Mississippi power plant costs cross $7.5B


The Kemper County power plant

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Kemper County power plant costs and delays highlight lignite coal gasification, syngas production, carbon capture targets, and looming rate plans as Mississippi Power navigates Public Service Commission oversight and shareholder-ratepayer risk.

 

Key Points

Costs exceed $7.5B with repeated delays; rate impacts loom as syngas, lignite, and carbon capture systems mature.

✅ Estimate tops $7.5B; customers could fund about $4.3B

✅ Carbon capture target: 65% CO2 via syngas from lignite

✅ Rate plans pending before the Public Service Commission

 

A Mississippi utility on Monday delayed making proposals for how its customers should pay for an ever-more-expensive power plant, even as the estimated cost of the facility crossed $7.5 billion.

The Kemper County power plant will be tasked with mining lignite coal a few hundred yards away from the plant. That coal is moved through a process that will convert it to syngas. The syngas is then used to drive the energy output of the plant, and the resulting electricity is then moved into the grid, where transmission projects influence regional reliability and capacity.

Thomas Fanning, CEO of parent Southern Co., told shareholders in May that Mississippi Power would file rate plans for its Kemper County power plant this month. But still unable to operate the plant steadily enough to declare it finished, Mississippi Power punted, instead asking to hold rates level for 11 months to pay off costs that have already been approved by regulators.

Mississippi Power says it now hopes to reach commercial operation in June. The plant is more than three years behind schedule, with 10 delays announced in the past 18 months. It was originally supposed to cost $2.9 billion.

The company also said monday that it will have to replace troublesome parts of the facility much sooner than expected, including units that cool the synthetic gas produced from soft lignite coal by two gasifier units, plus ash handling systems in the gasifiers.

Kemper is designed to take synthetic gas, pipe it through a chemical plant to remove carbon dioxide and other chemicals, and then burn the gas in turbines to generate electricity. It’s designed to capture 65 percent of carbon dioxide from the coal, releasing only as much of the climate-warming gas as a typical natural gas plant. It’s a key effort nationally to maintain coal as a viable fuel source, even as coal unit retirements proceed in other states.

Mississippi Power raised its estimate of Kemper’s cost by $209.4 million, with shareholders absorbing $185.9 million, while ratepayers could be asked to pay $23.5 million. Overall, customers could be asked to pay $4.3 billion. Southern shareholders have agreed to absorb $3.1 billion, which has risen by $500 million since November.

The elected three-member Public Service Commission in 2015 allowed the company to raise rates on its 188,000 customers by $126 million a year. That paid for $840 million in Kemper work, which began generating electricity in 2014 using piped-in natural gas. Some items covered by that 15 percent rate increase will be paid off in coming months, but Mississippi Power now proposes to repay costs from regulatory proceedings earlier than originally projected.

In testimony filed with the Public Service Commission, Mississippi Power Chief Financial Officer Moses Fagin said that keeping rates level would reduce whiplash to customers when rates rise later to pay for Kemper, would pay off accumulated costs more quickly and would help the company wean itself off financial support from Southern Co. while maintaining credit ratings and positioning for a possible bond rating upgrade over time.

“Cash flow is important to the company in maintaining its current ratings and beginning to rebuild its credit strength on a more independent basis apart from the extraordinary parental support that has been required in recent years to maintain financial integrity,” Fagin testified.

Spokesman Jeff Shepard said Mississippi Power is still drawing up two rate plans — one requiring a sharp, immediate rate increase, and a “rate mitigation plan” that might cushion increases amid declining returns in coal markets. He said the company isn’t sure when it will file them. Fagin suggested the Public Service Commission set a new deadline of March 2, 2018.

 

Related News

Related News

Ontario opens first ever electric vehicle education centre in Toronto

Toronto EV Discovery Centre offers hands-on EV education, on-site test drives, and guidance on Ontario incentives, rebates, charging, and dealerships, helping drivers switch to electric vehicles and cut emissions through provincial climate programs.

 

Key Points

A public hub in Toronto for EV education, test drives, and guidance on Ontario incentives, rebates, and charging options.

✅ Free entry; neutral info on EV models and charging.

✅ On-site test drives; referrals to local dealerships.

✅ Backed by Ontario's cap-and-trade, utilities, and partners.

 

A centre where people can learn about electric vehicles and take them for a test drive has opened in Toronto, as similar EV events in Regina highlight growing public interest.

Ontario's Environment Minister Glen Murray says the Plug'n Drive Electric Vehicle Discovery Centre is considered the first of its kind and his government has pitched in $1 million to support it, alongside efforts to expand charging stations across Ontario.

Ontario's Environment Minister Glen Murray helps cut the ribbon on the first ever electric vehicle discovery centre. (CBC News)

Murray says the goal of the centre is to convince people to switch to electric vehicles in order to fight climate change, a topic gaining momentum in southern Alberta as well.

Visitors to the centre learn about how electric vehicles work and about Ontario government subsidies and rebates for electric car owners, as well as the status of the provincial charging network and infrastructure.

Visitors can test-drive vehicles from different companies and those who see something they like will receive a referral to an electric car dealership in their area.

The province hopes to have electric vehicles make up five per cent of all new vehicles sold by 2020. (Oliver Walters/CBC)

The Ontario government's Climate Change Action Plan includes a goal to have electric vehicles make up five per cent of all new vehicles sold by 2020, amid debate over whether the next wave will run on clean power in Ontario, and the discovery centre is part of that plan.

The centre is free for visitors. It's a public-private partnership funded from the provincial government's cap-and-trade revenue, with other funding from TD Bank Group, Ontario Power Generation, Power Workers' Union, Toronto Hydro and Bruce Power.

 

Related News

View more

Tesla’s lead battery expert hired by Uber to help power its ‘flying car’ service

Uber Elevate eVTOL Batteries enable electric air taxis with advanced energy storage, lithium-ion cell quality, safety engineering, and zero-emissions performance for urban air mobility, ride-hailing aviation, and scalable battery pack development.

 

Key Points

Battery systems for Uber's electric air taxis, maximizing energy density, safety, and cycle life for urban air mobility.

✅ Ex-Tesla battery leader guides pack design and cell quality

✅ All-electric eVTOL targets zero-emissions urban air mobility

✅ Focus on safety, energy density, fast charge, and lifecycle

 

Celina Mikolajczak, a senior manager for battery pack development at Tesla, has been hired by Uber to help the ride-hail company’s “flying car” project get off the ground. It’s an important hire because it signals that Uber plans to get more involved in the engineering aspects of this outlandish-sounding project.

For six years, Mikolajczak served as senior manager and technical lead for battery technology, cell quality, and materials analysis. She worked with Tesla’s suppliers, tested the car company’s lithium-ion batteries for long-term use as the age of electric cars accelerates, oversaw quality assurance, and conducted “failure analysis” to drive battery cell production and design improvements. In other words, Mikolajczak was in charge of making sure the most crucial component in Tesla’s entire assembly line was top of the line.

Now she works for Uber — and not just for Uber, but for Uber Elevate, the absurdly ambitious air taxi service that hinges on the successful development of electric vertical take-off and landing (eVTOL) vehicles. There are practically zero electric planes in service today, and definitely none being used in a commercial ride-hail service. The hurdles to getting this type of service off the ground are enormous.

Her title at Uber is director of engineering and energy storage systems, and today marks her first week on the job. She joins Mark Moore, the former chief technologist for on-demand mobility at NASA’s Langley Research Center, who joined Uber almost a year ago to help lend a professional appearance to Elevate. Both serve under Jeff Holden, Uber’s head of product, who oversees the air taxi project.

Uber first introduced its plan to bring ride-sharing to the skies in a white paper last year. At the time, Uber said it wasn’t going to build its own eVTOL aircraft, but stood ready to “contribute to the nascent but growing VTOL ecosystem and to start to play whatever role is most helpful to accelerate this industry’s development.”

Instead, Uber said it would be partnering with a handful of aircraft manufacturers, real estate firms, and government regulators to better its chances of developing a fully functional, on-demand flying taxi service. It held a day-long conference on the project in Dallas in April, and plans to convene another one later this year in Los Angeles. In 2020, Uber says its aerial service will take off in three cities: LA, Dallas-Fort Worth, and Dubai.

 

UBER’S TAKING A MORE PROMINENT ROLE

Now, Uber’s taking a more prominent role in the design and manufacturing of its fleet of air taxis, which signals a stronger commitment to making this a reality — and also more of a responsibility if things eventually go south, as setbacks like Eviation's collapse underscore.

Perhaps most ambitiously, Uber says the aircraft it plans to use (but, importantly, do not exist yet) will run on pure battery-electric power, and not any hybrid of gasoline and electricity. Most of the companies exploring eVTOL admit that battery’s today aren’t light enough or powerful enough to sustain flights longer than just a few minutes, but many believe that battery technology will eventually catch up, with Elon Musk suggesting a three-year timeline for cheaper, more powerful cells.

Uber believes that in order to sustain a massive-scale new form of transportation, it will need to commit to an all-electric, zero-operational emissions approach from the start, even as potential constraints threaten the EV boom overall. And since the technology isn’t where it needs to be yet, the ride-hail company is taking a more prominent role in the development of the battery pack for its air taxi vehicles. Mikolajczak certainly has her work cut out for her.

 

Related News

View more

Montreal's first STM electric buses roll out

STM Electric Buses Montreal launch a zero-emission pilot with rapid charging stations on the 36 Monk line from Angrignon to Square Victoria, winter-tested for reliability and aligned with STM's 2025 fully electric fleet plan.

 

Key Points

STM's pilot deploys zero-emission buses with charging on the 36 Monk line, aiming for a fully electric fleet by 2025.

✅ 36 Monk route: Angrignon to Square Victoria with rapid charging

✅ Winter-tested performance; 15-25 km range per charge

✅ Quebec-built: motors Boucherville; buses Saint-Eustache

 

The first of three STM electric buses are rolling in Montreal, similar to initiatives with Vancouver electric buses elsewhere in Canada today.

The test batch is part of the city's plan to have a fully electric fleet by 2025, mirroring efforts such as St. Albert's electric buses in Alberta as well.

Over the next few weeks, one bus at a time will be put into circulation along the 36 Monk line, a rollout approach similar to Edmonton's first electric bus efforts in that city, going from Angrignon Metro station to Square Victoria Metro station. 

Rapid charging stations have been set up at both locations, a model seen in TTC's battery-electric rollout to support operations, so that batteries can be charged during the day between routes. The buses are also going to be fully charged at regular charging stations overnight.

Each bus can run from 15 to 25 kilometres on a single charge. The Monk line was chosen in part for its length, around 11 kilometres.

The STM has been testing the electric buses to make sure they can stand up to Montreal's harsh winters, drawing on lessons from peers such as the TTC electric bus fleet in Toronto, and now they are ready to take on passengers.

 

Keeping it local

The motors were designed in Boucherville, and the buses themselves were built in Saint-Eustache.

No timeline has been set for when the STM will be ready to roll out the whole fleet, but Montreal Mayor Denis Coderre, who was on hand at Tuesday's unveiling, told reporters he has confidence in the $11.9-million program.

"We start with three. Trust me, there will be more." said Coderre.

 

Related News

View more

Electric car market goes zero to 2 million in five years

Electric Vehicle Market Growth accelerated as EV adoption hit 2 million in 2016, per IEA, led by China, Tesla momentum, policy incentives, charging infrastructure buildout, and diesel decline under Paris Agreement goals.

 

Key Points

EV adoption rose to 2 million in 2016, driven by policy, China, and charging buildout, yet still only 0.2% of cars.

✅ 2M EVs on roads in 2016; 60% YoY growth

✅ China led with >40% of global EV sales

✅ Policies target 30% share by 2030 via EVI

 

The number of electric vehicles on the road rocketed to 2 million in 2016 as the age of electric cars accelerates after being virtually non-existent just five years ago, according to the International Energy Agency.

Registered plug-in and battery-powered vehicles on roads worldwide rose 60% from the year before, according to the Global EV Outlook 2017 report from the Paris-based IEA. Despite the rapid growth, electric vehicles still represent just 0.2% of total light-duty vehicles even as U.S. EV sales continue to soar into 2024, suggesting a turning point.

“China was by far the largest electric car market, accounting for more than 40% of the electric cars sold in the world and more than double the amount sold in the United States,” the IEA wrote in the report published Wednesday. “It is undeniable that the current electric car market uptake is largely influenced by the policy environment.”

A multi government program called the Electric Vehicle Initiative on Thursday will set a goal for 30% market share for battery power cars, buses, trucks and vans by 2030, aligning with projections that driving electric cars within a decade could become commonplace, according to IEA. The 10 governments in the initiative include China, France, Germany, the UK and US.

India, which isn’t part of the group, said last month that it plans to sell only electric cars by the end of the next decade. Countries and cities are looking to electric vehicles to help tackle their air pollution problems.

In order to limit global warming to below 2 degrees Celsius (3.6 degrees Fahrenheit), the target set by the landmark Paris Agreement on climate change, the world will need 600 million electric vehicles by 2040, according to the IEA.

After struggling for consumer acceptance, Tesla Inc. has made electric vehicles cool and trendy, and is pushing into the mass market as the United States approaches a tipping point for mass adoption with the new Model 3 sedan.

Consumer interest and charging infrastructure, as well as declining demand for diesel cars in the wake of Volkswagen’s emissions scandal, has spurred massive investments in plug-in cars, and across Europe the share of electric cars grew during virus lockdown months, reinforcing this momentum. An electrical vehicle “cool factor” could spur sales to 450 million by 2035, according to BP chief economist Spencer Dale.

Volkswagen, the world’s largest automaker, plans to roll out four affordable electric vehicles in the coming years as part of a goal to sell more than 2 million battery-powered vehicles a year by 2025. Mercedes-Benz accelerated the introduction of ten new electric vehicles by three years to 2022 to take on Tesla as the dominance of the combustion engine gradually fades. 

 

 

Related News

View more

Russia Develops Cyber Weapon That Can Disrupt Power Grids

CrashOverride malware is a Russian-linked ICS cyberweapon targeting power grids, SCADA systems, and utility networks; linked to Electrum/Sandworm, it threatens U.S. transmission and distribution with modular attacks and time-bomb payloads across critical infrastructure.

 

Key Points

A modular ICS malware linked to Russian actors that disrupts power grids via SCADA abuse and forced breaker outages.

✅ Targets breakers and substation devices to sustain outages

✅ Modular payloads adapt to ICS protocols and vendors

✅ Enables timed, multi-site attacks against transmission and distribution

 

Hackers allied with the Russian government have devised a cyberweapon that has the potential to be the most disruptive yet against electric systems that Americans depend on for daily life, according to U.S. researchers.

The malware, which researchers have dubbed CrashOverride, is known to have disrupted only one energy system — in Ukraine in December. In that incident, the hackers briefly shut down one-fifth of the electric power generated in Kiev.

But with modifications, it could be deployed against U.S. electric transmission and distribution systems to devastating effect, said Sergio Caltagirone, director of threat intelligence for Dragos, a cybersecurity firm that studied the malware and issued a recent report.

And Russian government hackers have shown their interest in targeting U.S. energy and other utility systems, with reports of suspected breaches at U.S. power plants in recent years, researchers said.

“It’s the culmination of over a decade of theory and attack scenarios,” Caltagirone warned. “It’s a game changer.”

The revelation comes as the U.S. government is investigating a wide-ranging, ambitious effort by the Russian government last year to disrupt the U.S. presidential election and influence its outcome, and has issued a condemnation of Russian power grid hacking as well. That campaign employed a variety of methods, including hacking hundreds of political and other organizations, and leveraging social media, U.S. officials said.

Dragos has named the group that created the new malware Electrum, and it has determined with high confidence that Electrum used the same computer systems as the hackers who attacked the Ukraine electric grid in 2015. That attack, which left 225,000 customers without power, was carried out by Russian government hackers, other U.S. researchers concluded. U.S. government officials have not officially attributed that attack to the Russian government, but some privately say they concur with the private-sector analysis.

“The same Russian group that targeted U.S. [industrial control] systems in 2014, including the Dragonfly campaign documented by Symantec, turned out the lights in Ukraine in 2015,” said John Hultquist, who analyzed both incidents while at iSight Partners, a cyber-intelligence firm now owned by FireEye, where he is director of intelligence analysis. Hultquist’s team had dubbed the group Sandworm.

“We believe that Sandworm is tied in some way to the Russian government — whether they’re contractors or actual government officials, we’re not sure,” he said. “We believe they are linked to the security services.”

Sandworm and Electrum may be the same group or two separate groups working within the same organization, but the forensic evidence shows they are related, said Robert M. Lee, chief executive of Dragos.

The Department of Homeland Security, which works with the owners of the nation’s critical infrastructure systems, did not respond to a request for comment Sunday.

Energy-sector experts said that the new malware is cause for concern, but that the industry is seeking to develop ways to disrupt attackers who breach their systems, including documented access to U.S. utility control rooms in prior incidents.

“U.S. utilities have been enhancing their cybersecurity, but attacker tools like this one pose a very real risk to reliable operation of power systems,” said Michael J. Assante, who worked at Idaho National Labs and is a former chief security officer of the North American Electric Reliability Corporation, where he oversaw the rollout of industry cybersecurity standards.

CrashOverride is only the second instance of malware specifically tailored to disrupt or destroy industrial control systems. Stuxnet, the worm created by the United States and Israel to disrupt Iran’s nuclear capability, was an advanced military-grade weapon designed to affect centrifuges that enrich uranium.

In 2015, the Russians used malware to gain access to the power supply network in western Ukraine, but it was hackers at the keyboards who remotely manipulated the control systems to cause the blackout — not the malware itself, Hultquist said.

With CrashOverride, “what is particularly alarming . . . is that it is all part of a larger framework,” said Dan Gunter, a senior threat hunter for Dragos.

The malware is like a Swiss Army knife, where you flip open the tool you need and where different tools can be added to achieve different effects, Gunter said.

Theoretically, the malware can be modified to attack different types of industrial control systems, such as water and gas. However, the adversary has not demonstrated that level of sophistication, Lee said.

Still, the attackers probably had experts and resources available not only to develop the framework but also to test it, Gunter said. “This speaks to a larger effort often associated with nation-state or highly funded team operations.”

One of the most insidious tools in CrashOverride manipulates the settings on electric power control systems. It scans for critical components that operate circuit breakers and opens the circuit breakers, which stops the flow of electricity. It continues to keep them open even if a grid operator tries to close them, creating a sustained power outage.

The malware also has a “wiper” component that erases the software on the computer system that controls the circuit breakers, forcing the grid operator to revert to manual operations, which means driving to the substation to restore power.

With this malware, the attacker can target multiple locations with a “time bomb” functionality and set the malware to trigger simultaneously, Lee said. That could create outages in different areas at the same time.

The outages would last a few hours and probably not more than a couple of days, Lee said. That is because the U.S. electric industry has trained its operators to handle disruptions caused by large storms, alongside a renewed focus on protecting the grid in response to recent alerts. “They’re used to having to restore power with manual operations,” he said.

So although the malware is “a significant leap forward in tradecraft, it’s also not a doomsday scenario,” he said.

The malware samples were first obtained by ESET, a Slovakian research firm, which shared some of them with Dragos. ESET has dubbed the malware Industroyer.

 

Related News

View more

Deepwater Wind Eyeing Massachusetts’ South Coast for Major Offshore Wind Construction Activity

Revolution Wind Massachusetts will assemble turbine foundations in New Bedford, Fall River, or Somerset, building a local offshore wind supply chain, creating regional jobs, and leveraging pumped storage and an offshore transmission backbone.

 

Key Points

An offshore wind project assembling MA foundations, building a local supply chain, jobs, and peak clean power.

✅ 400 MW offshore wind; local fabrication of 1,500-ton foundations

✅ 300+ direct jobs, 600 indirect; MA crew vessel builds and operations

✅ Expandable offshore transmission; pumped storage for peak power

 

Deepwater Wind will assemble the wind turbine foundations for its Revolution Wind in Massachusetts, and it has identified three South Coast cities – New Bedford, Fall River and Somerset – as possible locations for this major fabrication activity, the company is announcing today.

Deepwater Wind is committed to building a local workforce and supply chain for its 400-megawatt Revolution Wind project, now under review by state and utility officials as Massachusetts advances projects like Vineyard Wind statewide.

“No company is more committed to building a local offshore wind workforce than us,” said Deepwater Wind CEO Jeffrey Grybowski. “We launched America’s offshore wind industry right here in our backyard. We know how to build offshore wind in the U.S. in the right way, and our smart approach will be the most affordable solution for the Commonwealth. This is about building a real industry that lasts.”

#google#

The construction activity will involve welding, assembly, painting, commissioning and related work for the 1,500-ton steel foundations supporting the turbine towers. This foundation-related work will create more than 300 direct jobs for local construction workers during Revolution Wind’s construction period. An additional 600 indirect and induced jobs will support this effort.

In addition, Deepwater Wind is now actively seeking proposals from Massachusetts boat builders for the construction of purpose-built crew vessels for Revolution Wind. Several dozen workers are expected to build the first of these vessels at a local boat-building facility, and another dozen workers will operate this specialty vessel over the life of Revolution Wind. (Deepwater Wind commissioned America’s only offshore wind crew vessel – Atlantic Wind Transfer’s Atlantic Pioneer – to serve the Block Island Wind Farm.)

The company will issue a formal Request for Information to local suppliers in the coming weeks. Deepwater Wind’s additional wind farms serving Massachusetts will require the construction of additional vessels, as will growth along Long Island’s South Shore in the coming years.

These commitments are in addition to Deepwater Wind’s previously-announced plans to use the New Bedford Marine Commerce Terminal for significant construction and staging operations, and to pay $500,000 per year to the New Bedford Port Authority to use the facility. During construction, the turbine marshaling activity in New Bedford is expected to support approximately 700 direct regional construction jobs.

“Deepwater Wind is building a sustainable industry on the South Coast of Massachusetts,” said Matthew Morrissey, Deepwater Wind Vice President Massachusetts. “With Revolution Wind, we are demonstrating that we can build the industry in Massachusetts while enhancing competition and keeping costs low.”

The Revolution Wind project will be built in Deepwater Wind’s federal lease site, under the BOEM lease process, southwest of Martha’s Vineyard. If approved, local construction work on Revolution Wind would begin in 2020, with the project in operations in 2023. Survey work is already underway at Deepwater Wind’s offshore lease area.

Revolution Wind will deliver “baseload” power, allowing a utility-scale renewable energy project for the first time to replace the retiring fossil fuel-fired power plants closing across the region, a transition echoed by Vineyard Wind’s first power milestones elsewhere.

Revolution Wind will be capable of delivering clean energy to Massachusetts utilities when it’s needed most, during peak hours of demand on the regional electric grid. A partnership with FirstLight Power, using its Northfield Mountain hydroelectric pumped storage in Northfield, Massachusetts, makes this peak power offering possible. This is the largest pairing of hydroelectric pumped storage and offshore wind in the world.

The Revolution Wind offshore wind farm will also be paired with a first-of-its-kind offshore transmission backbone. Deepwater Wind is partnering with National Grid Ventures on an expandable offshore transmission network that supports not just Revolution Wind, but also future offshore wind farms, as New York’s biggest offshore wind farm moves forward across the region, even if they’re built by our competitors.

This cooperation is in the best interest of Massachusetts electric customers because it will reduce the amount of electrical infrastructure needed to support the state’s 1,600 MW offshore wind goal. Instead of each subsequent developer building its own standalone cable network, other offshore wind companies could use expandable infrastructure already installed for Revolution Wind, reducing project costs and saving ratepayers money.

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.