Mississippi power plant costs cross $7.5B


The Kemper County power plant

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Kemper County power plant costs and delays highlight lignite coal gasification, syngas production, carbon capture targets, and looming rate plans as Mississippi Power navigates Public Service Commission oversight and shareholder-ratepayer risk.

 

Key Points

Costs exceed $7.5B with repeated delays; rate impacts loom as syngas, lignite, and carbon capture systems mature.

✅ Estimate tops $7.5B; customers could fund about $4.3B

✅ Carbon capture target: 65% CO2 via syngas from lignite

✅ Rate plans pending before the Public Service Commission

 

A Mississippi utility on Monday delayed making proposals for how its customers should pay for an ever-more-expensive power plant, even as the estimated cost of the facility crossed $7.5 billion.

The Kemper County power plant will be tasked with mining lignite coal a few hundred yards away from the plant. That coal is moved through a process that will convert it to syngas. The syngas is then used to drive the energy output of the plant, and the resulting electricity is then moved into the grid, where transmission projects influence regional reliability and capacity.

Thomas Fanning, CEO of parent Southern Co., told shareholders in May that Mississippi Power would file rate plans for its Kemper County power plant this month. But still unable to operate the plant steadily enough to declare it finished, Mississippi Power punted, instead asking to hold rates level for 11 months to pay off costs that have already been approved by regulators.

Mississippi Power says it now hopes to reach commercial operation in June. The plant is more than three years behind schedule, with 10 delays announced in the past 18 months. It was originally supposed to cost $2.9 billion.

The company also said monday that it will have to replace troublesome parts of the facility much sooner than expected, including units that cool the synthetic gas produced from soft lignite coal by two gasifier units, plus ash handling systems in the gasifiers.

Kemper is designed to take synthetic gas, pipe it through a chemical plant to remove carbon dioxide and other chemicals, and then burn the gas in turbines to generate electricity. It’s designed to capture 65 percent of carbon dioxide from the coal, releasing only as much of the climate-warming gas as a typical natural gas plant. It’s a key effort nationally to maintain coal as a viable fuel source, even as coal unit retirements proceed in other states.

Mississippi Power raised its estimate of Kemper’s cost by $209.4 million, with shareholders absorbing $185.9 million, while ratepayers could be asked to pay $23.5 million. Overall, customers could be asked to pay $4.3 billion. Southern shareholders have agreed to absorb $3.1 billion, which has risen by $500 million since November.

The elected three-member Public Service Commission in 2015 allowed the company to raise rates on its 188,000 customers by $126 million a year. That paid for $840 million in Kemper work, which began generating electricity in 2014 using piped-in natural gas. Some items covered by that 15 percent rate increase will be paid off in coming months, but Mississippi Power now proposes to repay costs from regulatory proceedings earlier than originally projected.

In testimony filed with the Public Service Commission, Mississippi Power Chief Financial Officer Moses Fagin said that keeping rates level would reduce whiplash to customers when rates rise later to pay for Kemper, would pay off accumulated costs more quickly and would help the company wean itself off financial support from Southern Co. while maintaining credit ratings and positioning for a possible bond rating upgrade over time.

“Cash flow is important to the company in maintaining its current ratings and beginning to rebuild its credit strength on a more independent basis apart from the extraordinary parental support that has been required in recent years to maintain financial integrity,” Fagin testified.

Spokesman Jeff Shepard said Mississippi Power is still drawing up two rate plans — one requiring a sharp, immediate rate increase, and a “rate mitigation plan” that might cushion increases amid declining returns in coal markets. He said the company isn’t sure when it will file them. Fagin suggested the Public Service Commission set a new deadline of March 2, 2018.

 

Related News

Related News

New Alberta bill enables consumer price cap on power bills

Alberta Electricity Rate Cap shields RRO customers with a 6.8 cents/kWh price ceiling, stabilizing power bills amid capacity market transition, using carbon tax funding to offset spikes and enhance consumer protection from volatility.

 

Key Points

A four-year 6.8 cents/kWh ceiling on Alberta's RRO power price, backed by carbon tax to stabilize bills.

✅ Applies to RRO customers from Jun 2017 to May 2021

✅ Caps rates at 6.8 cents/kWh; lower RRO still applies

✅ Funded by carbon tax when market prices exceed cap

 

The Alberta government introduced a bill Tuesday, part of new electricity rules that will allow it to place a cap on regulated electricity rates for the next four years.

The move to cap consumer power rates at a maximum of 6.8 cents per kilowatt-hour for four years was announced in November 2016 by Premier Rachel Notley, although it was later scrapped by the UCP during a subsequent policy shift.

The cap is intended to protect consumers from price fluctuations from June 1, 2017, to May 31, 2021, as the province moves from a deregulated to a capacity power market amid a power market overhaul that is underway.

The price ceiling will apply to people with a regulated rate option. If the RRO is below 6.8 cents, they will still pay the lower rate.

The government isn't forecasting price fluctuations above 6.8 cents in this four-year period. If the price goes above that amount, funding would come from the carbon tax if required.

Funding may come from carbon tax

"We're taking a number of steps to keep prices low," said Energy Minister Marg McCuaig-Boyd. "But in the event that prices were to spike, the cap would automatically prevent the energy rate from going over 6.8 cents to give Albertans even more peace of mind." 

The government isn't forecasting price fluctuations above 6.8 cents in this four-year period. If the price goes above that amount, funding would come from the carbon tax.

McCuaig-Boyd said this would be an appropriate use for the carbon tax as the cap helps Albertans move to a greener energy system and change how the province produces and pays for electricity without relying as much on coal-fired electricity. 

The government estimates the program will cost $10 million a month for each cent the rate goes above 6.8 cents per kilowatt-hour. If rates remain below that amount, the program may not cost anything.

Wildrose electricity and renewables critic Don MacInytre said the move shows the government expects retail electricity rates will double over the next four years. 

MacIntyre argued a rate cap simply shifts increasing electricity costs away from consumers to the Alberta government. But ultimately everyone pays. 

"It's simply a shift of a burden from the ratepayer to the taxpayer, which is essentially the same person," he said. 

The City of Medicine Hat runs its own electrical system without a regulated rate option. The government will talk with the city to see if it is interested in taking part in the price cap protection.

About 60 per cent of eligible Albertans or one million households use the regulated rate option in their electricity contracts.

The current regulated rate option averages less than three cents per kilowatt-hour.

 

Related News

View more

Wynne defends 25% hydro rate cut:

Ontario Hydro Rate Cuts address soaring electricity prices, lowering hydro bills via refinancing, FAO-reviewed costs, and long-term infrastructure investment, balancing ratepayer relief with a projected $21 billion net expense over 30 years.

 

Key Points

Ontario electricity bill relief spreading infrastructure and green energy costs over 30 years via refinancing.

✅ 25% average bill cut; $156 to $123 per month

✅ FAO projects $21B net cost over 30 years

✅ Costs shifted to long-term debt, infrastructure, green energy

 

Premier Kathleen Wynne is making no apologies for the Liberals’ 25 per cent hydro rate cuts, legislation to lower electricity rates that a legislative watchdog warns will cost at least $21 billion over three decades.

In the wake of Financial Accountability Officer Stephen LeClair’s report on the “Fair Hydro Plan,” Wynne emphasized that Ontario electricity consumers demanded and deserved relief.

“You all read the newspaper, you listen to the radio and you watch television — you know the problems that families are having around the province paying for their electricity costs,” the premier told reporters Thursday in Timmins.

That’s why the government moved forward with a rate cut, with recent Hydro One reconnections underscoring the stakes, that will see the average household’s monthly hydro bill drop from $156 to $123 once it fully takes effect next month.

In a 15-page report released Wednesday, the financial accountability officer estimated the initiative would cost the province $45 billion over the next 29 years amid a cabinet warning on prices that electricity costs could soar, while saving ratepayers $24 billion for a next expense of $21 billion.

Both the Progressive Conservatives and the New Democrats oppose the Liberal rate cut, arguing that a deal with Quebec would not lower hydro bills.

But Wynne said the government has in effect renegotiated a mortgage so it will bankroll hydro infrastructure improvements over a longer time period, though some have urged the next government to scrap the Fair Hydro Plan and review options, in order to give customers a break now.

“We’re talking about a 30-year window here. It took at least 30 years, probably 40 years, to let the electricity system degrade to the stage that it had in 2003,” she said, noting “we were having blackouts and brownouts around the province” before her party took office that year.

“There were thousands of kilometres of line that needed to be rebuilt . . . that work hadn’t been done over those generations, so electricity costs were low over that period of time but the work wasn’t being done.”

When her predecessor Dalton McGuinty came to power in 2003, Wynne said Queen’s Park began spending billions on infrastructure improvements, including expensive subsidies for green energy, such as wind turbines and solar panels.

“There’s a lot of work that has been done since then. Literally thousands of kilometres of line have been rebuilt. The coal-fired plants have been shut down. The air is cleaner. There’s less pollution in the air. The system is reliable and renewable,” she said.

“So there’s a cost associated with that and what was happening was that was work that had to be done — and all of those costs were on the shoulders of people today.”

Wynne noted “this electricity grid is an asset that is going to be used for generations to come.”

“My grandchildren are going to benefit from this asset, so I think it’s fair that we spread the cost of that over that 30-year period,” she said.

“That’s how we made this decision.”

 

 

 

Related News

View more

How Hedge Funds May Be Undermining the Electric Car Boom

Cobalt Supply Chain for EV Batteries faces shortages as lithium-ion demand surges; Tesla gigafactories, ethical sourcing, Idaho cobalt mining, and DRC risks intensify pricing, logistics, and procurement challenges for manufacturers and investors.

 

Key Points

A network supplying cobalt for lithium-ion cathodes, strained by EV demand, ethical sourcing pressures, and DRC risk.

✅ EV growth outpaces cobalt supply, widening deficits

✅ DRC reliance drives ESG scrutiny and sourcing shifts

✅ Idaho projects and stockpiling reshape U.S. supply

 

A perfect storm is brewing in the 21st Century battery market.

More specifically, it's about what goes into those batteries - and it's not just lithium.

The other element that makes up 35 percent of the lithium-ion batteries mass produced at Tesla's Nevada gigafactory and at a dozen of other behemoths slated to come on line, is cobalt. And it's already in dramatically short supply. A part of the answer to the cobalt deficit is 100 percent American, and this little-known miner is sitting on a prime Idaho cobalt project that is one of only two that looks likely to come online in the U.S. and it's right in Tesla's backyard.

 

High-Energy Batteries Need More Cobalt Than Lithium 

If you've been focusing your investment on lithium supplies lately you've been missing the even bigger story. EV batteries need about 200 grams of refined cobalt per kilowatt of battery capacity. Power walls need more than twice that. Between March 2016 and April 2017, the cost of the cobalt in that mix nearly tripled. But it isn't just the price that's got manufacturers worried. It's the shortage of availability. Keeping gigafactories stocked with enough cobalt to run at capacity is the challenge of the decade.

Tesla, now with a $50-billion market cap, launched a $5-billion battery gigafactory in Nevada in January. By the end of 2017, it will have doubled the entire global battery production capacity. By next year, it will be producing more batteries than the rest of the world combined.

It is estimated that Tesla's gigafactory alone will need anywhere between 7,000 and 17,500 tonnes of refined cobalt every year.

Tesla used to buy its finished battery cells from Panasonic, which in turn got its processed cathode powders from a Japanese company, Sumitomo was processing its own cobalt in the Philippines. However, that facility is already running at capacity and couldn't even begin to handle Tesla's gigafactory demand. In other words, Tesla's supply chain is no longer secure. And that's just Tesla.

The EV market is fifteen times larger than it was five years ago. The market has experienced a comppound annual growth rate of over 72 percent from 2011-2016, with new sources like Alberta's lithium-laced oil fields drawing investment alongside cobalt. This year, analysts expect it to gain another 25-26 percent. Last year, global EV production grew 41 percent, and sales are up more than 60 per cent year to year.

In addition,the Iron Creek project isn't a new exploration property. It has already seen major historic exploratory work, including 30,000 feet of diamond drilling. Iron Creek has historic (non 43-101 compliant) indications of 1.3 million tons grading 0.59 percent of cobalt with encouraging indications of up to 10 million tons. The 'closeology' is also brilliant. It's right next to the only advanced cobalt project in the U.S., which has a resource of 3 million-plus tonnes of cobalt.

As the battery market hits fever pitch and the supply-chain bottlenecks become unbearable, homegrown exploration is the key-first-movers and first investors will be the biggest beneficiaries.

 

A Very Precarious Supply Chain 

Supply is already in deficit, and we're also looking at an anticipated 500 percent increase in demand, making EV battery recycling an increasingly important complement to mining. Analysts at Macquarie Research project deficits of 885 tonnes of this resource next year, 3,205 in 2019 and 5,340 in 2020.

Not only is demand set to wildly outstrip supply very soon, but current supply (50 percent) comes primarily from the Democratic Republic of Congo (DRC). Buyers are coming under increasing pressure to look elsewhere for cobalt as the U.S. moves to work with allies to secure EV metals through diversified supply chains. The DRC has a horrendous record when it comes to labor practices and human rights.

Ask Apple Inc.  The tech giant recently announced it would stop buying unethical DRC cobalt for its iPhones - and as such, it has been forced to look for new suppliers.

The perfect storm continues: Some 95 percent of the world's cobalt is produced as a byproduct of copper and nickel mining, where concerns about ethical sourcing have put a spotlight on Canada's role in sustainable nickel practices worldwide. This means that cobalt supply is dependent on copper and nickel mining, and if those commodities are uneconomic to mine, there are no cobalt by-product results.

Not only is US Cobalt one of the first movers on the All-American ethical cobalt scene, but it's also financed to advance its Idaho Cobalt Belt project, and hopes to prove up 10 million tonnes of cobalt resource.

 

The Dream Team Behind Pure American Cobalt 

The CEO of US Cobalt, Wayne Tisdale, is a legend in spotting emerging trends with impeccable timing and has created billions in shareholder value. He's already done it with uranium, gold and oil and gas, and his most recent homerun was in lithium, with Pure Energy. When it launched in 2012, lithium was selling for about $5,000 per tonne. Within 18 months, it had increased 450 percent.

His next bet is on cobalt.

Tisdale and his team at Intrepid Financial have, in recent years, created $2.7 billion in value by building and financing 5 companies in completely different industries:

  • Rainy River (gold) was worth $1.2 billion at its peak
  • Xemplar (uranium) hit $1 billion at its peak
  • Ryland Oil (oil and gas) sold for $114 million
  • Webtech Wireless (tech) was worth $300 million at its peak
  • Pure Energy (lithium) is worth $65 million (and counting)

The bottom line? There is no other commodity on the market right now that we need more.

Just watch what the hedge funds are doing with cobalt because it's unprecedented. The run on physical cobalt started in February in the least expected corner: Major hedge funds started buying up physical cobalt and hoarding it in order to gain exposure, resulting in a major supply shortage for the blue metal. Swiss-based Pala Investments and China's Shanghai Chaos have already hoarded 17 percent of last year's global production. At today's prices that's worth around $280 million. At tomorrow's prices, it will be worth a lot more.

When hedge funds start stockpiling physical cobalt, it sends its traditional buyers into a panic to secure new shipments. Since November, cobalt prices have rallied more than 100 percent, and this is only the beginning. As the cobalt supply problem grows, and EV giants and gigafactories continue to increase demand, a home-grown solution is at hand. As a first principle of investing, where there is a supply problem, there is a massive opportunity for early investors.

 

Related News

View more

Israeli ministries order further reduction in coal use

Israel Coal Reduction accelerates the energy transition, cutting coal use in electricity production by 30% as IEC shifts to natural gas, retires Hadera units, and targets a 2030 phase-out to lower emissions.

 

Key Points

Plan to cut coal power by 30%, retire IEC units, and end coal by 2030, shifting electricity generation to natural gas.

✅ 30% immediate cut in coal use for electricity by IEC

✅ Hadera units scheduled for retirement and gas replacement by 2022

✅ Complete phase-out of coal and gasoil in power by 2030

 

Israel's Energy and Water and Environmental Protection Ministers have ordered an immediate 30% reduction in coal use for electricity production by state utility Israel Electric Corporation as the country increases its dependence on domestic natural gas.

IEC, which operates four coal power plants with a total capacity of 4,850 MW and imports thermal coal from Australia, Colombia, Russia and South Africa, has been planning, as part of the decision to reduce coal use, to shut one of its coal plants during autumn 2018, when demand is lowest.

Israel has already decided to shut the four units of the oldest coal power plant at Hadera by 2022, echoing Britain's coal-free week milestones, and replace the capacity with gas plants.

"By 2030 Israel will completely stop the use of coal and gasoil in electricity production," minister Yuval Steinmetz said.

Coal consumption peaked in 2012 at 14 million mt and has declined steadily, aligning with global trends where renewables poised to eclipse coal in power generation, with the coming on line of Israel's huge Tamar offshore gas field in 2013.

In 2015 coal accounted for more than 50% of electricity production, even as German renewables outpaced coal in generation across that market. Coal's share would decline to less than 30% under the latest decision.

Israel's coal consumption in 2016 totaled 8.7 million mt, as India rationed coal supplies amid surging demand, and was due to decline to 8 million mt last year.

Three years ago, the ministers ordered a 15% reduction in coal use, while Germany's coal generation share remained significant, and the following year a further 5% cut was added.

 

Related News

View more

Coal comeback unlikely after Paris climate pact withdrawal, says utility CEO

US Shift From Coal to Renewables accelerates as natural gas, solar, and wind power gain market share, driven by the Paris climate agreement, clean energy mandates, smart grid upgrades, and energy efficiency.

 

Key Points

An industry trend where power producers replace coal with natural gas, solar, and wind to meet clean energy goals.

✅ Shareholders and customers demand cleaner power portfolios

✅ Natural gas, solar, and wind outcompete coal on cost and risk

✅ Smart grid and efficiency investments reduce emissions further

 

President Trump once again promised to revive the U.S. coal industry when he announced his intention to withdraw the U.S. from the Paris climate agreement.

But that reversal seems as unlikely as ever as electric power producers, the biggest consumers of coal in the U.S., continue to shift to natural gas and renewable energy sources like solar and wind power. In 2016, natural gas became the leading fuel for U.S. electricity generation for the first time, responsible for 33.8% of the output, compared with 30.4% for coal, according to the U.S. Energy Information Administration, even as coal-fired generation was projected to rise in 2021 in the short term.

Nick Akins, the CEO of American Electric Power, one of the largest utilities in the U.S., says the preference for gas, renewables and energy efficiency, will only grow in response to increasing demands from shareholders and customers for cleaner energy, regardless of changes in national energy policy.

With 5.4 million customers in 11 states, AEP plans to spend $1.5 billion on renewable energy from 2017 through 2019, and $13 billion on transmission and distribution improvements, including new “smart” technologies that will make the grid more resilient and efficient, AEP says.

We spoke with Akins on Thursday, just after Trump’s announcement. The transcript is edited for length and clarity.

 

What do you think of Trump’s decision to pull the U.S. from the climate agreement?

I don’t think it’s unexpected. He obviously made the point that he’s willing to renegotiate or have further dialogue about it. That’s a good sign. From our perspective, we’re going to continue along the path we’re already on toward a cleaner energy economy.

 

AEP and the U.S. electric power industry in general have been moving away from coal in favor of natural gas and renewable energy. Will this decision by the Trump administration have any impact on that trend?

If you look at our resource plans in all of the states we serve, they are focused on renewables, natural gas and transmission, as declining returns from coal generation pressure investment choices across the industry. And big-data analytics improves the efficiency of the grid, so energy efficiency is obviously a key component, as Americans use less electricity overall.

Our carbon dioxide emissions in 2016 were 44% below 2000 levels, and that progress will continue with the additions of more renewables, energy efficiency and natural gas.

So, you don’t see coal making a comeback at AEP or other utilities?

No, I don’t think so. … You wouldn’t make a decision (to build a coal power plant) at this point because it’s heavily capital-intensive, and involves a longer-term process and risk to build. And, of course, you can add renewables that are very efficient and natural gas that’s efficient and much less expensive and risky, in terms of construction and operation.

 

Do you plan to close any more coal-powered plants soon? 

I suspect we’ll see some more retirements in the future, with coal and nuclear closures test just transition in many communities, and as we progress towards that cleaner energy economy, and consider the expectations of our customers and shareholders for us to mitigate risk, you’ll continue to see that happen.

But on the other hand, I want to make sure there’s an understanding that coal will remain a part of the portfolio, even though in rare cases new coal plants are still being built where options are limited, but it will be of a lesser degree because of these other resources that are available to us now that weren’t available to us just a few years ago.

 

Do you find yourself under more or less pressure from customers and shareholders to move to cleaner forms of energy?

I think there’s more pressure. Investors are looking for the sustainability of the company going forward and mitigation of risks … From a customer standpoint, we have some large customers interested in moving into our service territory who are looking for cleaner energy, and want to know if we’re focused on that. Some of them want to be supplied entirely by those clean sources. So, we’re clearly responding to our customers’ and our shareholders’ expectations.

 

What’s the solution for workers at coal mines and coal power plants who have lost their jobs?

Certainly, the skill sets of employees in mining and around machinery are transferable to other areas of manufacturing, like aerospace and defense. So, we’re really focusing on economic-development efforts in our service territories … particularly in the coal states … to bring coal miners back to work, not necessarily in coal mines but certainly (in manufacturing).

 

Related News

View more

St. Albert touts green goals with three new electric buses

St. Albert electric buses debut as zero-emission, quiet public transit, featuring BYD technology, long-range batteries, and charging stations, serving Edmonton routes while advancing sustainable transportation goals and a future fleet expansion.

 

Key Points

They are zero-emission BYD transit buses that cut noise and air pollution, with long-range batteries and city charging.

✅ Up to 250-280 km range per charge

✅ Quiet, zero-emission operations reduce urban pollution

✅ Backed by provincial GreenTRIP funding and BYD tech

 

The city of St. Albert is going green — both literally and esthetically — with three electric buses on routes in and around the city this week.

"They're virtually silent," Wes Brodhead, chair of the Capital Region Board transit committee and a St. Albert city councillor, said. "This, as opposed to the diesel buses and the roar that accompanies them as they drive down the street."

You may not hear them coming but you'll definitely see them, as electric school buses in B.C. hit the road as well.

The 35-foot electric buses are painted bright green to represent the city's goal of adopting sustainable transportation.

"There's no noise pollution, there's no air pollution, and it just kind of fit with the whole theme of the city," said St. Albert Transit director Kevin Bamber.

'The conversation around the conference was not if but when the industry will fully embrace electrification,' - Wes Brodhead, St. Albert city councillor

The buses cost about $970,000 each. Adding in the required infrastructure, including charging stations, the project cost a total of $3.1 million, with two-thirds of the funding coming from the provincial government's Green Transit Incentives Program. 

The electric buses are estimated to go between 250 and 280 kilometres on a single charge.

"That would mean any of the routes that we currently have through St. Albert or into Edmonton, an electric bus could do the morning route, come back, park in the afternoon and go back out and do the afternoon route without a charge," Bamber said. 

St. Albert councillor Wes Brodhead envisions having a full fleet of 60 electric buses in years to come, a scale informed by examples like the TTC's electric bus fleet operating in North America. (Supplied)

Brodhead went to an international transit conference in Montreal, where STM electric buses have begun rolling out and he said manufacturers presented various electric bus designs. 

"The conversation around the conference was not if but when the industry will fully embrace electrification," Brodhead said.

The vehicles were built in California by BYD Ltd., one of only two companies making the long-endurance electric buses.

The city has ordered four more of the buses and hopes to be running all seven by the end of the year, as battery-electric buses in Metro Vancouver continue to hit the roads nationwide.

Eventually, Brodhead envisions having a full fleet of 60 electric buses in St. Albert.

Edmonton is expected to operate as many as 40 electric buses, and while city staff are still in the planning stages, Edmonton's first electric bus has already hit city streets.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified