Mississippi power plant costs cross $7.5B


The Kemper County power plant

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Kemper County power plant costs and delays highlight lignite coal gasification, syngas production, carbon capture targets, and looming rate plans as Mississippi Power navigates Public Service Commission oversight and shareholder-ratepayer risk.

 

Key Points

Costs exceed $7.5B with repeated delays; rate impacts loom as syngas, lignite, and carbon capture systems mature.

✅ Estimate tops $7.5B; customers could fund about $4.3B

✅ Carbon capture target: 65% CO2 via syngas from lignite

✅ Rate plans pending before the Public Service Commission

 

A Mississippi utility on Monday delayed making proposals for how its customers should pay for an ever-more-expensive power plant, even as the estimated cost of the facility crossed $7.5 billion.

The Kemper County power plant will be tasked with mining lignite coal a few hundred yards away from the plant. That coal is moved through a process that will convert it to syngas. The syngas is then used to drive the energy output of the plant, and the resulting electricity is then moved into the grid, where transmission projects influence regional reliability and capacity.

Thomas Fanning, CEO of parent Southern Co., told shareholders in May that Mississippi Power would file rate plans for its Kemper County power plant this month. But still unable to operate the plant steadily enough to declare it finished, Mississippi Power punted, instead asking to hold rates level for 11 months to pay off costs that have already been approved by regulators.

Mississippi Power says it now hopes to reach commercial operation in June. The plant is more than three years behind schedule, with 10 delays announced in the past 18 months. It was originally supposed to cost $2.9 billion.

The company also said monday that it will have to replace troublesome parts of the facility much sooner than expected, including units that cool the synthetic gas produced from soft lignite coal by two gasifier units, plus ash handling systems in the gasifiers.

Kemper is designed to take synthetic gas, pipe it through a chemical plant to remove carbon dioxide and other chemicals, and then burn the gas in turbines to generate electricity. It’s designed to capture 65 percent of carbon dioxide from the coal, releasing only as much of the climate-warming gas as a typical natural gas plant. It’s a key effort nationally to maintain coal as a viable fuel source, even as coal unit retirements proceed in other states.

Mississippi Power raised its estimate of Kemper’s cost by $209.4 million, with shareholders absorbing $185.9 million, while ratepayers could be asked to pay $23.5 million. Overall, customers could be asked to pay $4.3 billion. Southern shareholders have agreed to absorb $3.1 billion, which has risen by $500 million since November.

The elected three-member Public Service Commission in 2015 allowed the company to raise rates on its 188,000 customers by $126 million a year. That paid for $840 million in Kemper work, which began generating electricity in 2014 using piped-in natural gas. Some items covered by that 15 percent rate increase will be paid off in coming months, but Mississippi Power now proposes to repay costs from regulatory proceedings earlier than originally projected.

In testimony filed with the Public Service Commission, Mississippi Power Chief Financial Officer Moses Fagin said that keeping rates level would reduce whiplash to customers when rates rise later to pay for Kemper, would pay off accumulated costs more quickly and would help the company wean itself off financial support from Southern Co. while maintaining credit ratings and positioning for a possible bond rating upgrade over time.

“Cash flow is important to the company in maintaining its current ratings and beginning to rebuild its credit strength on a more independent basis apart from the extraordinary parental support that has been required in recent years to maintain financial integrity,” Fagin testified.

Spokesman Jeff Shepard said Mississippi Power is still drawing up two rate plans — one requiring a sharp, immediate rate increase, and a “rate mitigation plan” that might cushion increases amid declining returns in coal markets. He said the company isn’t sure when it will file them. Fagin suggested the Public Service Commission set a new deadline of March 2, 2018.

 

Related News

Related News

Electric car market goes zero to 2 million in five years

Electric Vehicle Market Growth accelerated as EV adoption hit 2 million in 2016, per IEA, led by China, Tesla momentum, policy incentives, charging infrastructure buildout, and diesel decline under Paris Agreement goals.

 

Key Points

EV adoption rose to 2 million in 2016, driven by policy, China, and charging buildout, yet still only 0.2% of cars.

✅ 2M EVs on roads in 2016; 60% YoY growth

✅ China led with >40% of global EV sales

✅ Policies target 30% share by 2030 via EVI

 

The number of electric vehicles on the road rocketed to 2 million in 2016 as the age of electric cars accelerates after being virtually non-existent just five years ago, according to the International Energy Agency.

Registered plug-in and battery-powered vehicles on roads worldwide rose 60% from the year before, according to the Global EV Outlook 2017 report from the Paris-based IEA. Despite the rapid growth, electric vehicles still represent just 0.2% of total light-duty vehicles even as U.S. EV sales continue to soar into 2024, suggesting a turning point.

“China was by far the largest electric car market, accounting for more than 40% of the electric cars sold in the world and more than double the amount sold in the United States,” the IEA wrote in the report published Wednesday. “It is undeniable that the current electric car market uptake is largely influenced by the policy environment.”

A multi government program called the Electric Vehicle Initiative on Thursday will set a goal for 30% market share for battery power cars, buses, trucks and vans by 2030, aligning with projections that driving electric cars within a decade could become commonplace, according to IEA. The 10 governments in the initiative include China, France, Germany, the UK and US.

India, which isn’t part of the group, said last month that it plans to sell only electric cars by the end of the next decade. Countries and cities are looking to electric vehicles to help tackle their air pollution problems.

In order to limit global warming to below 2 degrees Celsius (3.6 degrees Fahrenheit), the target set by the landmark Paris Agreement on climate change, the world will need 600 million electric vehicles by 2040, according to the IEA.

After struggling for consumer acceptance, Tesla Inc. has made electric vehicles cool and trendy, and is pushing into the mass market as the United States approaches a tipping point for mass adoption with the new Model 3 sedan.

Consumer interest and charging infrastructure, as well as declining demand for diesel cars in the wake of Volkswagen’s emissions scandal, has spurred massive investments in plug-in cars, and across Europe the share of electric cars grew during virus lockdown months, reinforcing this momentum. An electrical vehicle “cool factor” could spur sales to 450 million by 2035, according to BP chief economist Spencer Dale.

Volkswagen, the world’s largest automaker, plans to roll out four affordable electric vehicles in the coming years as part of a goal to sell more than 2 million battery-powered vehicles a year by 2025. Mercedes-Benz accelerated the introduction of ten new electric vehicles by three years to 2022 to take on Tesla as the dominance of the combustion engine gradually fades. 

 

 

Related News

View more

How Hedge Funds May Be Undermining the Electric Car Boom

Cobalt Supply Chain for EV Batteries faces shortages as lithium-ion demand surges; Tesla gigafactories, ethical sourcing, Idaho cobalt mining, and DRC risks intensify pricing, logistics, and procurement challenges for manufacturers and investors.

 

Key Points

A network supplying cobalt for lithium-ion cathodes, strained by EV demand, ethical sourcing pressures, and DRC risk.

✅ EV growth outpaces cobalt supply, widening deficits

✅ DRC reliance drives ESG scrutiny and sourcing shifts

✅ Idaho projects and stockpiling reshape U.S. supply

 

A perfect storm is brewing in the 21st Century battery market.

More specifically, it's about what goes into those batteries - and it's not just lithium.

The other element that makes up 35 percent of the lithium-ion batteries mass produced at Tesla's Nevada gigafactory and at a dozen of other behemoths slated to come on line, is cobalt. And it's already in dramatically short supply. A part of the answer to the cobalt deficit is 100 percent American, and this little-known miner is sitting on a prime Idaho cobalt project that is one of only two that looks likely to come online in the U.S. and it's right in Tesla's backyard.

 

High-Energy Batteries Need More Cobalt Than Lithium 

If you've been focusing your investment on lithium supplies lately you've been missing the even bigger story. EV batteries need about 200 grams of refined cobalt per kilowatt of battery capacity. Power walls need more than twice that. Between March 2016 and April 2017, the cost of the cobalt in that mix nearly tripled. But it isn't just the price that's got manufacturers worried. It's the shortage of availability. Keeping gigafactories stocked with enough cobalt to run at capacity is the challenge of the decade.

Tesla, now with a $50-billion market cap, launched a $5-billion battery gigafactory in Nevada in January. By the end of 2017, it will have doubled the entire global battery production capacity. By next year, it will be producing more batteries than the rest of the world combined.

It is estimated that Tesla's gigafactory alone will need anywhere between 7,000 and 17,500 tonnes of refined cobalt every year.

Tesla used to buy its finished battery cells from Panasonic, which in turn got its processed cathode powders from a Japanese company, Sumitomo was processing its own cobalt in the Philippines. However, that facility is already running at capacity and couldn't even begin to handle Tesla's gigafactory demand. In other words, Tesla's supply chain is no longer secure. And that's just Tesla.

The EV market is fifteen times larger than it was five years ago. The market has experienced a comppound annual growth rate of over 72 percent from 2011-2016, with new sources like Alberta's lithium-laced oil fields drawing investment alongside cobalt. This year, analysts expect it to gain another 25-26 percent. Last year, global EV production grew 41 percent, and sales are up more than 60 per cent year to year.

In addition,the Iron Creek project isn't a new exploration property. It has already seen major historic exploratory work, including 30,000 feet of diamond drilling. Iron Creek has historic (non 43-101 compliant) indications of 1.3 million tons grading 0.59 percent of cobalt with encouraging indications of up to 10 million tons. The 'closeology' is also brilliant. It's right next to the only advanced cobalt project in the U.S., which has a resource of 3 million-plus tonnes of cobalt.

As the battery market hits fever pitch and the supply-chain bottlenecks become unbearable, homegrown exploration is the key-first-movers and first investors will be the biggest beneficiaries.

 

A Very Precarious Supply Chain 

Supply is already in deficit, and we're also looking at an anticipated 500 percent increase in demand, making EV battery recycling an increasingly important complement to mining. Analysts at Macquarie Research project deficits of 885 tonnes of this resource next year, 3,205 in 2019 and 5,340 in 2020.

Not only is demand set to wildly outstrip supply very soon, but current supply (50 percent) comes primarily from the Democratic Republic of Congo (DRC). Buyers are coming under increasing pressure to look elsewhere for cobalt as the U.S. moves to work with allies to secure EV metals through diversified supply chains. The DRC has a horrendous record when it comes to labor practices and human rights.

Ask Apple Inc.  The tech giant recently announced it would stop buying unethical DRC cobalt for its iPhones - and as such, it has been forced to look for new suppliers.

The perfect storm continues: Some 95 percent of the world's cobalt is produced as a byproduct of copper and nickel mining, where concerns about ethical sourcing have put a spotlight on Canada's role in sustainable nickel practices worldwide. This means that cobalt supply is dependent on copper and nickel mining, and if those commodities are uneconomic to mine, there are no cobalt by-product results.

Not only is US Cobalt one of the first movers on the All-American ethical cobalt scene, but it's also financed to advance its Idaho Cobalt Belt project, and hopes to prove up 10 million tonnes of cobalt resource.

 

The Dream Team Behind Pure American Cobalt 

The CEO of US Cobalt, Wayne Tisdale, is a legend in spotting emerging trends with impeccable timing and has created billions in shareholder value. He's already done it with uranium, gold and oil and gas, and his most recent homerun was in lithium, with Pure Energy. When it launched in 2012, lithium was selling for about $5,000 per tonne. Within 18 months, it had increased 450 percent.

His next bet is on cobalt.

Tisdale and his team at Intrepid Financial have, in recent years, created $2.7 billion in value by building and financing 5 companies in completely different industries:

  • Rainy River (gold) was worth $1.2 billion at its peak
  • Xemplar (uranium) hit $1 billion at its peak
  • Ryland Oil (oil and gas) sold for $114 million
  • Webtech Wireless (tech) was worth $300 million at its peak
  • Pure Energy (lithium) is worth $65 million (and counting)

The bottom line? There is no other commodity on the market right now that we need more.

Just watch what the hedge funds are doing with cobalt because it's unprecedented. The run on physical cobalt started in February in the least expected corner: Major hedge funds started buying up physical cobalt and hoarding it in order to gain exposure, resulting in a major supply shortage for the blue metal. Swiss-based Pala Investments and China's Shanghai Chaos have already hoarded 17 percent of last year's global production. At today's prices that's worth around $280 million. At tomorrow's prices, it will be worth a lot more.

When hedge funds start stockpiling physical cobalt, it sends its traditional buyers into a panic to secure new shipments. Since November, cobalt prices have rallied more than 100 percent, and this is only the beginning. As the cobalt supply problem grows, and EV giants and gigafactories continue to increase demand, a home-grown solution is at hand. As a first principle of investing, where there is a supply problem, there is a massive opportunity for early investors.

 

Related News

View more

Tesla’s lead battery expert hired by Uber to help power its ‘flying car’ service

Uber Elevate eVTOL Batteries enable electric air taxis with advanced energy storage, lithium-ion cell quality, safety engineering, and zero-emissions performance for urban air mobility, ride-hailing aviation, and scalable battery pack development.

 

Key Points

Battery systems for Uber's electric air taxis, maximizing energy density, safety, and cycle life for urban air mobility.

✅ Ex-Tesla battery leader guides pack design and cell quality

✅ All-electric eVTOL targets zero-emissions urban air mobility

✅ Focus on safety, energy density, fast charge, and lifecycle

 

Celina Mikolajczak, a senior manager for battery pack development at Tesla, has been hired by Uber to help the ride-hail company’s “flying car” project get off the ground. It’s an important hire because it signals that Uber plans to get more involved in the engineering aspects of this outlandish-sounding project.

For six years, Mikolajczak served as senior manager and technical lead for battery technology, cell quality, and materials analysis. She worked with Tesla’s suppliers, tested the car company’s lithium-ion batteries for long-term use as the age of electric cars accelerates, oversaw quality assurance, and conducted “failure analysis” to drive battery cell production and design improvements. In other words, Mikolajczak was in charge of making sure the most crucial component in Tesla’s entire assembly line was top of the line.

Now she works for Uber — and not just for Uber, but for Uber Elevate, the absurdly ambitious air taxi service that hinges on the successful development of electric vertical take-off and landing (eVTOL) vehicles. There are practically zero electric planes in service today, and definitely none being used in a commercial ride-hail service. The hurdles to getting this type of service off the ground are enormous.

Her title at Uber is director of engineering and energy storage systems, and today marks her first week on the job. She joins Mark Moore, the former chief technologist for on-demand mobility at NASA’s Langley Research Center, who joined Uber almost a year ago to help lend a professional appearance to Elevate. Both serve under Jeff Holden, Uber’s head of product, who oversees the air taxi project.

Uber first introduced its plan to bring ride-sharing to the skies in a white paper last year. At the time, Uber said it wasn’t going to build its own eVTOL aircraft, but stood ready to “contribute to the nascent but growing VTOL ecosystem and to start to play whatever role is most helpful to accelerate this industry’s development.”

Instead, Uber said it would be partnering with a handful of aircraft manufacturers, real estate firms, and government regulators to better its chances of developing a fully functional, on-demand flying taxi service. It held a day-long conference on the project in Dallas in April, and plans to convene another one later this year in Los Angeles. In 2020, Uber says its aerial service will take off in three cities: LA, Dallas-Fort Worth, and Dubai.

 

UBER’S TAKING A MORE PROMINENT ROLE

Now, Uber’s taking a more prominent role in the design and manufacturing of its fleet of air taxis, which signals a stronger commitment to making this a reality — and also more of a responsibility if things eventually go south, as setbacks like Eviation's collapse underscore.

Perhaps most ambitiously, Uber says the aircraft it plans to use (but, importantly, do not exist yet) will run on pure battery-electric power, and not any hybrid of gasoline and electricity. Most of the companies exploring eVTOL admit that battery’s today aren’t light enough or powerful enough to sustain flights longer than just a few minutes, but many believe that battery technology will eventually catch up, with Elon Musk suggesting a three-year timeline for cheaper, more powerful cells.

Uber believes that in order to sustain a massive-scale new form of transportation, it will need to commit to an all-electric, zero-operational emissions approach from the start, even as potential constraints threaten the EV boom overall. And since the technology isn’t where it needs to be yet, the ride-hail company is taking a more prominent role in the development of the battery pack for its air taxi vehicles. Mikolajczak certainly has her work cut out for her.

 

Related News

View more

UK must be ready for rise of electric vehicles, says ABB chief

UK EV Charging Infrastructure is accelerating as ABB and Formula E spotlight fast charging, smart grids, and public stations, preparing Britain for mass electric vehicle adoption with expanded capacity, reliable connectors, and nationwide coverage.

 

Key Points

The UK network of charge points, grid capacity, and services enabling secure, scalable electric vehicle adoption.

✅ ABB urges rapid rollout of fast chargers and smart grid upgrades

✅ National Grid forecasts up to 9m EVs by 2030 in the UK

✅ Government GBP 400m investment targets reliable nationwide coverage

 

The UK should speed up preparations for the rise of electric vehicles, according to the chief executive of ABB, the world’s largest supplier of fast-charging points.

Speaking as the Switzerland-based engineering firm became the first official sponsor of the electric street racing series Formula E, Ulrich Spiesshofer predicted a flood of consumer take-up of plug-in cars, noting how EV inquiries surged in the UK during a recent fuel supply crisis.

And he added his voice to warnings that Britain must move faster to make sure owners of electric vehicles are not stymied by a shortage of charging bays or cost concerns among consumers.

“E-mobility is unstoppable, it’s just a question of how fast and how deep it will be deployed,” he said. “The UK has a big population that really wants to contribute to a greener, more sustainable world. But there’s always a question of whether it’s quick enough. In the next couple of years, it’s in the interest of everybody to make sure the infrastructure is coming up.”

 

How green are electric cars?

He said this would include adding to the UK’s network of electric charging points, as well as ensuring enough energy capacity so that the grid can cope with rising demand.

There are 14,344 charging connectors in the UK, according to ZapMap, which charts the scale of the UK’s network.

Those charging points served around 132,000 plug-in vehicles at the end of 2017, but the National Grid has predicted that the number of electric cars could surge to 9m by 2030.

“In the next couple of years, it’s in the interest of everybody to make sure the infrastructure is coming up,” said Spiesshofer.

He welcomed the government’s budget pledge to spend £400m on improving the UK’s charging point network but warned that the power grid also needed to be ready to meet the increased demand, which many argue is manageable with proper management approaches.

Electric cars have been forecast to add about 18 gigawatts of power demand to the grid, the equivalent of six Hinkley Point C nuclear power stations.

Spiesshofer said he hoped ABB’s sponsorship of Formula E, which will last until 2025, would help spur interest in electric cars and lead to technological breakthroughs, even as the US EV boom tests charging capacity elsewhere.

 

Related News

View more

More than a third of Irish electricity to be green within four years

Ireland Wind and Solar Share 2022 highlights IEA projections of over 33% electricity generation from renewables, with variable renewable energy growth, capacity targets, EU policy shifts, and investments accelerating wind and solar deployment.

 

Key Points

IEA forecasts wind and solar to exceed 33% of Ireland's electricity by 2022, second in variable renewables after Denmark.

✅ IEA expects Ireland to surpass 33% wind and solar by 2022

✅ Denmark leads at ~70%; Germany and UK exceed 25%

✅ Investments and capacity targets drive renewable growth

 

The share of wind and solar in total electricity generation in Ireland is expected to exceed 33pc by 2022, according to the 'Renewables 2017' report from the International Energy Agency (IEA).

Among the findings, the report says that Denmark is on course to be the world leader in the variable renewable energy sector, with 70pc of its electricity generation expected to come from wind and solar renewables by 2022.

The Nordic country will be followed by Ireland, Germany and the UK, all of which are expected see their share of wind and solar energy in total electricity generation exceed 25pc, according to the IEA report.

In a move to increase the level of wind generation in Ireland, the Government-controlled Ireland Strategic Investment Fund (Isif) teamed up with German solar and wind park operator Capital Stage in January to invest €140m in 20 solar parks in Ireland.

#google#

The parks are being developed by Dublin-based Power Capital, and it marks the first time that Isif has committed to financing solar park developments in this country.

Globally, renewables accounted for almost two-thirds of net new power capacity, with nearly 165 gigawatts (GW) coming online in 2016.

This was a record year that was largely driven by a booming solar market in China and around the world.

In 2016 solar capacity around the world grew by 50pc, reaching over 74 GW, with China's solar PV accounting for almost half of this expansion. In another first, solar energy additions rose faster than any other fuel, surpassing the net growth in coal, the IEA report found.

China alone is responsible for over two-fifths of global renewable capacity growth, which, according to the IEA, is largely driven by concerns about the country's air pollution and capacity targets.

The Asian giant is also the world market leader in hydropower, bioenergy for electricity and heat, and electric vehicles, the IEA report said. In 2016 the United States remained the second largest growth market for renewables.

However, with US President Donald Trump withdrawing the country from the Paris Agreement on climate change, the country's commitment to renewable energy faces policy uncertainty.

Meanwhile, India continues to grow its renewable electricity capacity, and by 2022, the country is expected to more than double its current renewable electricity capacity, according to the IEA. For the first time, this growth over the forecast period (2016-2022) is higher compared with the European Union, according to the report.

Meanwhile in the EU, renewable energy growth over the forecast period is 40pc lower compared with the previous five-year period.

The low forecast in respect of the EU is based on a number of factors, the IEA said, including weaker electricity demand, overcapacity, and limited visibility on forthcoming auction capacity volumes in some markets.

Overall, the Government has committed to generating 40pc of its electricity from renewable energy sources by 2020.

That target is set to be missed, which would see the Government eventually having to fork out hundreds of millions of euro for carbon credits.

Later this year, Ireland will host Europe's biggest summit on Climate Innovation, during which over 50 nationwide events and initiatives will be held.

 

Related News

View more

Montreal's first STM electric buses roll out

STM Electric Buses Montreal launch a zero-emission pilot with rapid charging stations on the 36 Monk line from Angrignon to Square Victoria, winter-tested for reliability and aligned with STM's 2025 fully electric fleet plan.

 

Key Points

STM's pilot deploys zero-emission buses with charging on the 36 Monk line, aiming for a fully electric fleet by 2025.

✅ 36 Monk route: Angrignon to Square Victoria with rapid charging

✅ Winter-tested performance; 15-25 km range per charge

✅ Quebec-built: motors Boucherville; buses Saint-Eustache

 

The first of three STM electric buses are rolling in Montreal, similar to initiatives with Vancouver electric buses elsewhere in Canada today.

The test batch is part of the city's plan to have a fully electric fleet by 2025, mirroring efforts such as St. Albert's electric buses in Alberta as well.

Over the next few weeks, one bus at a time will be put into circulation along the 36 Monk line, a rollout approach similar to Edmonton's first electric bus efforts in that city, going from Angrignon Metro station to Square Victoria Metro station. 

Rapid charging stations have been set up at both locations, a model seen in TTC's battery-electric rollout to support operations, so that batteries can be charged during the day between routes. The buses are also going to be fully charged at regular charging stations overnight.

Each bus can run from 15 to 25 kilometres on a single charge. The Monk line was chosen in part for its length, around 11 kilometres.

The STM has been testing the electric buses to make sure they can stand up to Montreal's harsh winters, drawing on lessons from peers such as the TTC electric bus fleet in Toronto, and now they are ready to take on passengers.

 

Keeping it local

The motors were designed in Boucherville, and the buses themselves were built in Saint-Eustache.

No timeline has been set for when the STM will be ready to roll out the whole fleet, but Montreal Mayor Denis Coderre, who was on hand at Tuesday's unveiling, told reporters he has confidence in the $11.9-million program.

"We start with three. Trust me, there will be more." said Coderre.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified