Utilities return to natural gas on lower price, coal concerns

By Investor's Business Daily


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Natural gas power plants were all the rage back in the 1990s. They offered the promise of electricity generated at reasonable cost and with far less pollution than coal.

But when gas prices began to climb at the turn of the century, natural gas was put on the back burner. Coal, long the workhorse fuel for electric generation, emerged once again as the first choice for utilities adding capacity.

By 2002, there were plans to add 36,000 megawatts of coal-fired capacity within five years, according to the Energy Department's National Energy Technology Laboratory.

But King Coal sits uneasy on its throne. Just 4,500 megawatts — or 12% of that planned new coal capacity — has been put in place, NETL said in an April report.

Challenged by environmental opponents and mounting problems in financing, utilities have been dropping plans for coal plants faster than, well, hot coals.

The upshot: Natural gas has once again emerged as a favored alternative.

Earlier this year, Southern Montana Electric dropped plans to build a coal-fired plant. Instead, the utility will rely on a combination of natural gas and wind turbines for new capacity.

Tim Gregori, general manager at Southern Montana Electric, blamed regulatory "uncertainties" over coal's future.

Power company AES Corp. (AES) also dropped plans for a coal-fired facility in Oklahoma.

Speaking to investors in May, CEO Paul Hanrahan noted that energy security concerns were driving a shift to "indigenous fuels and renewables." At the same time, environmental concerns were driving shifts to "renewables and low-carbon sources."

Both of those pushes favor natural gas.

Art Holland, vice president of Pace, a Fairfax, Va.-based energy consulting firm, regularly consults with utility clients. He says interest in natural gas "has increased significantly with the decline in attraction of coal-fired generation."

Coal's loss of appeal stems mainly from uncertainty over new regulation that would seek to curb greenhouse gas emissions.

The consensus is that such regulations — and their cost — would fall most heavily on coal.

Coal's contribution to greenhouse gases is summed up in figures from DOE's Energy Information Administration.

Electricity generation accounts for 40% of all U.S. carbon dioxide emissions. Coal produces 52% of U.S. electricity but 83% of the carbon dioxide produced by power plants. Natural gas produces 16% of the energy and 15% of the CO2.

Technology for safely storing the carbon dioxide produced by coal plants would be costly and is still not fully tested. It also carries unknown safety risks, experts say.

"The current debate on energy policy will by default make natural gas the path of least resistance for power generation," said Jeb Armstrong, an analyst at Calyon Securities.

Meanwhile, expanded estimates of U.S. natural gas supplies have helped whittle away coal's chief advantage: price.

New exploration and drilling technology have freed up vast gas reserves previously thought unrecoverable. The most recent estimates put U.S. natural gas reserves at a 100-year supply.

This surfeit of supply, along with slowed recessionary demand, has helped to sharply lower gas prices in recent months. Coal is still cheaper, but the gap has narrowed.

Advanced Power North America, an independent developer of power plants, is currently working to develop gas-fired plants in New York and Massachusetts.

With many older plants, New England and the rest of the Northeast are fertile ground for new generating facilities.

But proposals for coal plants have been met with a frosty reception.

"It would be impossible to develop a coal-based plant in Massachusetts," said Tom Spang, president of Advanced Power North America.

Natural gas plants are more acceptable.

"Natural gas is the cleanest fossil fuel there is," Spang said.

In addition to halving carbon dioxide emissions, natural gas also slashes by "well over 90%" emissions of sulfur dioxide and nitrous oxide, Spang said.

Natural gas also has appeal when paired with renewable sources such as solar and wind.

For all the attention they receive, solar and wind are still limited to low single-digit market share in electric generation. Though technical advances and government support have brought prices down, they still remain comparatively costly.

Another problem: The sun and wind only shine and blow some of the time. So a utility must be able to complement such stop-and-go power with a steadier source.

Natural gas is ideal because it's "good at ramping up and down," said Spang. This is one advantage over nuclear power, for example, which cannot be readily turned on and off.

Natural gas plants are also cheaper to build than nuclear or coal plants, Spang says. So utilities recoup their investment faster.

The risk with natural gas is that its prices are volatile.

Burned before by a sudden rise in gas prices, many utilities are showing caution in switching shelved coal projects to natural gas. And they are mostly tight-lipped about their plans.

Little wonder. A massive announced rush to natural gas could trigger a new wave of price hikes, dimming some of the fuel's appeal.

Related News

Setbacks at Hinkley Point C Challenge UK's Energy Blueprint

Hinkley Point C delays highlight EDF cost overruns, energy security risks, and wholesale power prices, complicating UK net zero plans, Sizewell C financing, and small modular reactor adoption across the grid.

 

Key Points

Delays at EDF's 3.2GW Hinkley Point C push operations to 2031, lift costs to £46bn, and risk pricier UK electricity.

✅ First unit may slip to 2031; second unit date unclear.

✅ LSEG sees 6% wholesale price impact in 2029-2032.

✅ Sizewell C replicates design; SMR contracts expected soon.

 

Vincent de Rivaz, former CEO of EDF, confidently announced in 2016 the commencement of the UK's first nuclear power station since the 1990s, Hinkley Point C. However, despite milestones such as the reactor roof installation, recent developments have belied this optimism. The French state-owned utility EDF recently disclosed further delays and cost overruns for the 3.2 gigawatt plant in Somerset.

These complications at Hinkley Point C, which is expected to power 6 million homes, have sparked new concerns about the UK's energy strategy and its ambition to decarbonize the grid by 2050.

The UK government's plan to achieve net zero by 2050 includes a significant role for nuclear energy, reflecting analyses that net-zero may not be possible without nuclear and aiming to increase capacity from the current 5.88GW to 24GW by mid-century.

Simon Virley, head of energy at KPMG in the UK, stressed the importance of nuclear energy in transitioning to a net zero power system, echoing industry calls for multiple new stations to meet climate goals. He pointed out that failing to build the necessary capacity could lead to increased reliance on gas.

Hinkley Point C is envisioned as the pioneer in a new wave of nuclear plants intended to augment and replace Britain's existing nuclear fleet, jointly managed by EDF and Centrica. Nuclear power contributed about 14 percent of the UK's electricity in 2022, even as Europe is losing nuclear power across the continent. However, with the planned closure of four out of five plants by March 2028 and rising electricity demand, there is concern about potential power price increases.

Rob Gross, director of the UK Energy Research Centre, emphasized the link between energy security and affordability, highlighting the risk of high electricity prices if reliance on expensive gas increases.

The first 1.6GW reactor at Hinkley Point C, initially set for operation in 2027, may now face delays until 2031, even after first reactor installation milestones were reported. The in-service date for the second unit remains uncertain, with project costs possibly reaching £46bn.

LSEG analysts predict that these delays could increase wholesale power prices by up to 6 percent between 2029 and 2032, assuming the second unit becomes operational in 2033.

Martin Young, an analyst at Investec, warned of the price implications of removing a large power station from the supply side.

In response to these delays, EDF is exploring the extension of its four oldest plants. Jerry Haller, EDF’s former decommissioning director, had previously expressed skepticism about extending the life of the advanced gas-cooled reactor fleet, but EDF has since indicated more positive inspection results. The company had already decided to keep the Heysham 1 and Hartlepool plants operational until at least 2026.

Nevertheless, the issues at Hinkley Point C raise doubts about the UK's ability to meet its 2050 nuclear build target of 24GW.

Previous delays at Hinkley were attributed to the COVID-19 pandemic, but EDF now cites engineering problems, similar to those experienced at other European power stations using the same technology.

The next major UK nuclear project, Sizewell C in Suffolk, will replicate Hinkley Point C's design, aligning with the UK's green industrial revolution agenda. EDF and the UK government are currently seeking external investment for the £20bn project.

Compared with Hinkley Point C, Sizewell C's financing model involves exposing billpayers to some risk of cost overruns. This, coupled with EDF's track record, could affect investor confidence.

Additionally, the UK government is supporting the development of small modular reactors, while China's nuclear program continues on a steady track, with contracts expected to be awarded later this year.

 

Related News

View more

Chinese govt rejects the allegations against CPEC Power Producers

CPEC Power Producers drive China-Pakistan energy cooperation under the Belt and Road Initiative, delivering clean, reliable electricity, investment transparency, and grid stability while countering allegations, cutting circular debt, and easing load-shedding nationwide.

 

Key Points

CPEC Power Producers are BRI-backed energy projects supplying clean, reliable power and stabilizing Pakistan's grid.

✅ Supply one-third of load during COVID-19 peak, ensuring reliability

✅ Reduce circular debt and mitigate nationwide load-shedding

✅ Operate under BRI with transparent, long-term investment

 

Chinese government has rejected the allegations against the CPEC Power Producers (CPPs) amid broader coal reduction goals in the power sector.

Chinese government has made it clear that a mammoth cooperation with Pakistan in the energy sector is continuing, aligned with its broader electricity outlook through 2060 and beyond.

A letter written by Chinese ambassador to minister of Energy Omar Ayub Khan has said that major headway has been seen in recent days in the perspective of CPEC projects, alongside China's nuclear energy development at home. But he wants to invite the attention of government of Pakistan to the recent allegations leveled against the CPEC Power Producers (CPPs).

The Chinese ambassador further said Energy is a major area of cooperation under the CPEC and the CPPs have provided large amount of clean, reliable and affordable electricity to the Pakistani consumers and have guaranteed one-third of the power load during the COVID-19 pandemic, even as China grappled with periodic power cuts domestically. However many misinformed analysis and media distortion about the CPPs have been made public to create confusion about the CPEC, amid global solar sector uncertainty influencing narratives. Therefore, the Port Qasim Electric Power Company, Huaneng Shandong Ruyi Energy Limited and the China Power Hub Generation Company Limited as leading CPPs have drafted their own reports in this regard to present the real facts about the investors and operators. The conclusion is the CPPs have contributed to overcoming of loadshedding and the reduction of the power circular debt.

Reports of the two companies have also been attached with the letter wherein it has been laid out that CPEC as a pilot project under the Belt and Road Initiative, which also includes regional nuclear energy cooperation efforts, is an important platform for China and Pakistan to build a stronger economic and development partnership.

Chinese companies have expressed strong reservations over report of different committees besides voicing protest over it. They have made it clear they are ready to present the real situation before the competent authorities and committee, and in parallel with electricity infrastructure initiatives abroad, because all the work is being carried out by Chinese companies in power sector in fair and transparent manner.

 

Related News

View more

Yet another Irish electricity provider is increasing its prices

Electric Ireland Electricity Price Increase stems from rising wholesale costs as energy suppliers adjust tariffs. Customers face higher electricity bills, while gas remains unchanged; switching provider could deliver savings during winter.

 

Key Points

A 4% increase in Electric Ireland electricity prices from 1 Feb 2018, driven by wholesale costs; gas unchanged.

✅ 4% electricity rise effective 1 Feb 2018

✅ Increase attributed to rising wholesale energy costs

✅ Switching supplier may reduce bills and boost savings

 

ELECTRIC IRELAND has announced that it will increase its household electricity prices by 4% from 1 February 2018.

This comes just a week after both Bord Gáis Energy and SSE Airtricity announced increases in their gas and electricity prices, while national efforts to secure electricity supplies continue in parallel.

Electric Ireland has said that the electricity price increase is unavoidable due to the rising wholesale cost of electricity, with EU electricity prices trending higher as well.

The electricity provider said it has no plans to increase residential gas prices at the moment.

Commenting on the latest announcement, Eoin Clarke, managing director of Switcher.ie, said: “This is the third largest energy supplier to announce a price increase in the last week, so the other suppliers are probably not far behind.

“The fact that the rise is not coming into effect until 1 February will be welcomed by Electric Ireland customers who are worried about the rising cost of energy as winter sets in,” he said.

However, any increase is still bad news, especially as a quarter of consumers (27%) say their energy bill already puts them under financial pressure, and EU energy inflation has disproportionately affected lower-income households.

According to Electric Ireland, this will amount to a €2.91 per month increase for an average electricity customer, amounting to €35 per year.

Meanwhile, SSE Airtricity’s change amounts to an increase of 90 cent per week or €46.80 per year for someone with average consumption on their 24hr SmartSaver standard tariff, far below the dramatic Spain electricity price surge seen recently.

Bord Gáis Energy said its announcement will increase a typical gas bill by €2.12 a month and a typical electricity bill by €4.77 a month, reflecting wider trends such as the Germany power price spike reported recently.

In a statement, Bord Gáis Energy said: “The changes, which will take effect from 1st November 2017, are due to significant increases in the wholesale cost of energy as well as higher costs associated with distributing energy on the gas and electricity networks.

“In percentage terms, the increase represents 3.4% in a typical customer’s gas bill and an increase of 5.9% in a typical customer’s electricity bill.”

Clark said that if customers haven’t switched electricity provider in over a year that they should review the deals available at the moment.

“The market is highly competitive so there are huge savings to be made by switching,” he said.

“All suppliers use the same cables to supply electricity to your home, so you don’t need to worry about any loss in service, and you could save up to 324 by switching from typical standard tariffs to the cheapest deals on the market.”

 

Related News

View more

5,000 homes would be switched to geothermal energy free of charge

Manitoba NDP Geothermal Conversion Program offers full-cost heat pump installation for 5,000 homes, lowering electricity bills, funding contractor training and rebates, and cutting greenhouse gas emissions via geothermal energy administered by Efficiency Manitoba.

 

Key Points

A plan funding 5,000 home heat pump conversions to cut electricity bills, reduce emissions, and expand installer capacity.

✅ Covers equipment and installation for 5,000 homes

✅ Cuts electricity bills up to 50% vs electric heat

✅ Administered by Efficiency Manitoba; trains contractors

 

An NDP government would cover the entire cost for 5,000 families to switch their homes to geothermal energy, New Democrats have promised.

If elected on Oct. 3, the NDP will pay for the equipment and installation of new geothermal systems at 5,000 homes, St. James candidate Adrien Sala announced outside a St. Boniface home that previously made the switch. 

The homes that switch to geothermal energy could save as much as 50 per cent on their electricity bills, Sala said.

"It will save you money, it will grow our economy and it will reduce greenhouse gas emissions. And I think we can safely call that a win, win, win," Sala said.

Geothermal energy is derived from heat that is generated within the Earth.

The NDP said each conversion to geothermal heating and cooling would cost an estimated $26,000, and comes as new turbine investments advance in Manitoba, and it would take four years to complete all 5,000 conversions.

The program would be administered through Efficiency Manitoba, the Crown corporation responsible for conserving energy, as Manitoba Hydro's new president navigates changes at the utility. The NDP estimates it will cost $32.5 million annually over the four years, at a time of red ink at Manitoba Hydro as new power generation needs loom. Some of that money would support the training of more contractors who could install geothermal systems.


Subsidies get low pickup: NDP
Sala wouldn't say Wednesday which homeowners or types of homes would be eligible.

He said the NDP's plan would be a first in Canada, even as Ontario's energy plan seeks to address growing demand elsewhere.

"What we've seen elsewhere is where other jurisdictions have used a strict subsidy model, where they try to reduce the cost of geothermal, and while Ontario reviews a halt to natural gas generation to cut emissions, approaches differ across provinces. We really haven't seen a lot of uptake in those other jurisdictions," Sala said.

"This is an attempt at dealing with one of those key barriers for homeowners."

Efficiency Manitoba runs a subsidy program for geothermal energy through ground source heat pumps, supporting using more electricity for heat across the province, valued at up to $2.50 per square foot. It is estimated a 1,600 sq. ft. home switching from an electric furnace to geothermal will receive a rebate of around $4,000 and save around $900 annually on their electricity bills, the Crown corporation said.anitoba homeProgressive Conservative spokesperson Shannon Martin questioned how NDP Leader Wab Kinew can afford his party's numerous election promises.

"He will have no choice but to raise taxes, and history shows the NDP will raise them all," said Martin, the McPhillips MLA who isn't seeking re-election.

Wednesday's announcement was the first for the NDP in which Kinew wasn't present. The party has criticized the Progressive Conservatives for leader Heather Stefanson showing up for only a few announcements a week.

Sala said Kinew was busy preparing for the debate later in the day.

"This stuff is near and dear to Wab's heart, and frankly, I think he's probably hurting that he's not here with us right now."

 

Related News

View more

Energy Ministry may lower coal production target as Chinese demand falls

Indonesia Coal Production Cuts reflect weaker China demand, COVID-19 impacts, falling HBA reference prices, and DMO sales to PLN, pressuring thermal coal output, miner budgets, and investment plans under the 2020 RKAB.

 

Key Points

Planned 2020 coal output reductions from China demand slump, lower HBA prices, and DMO constraints impacting miners.

✅ China demand drop reduces exports and thermal coal shipments.

✅ HBA reference price decline pressures margins and cash flow.

✅ DMO sales to PLN limit revenue; investment plans may slow.

 

The Energy and Mineral Resources (ESDM) Ministry is considering lowering the coal production target this year as demand from China has shown a significant decline, with China power demand drops reported, since the start of the outbreak of the novel coronavirus in the country late last year, a senior ministry official has said.

The ministry’s coal and mineral director general Bambang Gatot Ariyono said in Jakarta on March 12 that the decline in the demand had also caused a sharp drop in coal prices on the world market, and China's plan to reduce coal power has further weighed on sentiment, which could cause the country’s miners to reduce their production.

The 2020 minerals and coal mining program and budget (RKAB) has set a current production goal of 550 million tons of coal, a 10 percent increase from last year’s target. As of March 6, 94.7 million tons of coal had been mined in the country in the year.

“With the existing demand, revision to this year’s production is almost certain,” he said, adding that the drop in demand had also caused a decline in coal prices.

Indonesia’s thermal coal reference price (HBA) fell by 26 percent year-on-year to US$67.08 per metric ton in March, according to a Standards & Poor press release on March 5.  At home, the coal price is also unattractive for local producers. Under the domestic market obligation (DMO) policy, miners are required to sell a quarter of their production to state-owned electricity company PLN at a government-set price, even as imported coal volumes rise in some markets. This year’s coal reference price is $70 per metric ton, far below the internal prices before the coronavirus outbreak hit China.

The ministry’s expert staff member Irwandy Arif said China had reduced its coal demand by 200,000 tons so far, as six of its coal-fired power plants had suspended operation due to the significant drop in electricity demand. Many factories in the country were closed as the government tried to halt the spread of the new coronavirus, which caused the decline in energy demand and created electric power woes for international supply chains.

“At present, all mines in Indonesia are still operating normally, while India is rationing coal supplies amid surging electricity demand. But we have to see what will happen in June,” he said.

The ministry predicted that the low demand would also result in a decline in coal mining investment, as clean energy investment has slipped across many developing nations.

The ministry set a $7.6 billion investment target for the mining sector this year, up from $6.17 billion last year, even as Israel reduces coal use in its power sector, which may influence regional demand. The year’s total investment realization was $192 million as of March 6, or around 2.5 percent of the annual target. 

 

Related News

View more

UK must start construction of large-scale storage or fail to meet net zero targets.

UK Hydrogen Storage Caverns enable long-duration, low-carbon electricity balancing, storing surplus wind and solar power as green hydrogen in salt formations to enhance grid reliability, energy security, and net zero resilience by 2035 and 2050.

 

Key Points

They are salt caverns storing green hydrogen to balance wind and solar, stabilizing a low-carbon UK grid.

✅ Stores surplus wind and solar as green hydrogen in salt caverns

✅ Enables long-duration, low-carbon grid balancing and security

✅ Complements wind and solar; reduces dependence on flexible CCS

 

The U.K. government must kick-start the construction of large-scale hydrogen storage facilities if it is to meet its pledge that all electricity will come from low-carbon electricity sources by 2035 and reach legally binding net zero targets by 2050, according to a report by the Royal Society.

The report, "Large-scale electricity storage," published Sep. 8, examines a wide variety of ways to store surplus wind and solar generated electricity—including green hydrogen, advanced compressed air energy storage (ACAES), ammonia, and heat—which will be needed when Great Britain's electricity generation is dominated by volatile wind and solar power.

It concludes that large scale electricity storage is essential to mitigate variations in wind and sunshine, particularly long-term variations in the wind, and to keep the nation's lights on. Storing most of the surplus as hydrogen, in salt caverns, would be the cheapest way of doing this.

The report, based on 37 years of weather data, finds that in 2050 up to 100 Terawatt-hours (TWh) of storage will be needed, which would have to be capable of meeting around a quarter of the U.K.'s current annual electricity demand. This would be equivalent to more than 5,000 Dinorwig pumped hydroelectric dams. Storage on this scale, which would require up to 90 clusters of 10 caverns, is not possible with batteries or pumped hydro.

Storage requirements on this scale are not currently foreseen by the government, and the U.K.'s energy transition faces supply delays. Work on constructing these caverns should begin immediately if the government is to have any chance of meeting its net zero targets, the report states.

Sir Chris Llewellyn Smith FRS, lead author of the report, said, "The need for long-term storage has been seriously underestimated. Demand for electricity is expected to double by 2050 with the electrification of heat, transport, and industrial processing, as well as increases in the use of air conditioning, economic growth, and changes in population.

"It will mainly be met by wind and solar generation. They are the cheapest forms of low-carbon electricity generation, but are volatile—wind varies on a decadal timescale, so will have to be complemented by large scale supply from energy storage or other sources."

The only other large-scale low-carbon sources are nuclear power, gas with carbon capture and storage (CCS), and bioenergy without or with CCS (BECCS). While nuclear and gas with CCS are expected to play a role, they are expensive, especially if operated flexibly.

Sir Peter Bruce, vice president of the Royal Society, said, "Ensuring our future electricity supply remains reliable and resilient will be crucial for our future prosperity and well-being. An electricity system with significant wind and solar generation is likely to offer the lowest cost electricity but it is essential to have large-scale energy stores that can be accessed quickly to ensure Great Britain's energy security and sovereignty."

Combining hydrogen with ACAES, or other forms of storage that are more efficient than hydrogen, could lower the average cost of electricity overall, and would lower the required level of wind power and solar supply.

There are currently three hydrogen storage caverns in the U.K., which have been in use since 1972, and the British Geological Survey has identified the geology for ample storage capacity in Cheshire, Wessex and East Yorkshire. Appropriate, novel business models and market structures will be needed to encourage construction of the large number of additional caverns that will be needed, the report says.

Sir Chris observes that, although nuclear, hydro and other sources are likely to play a role, Britain could in principle be powered solely by wind power and solar, supported by hydrogen, and some small-scale storage provided, for example, by batteries, that can respond rapidly and to stabilize the grid. While the cost of electricity would be higher than in the last decade, we anticipate it would be much lower than in 2022, he adds.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.