Scientific breakthrough in rechargeable batteries

By Hydro-Québec


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
MONTREAL, Québec -- Researchers from Singapore and Québec team up to develop next-generation materials to power electronic devices and electric vehicles.

Researchers from Singapore’s Institute of Bioengineering and Nanotechnology IBN of A*STAR and Quebec’s IREQ Hydro-Québec’s research institute have synthesized silicate-based nanoboxes that could more than double the energy capacity of lithium-ion batteries as compared to conventional phosphate-based cathodes. This breakthrough could hold the key to longer-lasting rechargeable batteries for electric vehicles and mobile devices.

“IBN researchers have successfully achieved simultaneous control of the phase purity and nanostructure of Li2MnSiO4 for the first time,” said Professor Jackie Y. Ying, IBN Executive Director. “This novel synthetic approach would allow us to move closer to attaining the ultrahigh theoretical capacity of silicate-based cathodes for battery applications.”

“We are delighted to collaborate with IBN on this project. IBN’s expertise in synthetic chemistry and nanotechnology allows us to explore new synthetic approaches and nanostructure design to achieve complex materials that pave the way for breakthroughs in battery technology, especially regarding transportation electrification,” said Dr. Karim Zaghib, Director – Energy Storage and Conservation at Hydro-Québec.

Lithium-ion batteries are widely used to power many electronic devices, including smart phones, medical devices and electric vehicles. Their high energy density, excellent durability and lightness make them a popular choice for energy storage. Due to a growing demand for long-lasting, rechargeable lithium-ion batteries for various applications, significant efforts have been devoted to improving the capacity of these batteries. In particular, there is great interest in developing new compounds that may increase energy storage capacity, stability and lifespan compared to conventional lithium phosphate batteries.

The five-year research collaboration between IBN and Hydro-Québec was established in 2011. The researchers plan to further enhance their new cathode materials to create high-capacity lithium-ion batteries for commercialization.

Related News

Why Nuclear Fusion Is Still The Holy Grail Of Clean Energy

Nuclear fusion breakthrough signals progress toward clean energy as NIF lasers near ignition and net energy gain, while tokamak designs like ITER advance magnetic confinement, plasma stability, and self-sustaining chain reactions for commercial reactors.

 

Key Points

A milestone as lab fusion nears ignition and net gain, indicating clean energy via lasers and tokamak confinement.

✅ NIF laser shot approached ignition and triggered self-heating

✅ Tokamak path advances with ITER and stronger magnetic confinement

✅ Net energy gain remains the critical milestone for power plants

 

Just 100 years ago, when English mathematician and astronomer Arthur Eddington suggested that the stars power themselves through a process of merging atoms to create energy, heat, and light, the idea was an unthinkable novelty. Now, in 2021, we’re getting remarkably close to recreating the process of nuclear fusion here on Earth. Over the last century, scientists have been steadily chasing commercial nuclear fusion, ‘the holy grail of clean energy.’ The first direct demonstration of fusion in a lab took place just 12 years after it was conceptualized, at Cambridge University in 1932, followed by the world’s first attempt to build a fusion reactor in 1938. In 1950, Soviet scientists Andrei Sakharov and Igor Tamm propelled the pursuit forward with their development of the tokamak, a fusion device involving massive magnets which is still at the heart of many major fusion pursuits today, including the world’s biggest nuclear fusion experiment ITER in France.

Since that breakthrough, scientists have been getting closer and closer to achieving nuclear fusion. While fusion has indeed been achieved in labs throughout this timeline, it has always required far more energy than it emits, defeating the purpose of the commercial fusion initiative, and elsewhere in nuclear a new U.S. reactor start-up highlights ongoing progress. If unlocked, commercial nuclear fusion would change life as we know it. It would provide an infinite source of clean energy requiring no fossil fuels and leaving behind no hazardous waste products, and many analysts argue that net-zero emissions may be out of reach without nuclear power, underscoring fusion’s promise.

Nuclear fission, the process which powers all of our nuclear energy production now, including next-gen nuclear designs in development, requires the use of radioactive isotopes to achieve the splitting of atoms, and leaves behind waste products which remain hazardous to human and ecological health for up to tens of thousands of years. Not only does nuclear fusion leave nothing behind, it is many times more powerful. Yet, it has remained elusive despite decades of attempts and considerable investment and collaboration from both public and private entities, such as the Gates-backed mini-reactor concept, around the world.

But just this month there was an incredible breakthrough that may indicate that we are getting close. “For an almost imperceptible fraction of a second on Aug. 8, massive lasers at a government facility in Northern California re-created the power of the sun in a tiny hot spot no wider than a human hair,” CNET reported in August. This breakthrough occurred at the National Ignition Facility, where scientists used lasers to set off a fusion reaction that emitted a stunning 10 quadrillion watts of power. Although the experiment lasted for just 100 trillionths of a second, the amount of energy it produced was equal to about “6% of the total energy of all the sunshine striking Earth’s surface at any given moment.”

“This phenomenal breakthrough brings us tantalizingly close to a demonstration of ‘net energy gain’ from fusion reactions — just when the planet needs it,” said Arthur Turrell, physicist and nuclear fusion expert. What’s more, scientists and experts are hopeful that the rate of fusion breakthroughs will continue to speed up, as interest in atomic energy is heating up again across markets, and commercial nuclear fusion could be achieved sooner than ever seemed possible before. At a time when it has never been more important or more urgent to find a powerful and affordable means of producing clean energy, and as policies like the U.K.’s green industrial revolution guide the next waves of reactors, commercial nuclear fusion can’t come fast enough.

 

Related News

View more

How vehicle-to-building charging can save costs, reduce GHGs and help balance the grid: study

Ontario EV Battery Storage ROI leverages V2B, V2G, two-way charging, demand response, and second-life batteries to monetize peak pricing, cut GHG emissions, and unlock up to $38,000 in lifetime value for commuters and buildings.

 

Key Points

The economic return from V2B/V2G two-way charging and second-life storage using EV batteries within Ontario's grid.

✅ Monetize peak pricing via workplace V2B discharging

✅ Earn up to $8,400 per EV over vehicle life

✅ Reduce gas generation and GHGs with demand response

 

The payback that usually comes to mind when people buy an electric vehicle is to drive an emissions-free, low-maintenance, better-performing mode of transportation.

On top of that, you can now add $38,000.

That, according to a new report from Ontario electric vehicle education and advocacy nonprofit, Plug‘n Drive, is the potential lifetime return for an electric car driven as a commuter vehicle while also being used as an electricity storage option amid an energy storage crunch in Ontario’s electricity system.

“EVs contain large batteries that store electric energy,” says the report. “Besides driving the car, [those] batteries have two other potentially useful applications: mobile storage via vehicle-to-grid while they are installed in the vehicle, and second-life storage after the vehicle batteries are retired.”

Pricing and demand differentials
The study, prepared by the research firm Strategic Policy Economics, modeled a two-stage scenario calculating the total benefits from both mobile and second-life storage when taking advantage of differences in daytime and nighttime electricity pricing and demand.


If done systematically and at scale, the combined benefits to EV owners, building operators and the electricity system in Ontario could reach $129 million per year by 2035, according to the report. Along with the financial gains, the province would also cut GHG emissions by up to 67.2 kilotons annually.

The math might sound complicated, but the concepts are simple. All it requires is for drivers to charge their batteries with low-cost electricity overnight at home, then plug them into two-way EV charging stations at work and discharge their stored electricity for use by the building by day when buying power from the grid is more expensive.

“Workplace buildings could avoid high daytime prices by purchasing electricity from EVs parked onsite and enjoy savings as a result,” says the report.

Based on average commuting distances, EVs in this scenario could make half their storage capacity available for discharge. Drivers would be paid out of the building’s savings, effectively selling electricity back to the grid and earning up to $8,400 over the life of their vehicle.

According to the report, Ontario could have as many as 18,555 vehicles participating in mobile storage by 2030. At this level, the daily electricity demand would be reduced by 565 MWh. This, in turn, would reduce demand for natural gas-fired electricity generation, a fossil-fuel electricity source, avoiding the expense of gas purchases while reducing GHG emissions.

The second-life storage opportunity begins when the vehicle lifespan ends. “EV batteries will still have over 80% of their storage capacity after being driven for 13 years and providing mobile storage,” the report states. “Those-second life batteries could provide a low-cost energy storage solution for the electricity grid and enhance grid stability over time.”

Some of the savings could be shared with EV owners in the form of a rebate worth up to 20 per cent of the batteries’ initial cost.

Call to action
The report concludes with a call to action for EV advocates to press policy makers and other stakeholders to take actions on building codes, the federal Clean Fuel Standard and other business models in order to maximize the benefits of using EV batteries for the electricity system in this way, even as growing adoption could challenge power grids in some regions.

“EVs are often approached as an environmental solution to climate change,” says Cara Clairman, Plug’n Drive president and CEO. “While this is true, there are significant economic opportunities that are often overlooked.”

 

Related News

View more

BNEF Report: Wind and Solar Will Provide 50% of Electricity in 2050

BNEF 2019 New Energy Outlook projects surging renewable energy demand, aggressive decarbonization, wind and solar cost declines, battery storage growth, coal phase-out, and power market reform to meet Paris Agreement targets through 2050.

 

Key Points

Bloomberg's NEO 2019 forecasts power demand, renewables growth, and decarbonization pathways through 2050.

✅ Predicts wind/solar to ~50% of global electricity by 2050

✅ Foresees coal decline; Asia transitions slower than Europe

✅ Calls for power market reform and battery integration

 

In a report that examines the ways in which renewable energy demand is expected to increase, Bloomberg New Energy Finance (BNEF) finds that “aggressive decarbonization” will be required beyond 2030 to meet the temperature goals of the Paris Agreement on climate change.

Focusing on electricity, BNEF’s 2019 New Energy Outlook (NEO) predicts a 62% increase in global power demand, leading to global generating capacity tripling between now and 2050, when wind and solar are expected to make up almost 50% of world electricity, as wind and solar gains indicate, due to decreasing costs.

The report concludes that coal will collapse everywhere except Asia, and, by 2032, there will be more wind and solar electricity than coal-fired electricity. It forecasts that coal’s role in the global power mix will decrease from 37% today, as renewables surpass 30% globally, to 12% by 2050 with the virtual elimination of oil as a power-generating source.

Highlighting regional differences, the report finds that:

Western European economies are already on a strong decarbonization path due to carbon pricing and strong policy support, with offshore wind costs dropping bolstering progress;

by 2040, renewables will comprise 90% of the electricity mix in Europe, with wind and solar accounting for 80%;

the US, with low-priced natural gas, and China, with its coal-fired plants, will transition more slowly even as 30% from wind and solar becomes feasible; and

China’s power sector emissions will peak in 2026 and then fall by more than half over the next 20 years, as solar PV growth accelerates, with wind and solar increasing from 8% to 48% of total electricity generation by 2050.

Power markets must be reformed to ensure wind, solar and batteries are properly remunerated for their contributions to the grid.

The 2019 report finds that wind and solar now represent the cheapest option for adding new power-generating capacity in much of the world, amid record-setting momentum, which is expected to attract USD 13.3 trillion in new investment. While solar, wind, batteries and other renewables are expected to attract USD 10 trillion in investment by 2050, the report warns that curbing emissions will require other technologies as well.

Speaking about the report, Matthias Kimmel, NEO 2019 lead analyst, said solar photovoltaic modules, wind turbines and lithium-ion batteries are set to continue on aggressive cost reduction curves of 28%, 14% and 18%, respectively, for every doubling in global installed capacity. He explained that by 2030, energy generated or stored and dispatched by these technologies will undercut electricity generated by existing coal and gas plants.

To achieve this level of transition and decarbonization, the report stresses, power markets must be reformed to ensure wind, solar and batteries are “properly remunerated for their contributions to the grid.”

Additionally, the 2019 NEO includes a number of updates such as:

  • new scenarios on global warming of 2°C above preindustrial levels, electrified heat and road transport, and an updated coal phase-out scenario;
  • new sections on coal and gas power technology, the future grid, energy access, and costs related to decarbonization technology such as carbon capture and storage (CCS), biogas, hydrogen fuel cells, nuclear and solar thermal;
  • sub-national results for China;
  • the addition of commercial electric vehicles;
  • an expanded air-conditioning analysis; and
  • modeling of Brazil, Mexico, Chile, Turkey and Southeast Asia in greater detail.

Every year, the NEO compares the costs of competing energy technologies, informing projections like US renewables at one-fourth in the near term. The 2019 report brought together 65 market and technology experts from 12 countries to provide their views on how the market might evolve.

 

Related News

View more

India's electricity demand falls at the fastest pace in at least 12 years

India Industrial Output Slowdown deepens as power demand slumps, IIP contracts, and electricity, manufacturing, and mining weaken; capital goods plunge while RBI rate cuts struggle to lift GDP growth, infrastructure, and fuel demand.

 

Key Points

A downturn where IIP contracts as power demand, manufacturing, mining, and capital goods fall despite RBI rate cuts.

✅ IIP fell 4.3% in Sep, worst since Feb 2013.

✅ Power demand dropped for a third month, signaling weak industry.

✅ Capital goods output plunged 20.7%, highlighting weak investment.

 

India's power demand fell at the fastest pace in at least 12 years in October, signalling a continued decline in the industrial output, mirroring how China's power demand dropped when plants were shuttered, according to government data. Electricity has about 8% weighting in the country's index for industrial production.

India needs electricity to fuel its expanding economy and has at times rationed coal supplies when demand surged, but a third decline in power consumption in as many months points to tapering industrial activity in a nation that aims to become a $5 trillion economy by 2024.

India's industrial output fell at the fastest pace in over six years in September, adding to a series of weak indicators that suggests that the country’s economic slowdown is deep-rooted and interest rate cuts alone may not be enough to revive growth.

Annual industrial output contracted 4.3% in September, government data showed on Monday. It was the worst performance since a 4.4% contraction in February 2013, according to Refinitiv data.

Analysts polled by Reuters had forecast industrial output to fall 2% for the month.

“A contraction of industrial production by 4.3% in September is serious and indicative of a significant slowdown as both investment and consumption demand have collapsed,” said Rupa Rege Nitsure, chief economist of L&T Finance Holdings.

The industrial output figure is the latest in a series of worrying economic data in Asia's third largest economy, which is also the world's third-largest electricity producer as well.

Economists say that weak series of data could mean economic growth for July-September period will remain near April-June quarter levels of 5%, which was a six-year low, and some analysts argue for rewiring India's electricity to bolster productivity. The Indian government is likely to release April-September economic growth figures by the end of this month.

Subdued inflation and an economic slowdown have prompted the Reserve Bank of India (RBI) to cut interest rates by a total of 135 basis points this year, while coal and electricity shortages eased in recent months.

“These are tough times for the RBI, as it cannot do much about it but there will be pressures on it to act ...Blunt tools like monetary policy may not be effective anymore,” Nitsure said.

Data showed in September mining sector fell 8.5%, while manufacturing and electricity fell 3.9% and 2.6% respectively, even as imported coal volumes rose during April-October. Capital goods output during the month fell 20.7%, indicating sluggish demand.

“IIP (Index of Industrial Production) growth in October 2019 is also likely to be in negative territory and only since November 2019 one can expect mild IIP expansion, said Devendra Kumar Pant, Chief Economist and Senior Director, Public Finance, India Ratings & Research (Fitch Group).

Infrastructure output, which comprises eight main sectors, in September showed a contraction of 5.2%, the worst in 14 years, even as global daily electricity demand fell about 15% during pandemic lockdowns.

India's fuel demand fell to its lowest in more than two years in September, with consumption of diesel to its lowest levels since January 2017. Diesel and gasoline together make up over 7.4% of the IIP weightage.

In 2019/20 India's fuel demand — also seen as an indicator of economic and industrial activity — is expected to post the slowest growth in about six years.

 

Related News

View more

Britain Prepares for High Winter Heating and Electricity Costs

UK Energy Price Cap drives household electricity bills and gas prices, as Ofgem adjusts unit rates amid natural gas shortages, Russia-Ukraine disruptions, inflation, recession risks, and limited storage; government support offers only short-term relief.

 

Key Points

The UK Energy Price Cap limits per-unit gas and electricity charges set by suppliers and adjusted by Ofgem.

✅ Reflects wholesale natural gas costs; varies quarterly

✅ Protects consumers from sudden electricity and heating bill spikes

✅ Does not cap total annual spend; usage still determines bills

 

The government organization that controls the cost of energy in Great Britain recently increased what is known as a price cap on household energy bills. The price cap is the highest amount that gas suppliers can charge for a unit of energy.

The new, higher cost has people concerned that they may not be able to pay for their gas and electricity this winter. Some might pay as much as $4,188 for energy next year. Earlier this year, the price cap was at $2,320, and a 16% decrease in bills is anticipated in April.

Why such a change?

Oil and gas prices around the world have been increasing since 2021 as economies started up again after the coronavirus pandemic. More business activities required more fuel.

Then, Russia invaded Ukraine in late February, creating a new energy crisis. Russia limited the amount of natural gas it sent to European countries that needed it to power factories, produce electricity and keep homes warm.

Some energy companies are charging more because they are worried that Russia might completely stop sending gas to European countries. And in Britain, prices are up because the country does not produce much gas or have a good way to store it. As a result, Britain must purchase gas often in a market where prices are high, and ministers have discussed ending the gas-electricity price link to ease bills.

Citibank, a U.S. financial company, believes the higher energy prices will cause inflation in Britain to reach 18 percent in 2023, while EU energy inflation has also been driven higher by energy costs this year. And the Bank of England says an economic slowdown known as a recession will start later this year.

Public health and private aid organizations worry that high energy prices will cause a “catastrophe” as Britons choose between keeping their homes warm and eating enough food.

What can government do?

As prices rise, the British government plans to give people between $450 and $1,400 to help pay for energy costs, while some British MPs push to further restrict the price charged for gas and electricity. But the help is seen by many as not enough.

If the government approves more money for fuel, it will probably not come until September, as the energy security bill moves toward becoming law. That is the time the Conservative Party will select a new leader to replace Prime Minister Boris Johnson.

The Labour Party says the government should increase the amount it provides for people to pay for fuel by raising taxes on energy companies. However, the two politicians who are trying to become the next Prime Minister do not seem to support that idea.

Giovanna Speciale leads an organization called the Southeast London Community Energy group. It helps people pay their bills. She said the money will help but it is only a short-term solution to a bigger problem with Britain’s energy system. Because the system is privately run, she said, “there’s very little that the government can do to intervene in this.”

Other European countries are seeing higher energy costs, but not as high, and at the EU level, gas price cap strategies have been outlined to tackle volatility. In France, gas prices are capped at 2021 levels. In Germany, prices are up by 38 percent since last year. However, the government is reducing some taxes, which will make it easier for the average person to buy gas. In Italy, prices are going up, but the government recently approved over $8 billion to help people pay their energy bills.
 

 

Related News

View more

New Hydro One CEO aims to repair relationship with Ontario government — and investors

Hydro One CEO Mark Poweska aims to rebuild ties with Ontario's provincial government, investors, and communities, stabilize the executive team, boost earnings and dividends, and reset strategy after the scrapped Avista deal and regulatory setbacks.

 

Key Points

He plans to mend government and investor relations, rebuild the C-suite, and refocus growth after the failed Avista bid.

✅ Rebuild ties with Ontario government and regulators

✅ Stabilize executive team and governance

✅ Refocus growth after Avista deal termination

 

The incoming chief executive officer of Hydro One Ltd. said Thursday that he aims to rebuild the relationship between the Ontario electrical utility and the provincial government, as seen in COVID-19 support initiatives, as well as ties between the company and its investors.

Mark Poweska, the former executive vice-president of operations at BC Hydro, was announced as Hydro One’s new president and CEO in March. His hiring followed a turbulent period for Toronto-based Hydro One, Ontario’s biggest distributor and transmitter of electricity, with large-scale storm restoration efforts underscoring its role.

Hydro One’s former CEO and board of directors departed last year under pressure from a new Ontario government, the utility’s biggest shareholder. Earlier this year, the company’s plan for a $6.7-billion takeover fell apart over concerns of political interference and the utility clashed with the new provincial government and Progressive Conservative Premier Doug Ford over executive compensation levels, amid rate policy debates such as no peak rate cuts for self-isolating customers.

Hydro One facing $885 million charge as regulator upholds tax decision forcing it to share savings with customers

Shares of Hydro One were up more than eight per cent year-to-date on Wednesday, closing at $21.74. However, the stock price was up only six per cent from Hydro One’s 2015 initial public offering price, something its incoming CEO seems set on changing.

“One of my first priorities will be to solidify the executive team and build relationships with the Government of Ontario, our customers, informed by customer flexibility research, and communities, indigenous leaders, investors, and our partners across the electricity sector,” Poweska said Thursday on a conference call outlining Hydro One’s first-quarter results. “At the same time, I will be working to earn the trust and confidence of the investment community.”

Hydro One reported a profit of $171 million for the three months ended March 31, while peers such as Hydro-Québec reported pandemic-related losses as the sector adapted. Net income for the first quarter was down from $222 million a year earlier, which was due to $140 million in costs related to the scrapping of Hydro One’s proposed acquisition of U.S. energy company Avista Corp.

Hydro One Ltd. appointed Mark Poweska as President and CEO.

In January, Hydro One said the proposed takeover of Spokane, Wash.-headquartered Avista, an approximately $6.7-billion deal announced in July 2017, was being called off. As a result, Hydro One said it would pay Avista a US$103 million break fee.

Revenues net of purchased power for the first quarter rose to $952 million, up by 15.4 per cent compared to last year, Hydro One said, helped by higher distribution revenues. Adjusted profit for the quarter, which removes the Avista-related costs, was $311 million, up from $210 million a year ago.

The company is hiking its quarterly dividend to 24.15 cents per share, up five per cent from the last increase in May 2018, while also launching a pandemic relief fund for customers.

Poweska is taking over for acting president and CEO Paul Dobson this month, and the new executive will be charged with revamping Hydro One’s C-suite.

The company’s chief operating officer, chief legal officer, and chief corporate development officer have all departed this year. The company’s chief human resource officer has retired as well, although Poweska did announce Thursday that he had appointed acting chief financial officer Chris Lopez as CFO.

“Hydro One’s significant bench strength and management depth will ensure stability and continuity during this period of transition, as the sector pursues Hydro-Québec energy transition as well,” the company said in its first-quarter earnings press release.

Ontario remains Hydro One’s biggest shareholder, owning approximately 47 per cent of the company.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.