine ranges from $40 to $60 a megawatt-hour, and a new coal plant is $67 to $113, according to BNEF data.

 

A new power plant in land-constrained New England would probably be higher than that, and during winter peaks the region has seen record oil-fired generation in New England that underscores reliability concerns. More importantly, gas plants get a significant portion of their revenue from being able to guarantee that power is always available, something wind farms can’t do, said William Nelson, a New York-based analyst with BNEF. Looking only at the price at which offshore turbines can deliver electricity is a “narrow mindset,” he said.

 

Related News

View more

Scottish Wind Delivers Equivalent Of 98% Of Country’s October Electricity Demand

Scotland Wind Energy October saw renewables supply the equivalent of 98 percent of electricity demand, as onshore wind outpaced National Grid needs, cutting emissions and powering households, per WWF Scotland and WeatherEnergy.

 

Key Points

A monthly update showing Scottish onshore wind met the equivalent of 98% of electricity demand in October.

✅ 98% of monthly electricity demand equivalent met by wind

✅ 16 days exceeded total national demand, per data

✅ WWF Scotland and WeatherEnergy cited; lower emissions

 

New figures publicized by WWF Scotland have revealed that wind energy generated the equivalent of 98% of the country’s electricity demand in October, or enough electricity to power millions of Scottish homes across the country.

Scotland has regularly been highlighted as a global wind energy leader, and over the last few years has repeatedly reported record-breaking months for wind generation. Now, it’s all very well and good to say that Scottish wind delivered 98% of the country’s electricity demand, but the specifics are a little different — hence why WWF Scotland always refers to it as wind providing “the equivalent of 98%” of Scotland’s electricity demand. That’s why it’s worth looking at the statistics provided by WWF Scotland, sourced from WeatherEnergy, part of the European EnergizAIR project:

  • National Grid demand for the month – 1,850,512 MWh
  • What % of this could have been provided by wind power across Scotland – 98%
  • Best day – 23rd October 2018, generation was 105,900.94 MWh, powering 8.72m homes, 356% of households. Demand that day was 45,274.5MWh – wind generation was 234% of that.
  • Worst day – 18th October 2018 when generation was 18,377.71MWh powering 1,512,568 homes, 62% of households. Demand that day was 73,628.5MWh – wind generation was 25%
  • How many days generation was over 100% of households – 27
  • How many days generation was over 100% of demand – 16

“What a month October proved to be, with wind powering on average 98 per cent of Scotland’s entire electricity demand for the month, at a time when wind became the UK’s main power source and exceeding our total demand for a staggering 16 out of 31 days,” said Dr Sam Gardner, acting director at WWF Scotland.

“These figures clearly show wind is working, it’s helping reduce our emissions and is the lowest cost form of new power generation. It’s also popular, with a recent survey also showing more and more people support turbines in rural areas. That’s why it’s essential that the UK Government unlocks market access for onshore wind at a time when we need to be scaling up electrification of heat and transport.”

Alex Wilcox Brooke, Weather Energy Project Manager at Severn Wye Energy Agency, added: “Octobers figures are a prime example of how reliable & consistent wind production can be, with production on 16 days outstripping national demand.”

 

Related News

View more

BC Hydro says province sleeping in, showering less in pandemic

BC Hydro pandemic electricity trends reveal weekend-like energy consumption patterns: later morning demand, earlier evenings, more cooking, streaming on smart TVs, and work-from-home routines, with tips to conserve using laptops and small appliances.

 

Key Points

Weekend-like shifts in power demand from work-from-home routines: later mornings, earlier evenings, and more streaming.

✅ Later morning electricity demand; earlier evening peaks

✅ More cooking and baking; increased streaming after dinner

✅ Conservation tips: laptops, small appliances, smart TVs

 

The latest report on electricity usage in British Columbia reveals the COVID-19 pandemic has created an atmosphere where every day feels like a Saturday, a pattern also reflected in BC electricity demand during peak seasons.

BC Hydro says overall power usage hasn't changed much, but similar Ontario electricity demand shifts suggest regional differences, while Manitoba demand fell more noticeably, and a survey of 500 people shows daily routines have shifted dramatically since mid-March when pandemic-related closures began.

The hydro report says, with nearly 40 per cent of B.C. residents working from home, trends in residential electricity use confirm almost half are sleeping in and eating breakfast later, while about a quarter say they are showering less.

Those patterns more closely resemble what hydro says is typical weekend power consumption, and could influence time-of-use rates as electricity demand occurs later in the morning and earlier in the evening.

The report also finds many people are cooking and baking more than before the pandemic, preparing the evening meal earlier, streaming or viewing more television after dinner even as Ottawa's electricity consumption dipped earlier in the pandemic, and 80 per cent are going to bed later.

Although electricity use is normal for this time of year, hydro says homebound residents can conserve by using laptops instead of desktops, small appliances such as Instant Pots instead of ovens, and streaming movies or TV shows on a smart televisions instead of game consoles, even as Hydro One peak rates continue to shape consumption patterns elsewhere.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified