Egyptian wind farm part of ambitious energy plan

By Industrial Info Resources


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
In response to a tender issued by Egypt in May for development of a 250-megawatt (MW) wind farm on the country's east coast on a build-own-operate basis, 32 international companies have presented their bids.

Hassan Younes, the country's electricity minister, said that 72 companies purchased the bidding documents in June. He said that the numbers signify the interest generated by the country's wind energy sector in the international power industry. The selected project developer will design, finance, build, own and operate the plant for a period of 20 to 25 years. During that period, power generated will be purchased by state-run Egyptian Electricity Transmission Company (EETC). The names of the companies in the fray have not been disclosed so far.

In April 2007, Egypt's Supreme Council adopted an ambitious plan under which the country will generate 20% of its electricity from renewable sources by 2020, and 12% of that would be accounted for by wind energy. The plan was especially ambitious since renewable energy accounted for a mere 0.5% of the country's power generation in 2007.

Today, Egypt procures 10% of generated power from renewable sources. Egypt is an oil and gas producer, but according to Egyptian officials, the country's oil and gas reserves are expected to last for just another 30 years or so, driving the need for renewable energy.

Egypt currently produces 430 MW of wind power, and finances for generating an additional 920 MW are being finalized. The country has been developing its wind power industry along the Red Sea coast. In June, the nation's Electricity Ministry said that it was allocating more than 300,000 acres of land near the Gulf of Suez on the Red Sea coast for wind farm projects.

In August, the ministry announced plans to allocate a further 1.6 million acres of land for wind farms in Upper Egypt. By 2010, the Zafarana wind farm will generate 545 MW of power and thereby become the largest wind farm in the Middle East and all of Africa.

Plans are either finalized or under discussion to set up several windfarms with a combined capacity of about 840 MW in the Gulf of El- Zayt.

Late last month, Younes announced that Egypt's first solar power project, which is being set up near Cairo at Koraymat, will be completely operational from 2010. The 140-MW solar power project is part of a larger 2,900-MW facility that includes three non-solar power units. The facility is already connected to the national grid, which is accessible to almost 99% of the country's population.

In October 2007, Egypt had announced that it would build three to four nuclear power plants to meet the country's growing energy needs. The first plant was to be operational within a decade, and the government had said that it had received nuclear cooperation offers from China, France, Kazakhstan and Russia.

Egypt had suspended earlier nuclear energy reactor plans after the Chernobyl disaster of 1996.

Although revived in 2006 and 2007, the nuclear program has not made much headway with numerous conflicts over site selection, service-contract negotiations, and funding issues.

Egypt's current power generation capacity is 25,000 MW, and according to Younes, the country intends to add 58,000 MW to its capacity by 2027. The country will invest about $100 billion to $120 billion to achieve the defined target. The generation capacity is expected to reach 32,000 MW by 2013 as the nation struggles to meet a growing demand for power.

About 11 thermal power plants are expected to be constructed by 2013.

The government also has conducted two feasibility studies with neighboring nations Ethiopia and Sudan regarding possible hydroelectric projects.

Related News

Should California Fund Biofuels or Electric Vehicles?

California Biofuels vs EV Subsidies examines tradeoffs in decarbonization, greenhouse gas reductions, clean energy deployment, charging infrastructure, energy security, lifecycle emissions, and transportation sector policy to meet climate goals and accelerate sustainable mobility.

 

Key Points

Policy tradeoffs weighing biofuels and EVs to cut GHGs, boost energy security, and advance clean transportation.

✅ Near-term blending cuts emissions from existing fleets

✅ EVs scale with a cleaner grid and charging buildout

✅ Lifecycle impacts and costs guide optimal subsidy mix

 

California is at the forefront of the transition to a greener economy, driven by its ambitious goals to reduce greenhouse gas emissions and combat climate change. As part of its strategy, the state is grappling with the question of whether it should subsidize out-of-state biofuels or in-state electric vehicles (EVs) to meet these goals. Both options come with their own sets of benefits and challenges, and the decision carries significant implications for the state’s environmental, economic, and energy landscapes.

The Case for Biofuels

Biofuels have long been promoted as a cleaner alternative to traditional fossil fuels like gasoline and diesel. They are made from organic materials such as agricultural crops, algae, and waste, which means they can potentially reduce carbon emissions in comparison to petroleum-based fuels. In the context of California, biofuels—particularly ethanol and biodiesel—are viewed as a way to decarbonize the transportation sector, which is one of the state’s largest sources of greenhouse gas emissions.

Subsidizing out-of-state biofuels can help California reduce its reliance on imported oil while promoting the development of biofuel industries in other states. This approach may have immediate benefits, as biofuels are widely available and can be blended with conventional fuels to lower carbon emissions right away. It also allows the state to diversify its energy sources, improving energy security by reducing dependency on oil imports.

Moreover, biofuels can be produced in many regions across the United States, including rural areas. By subsidizing out-of-state biofuels, California could foster economic development in these regions, creating jobs and stimulating agricultural innovation. This approach could also support farmers who grow the feedstock for biofuel production, boosting the agricultural economy in the U.S.

However, there are drawbacks. The environmental benefits of biofuels are often debated. Critics argue that the production of biofuels—particularly those made from food crops like corn—can contribute to deforestation, water pollution, and increased food prices. Additionally, biofuels are not a silver bullet in the fight against climate change, as their production and combustion still release greenhouse gases. When considering whether to subsidize biofuels, California must also account for the full lifecycle emissions associated with their production and use.

The Case for Electric Vehicles

In contrast to biofuels, electric vehicles (EVs) offer a more direct pathway to reducing emissions from transportation. EVs are powered by electricity, and when coupled with renewable energy sources like solar or wind power, they can provide a nearly zero-emission solution for personal and commercial transportation. California has already invested heavily in EV infrastructure, including expanding its network of charging stations and exploring how EVs can support grid stability through vehicle-to-grid approaches, and offering incentives for consumers to purchase EVs.

Subsidizing in-state EVs could stimulate job creation and innovation within California's thriving clean-tech industry, with other states such as New Mexico projecting substantial economic gains from transportation electrification, and the state has already become a hub for electric vehicle manufacturers, including Tesla, Rivian, and several battery manufacturers. Supporting the EV industry could further strengthen California’s position as a global leader in green technology, attracting investment and fostering growth in related sectors such as battery manufacturing, renewable energy, and smart grid technology.

Additionally, the environmental benefits of EVs are substantial. As the electric grid becomes cleaner with an increasing share of renewable energy, EVs will become even greener, with lower lifecycle emissions than biofuels. By prioritizing EVs, California could further reduce its carbon footprint while also achieving its long-term climate goals, including reaching carbon neutrality by 2045.

However, there are challenges. EV adoption in California remains a significant undertaking, requiring major investments in infrastructure as they challenge state power grids in the near term, technology, and consumer incentives. The cost of EVs, although decreasing, still remains a barrier for many consumers. Additionally, there are concerns about the environmental impact of lithium mining, which is essential for EV batteries. While renewable energy is expanding, California’s grid is still reliant on fossil fuels to some degree, and in other jurisdictions such as Canada's 2019 electricity mix fossil generation remains significant, meaning that the full emissions benefit of EVs is not realized until the grid is entirely powered by clean energy.

A Balancing Act

The debate between subsidizing out-of-state biofuels and in-state electric vehicles is ultimately a question of how best to allocate California’s resources to meet its climate and economic goals. Biofuels may offer a quicker fix for reducing emissions from existing vehicles, but their long-term benefits are more limited compared to the transformative potential of electric vehicles, even as some analysts warn of policy pitfalls that could complicate the transition.

However, biofuels still have a role to play in decarbonizing hard-to-abate sectors like aviation and heavy-duty transportation, where electrification may not be as feasible in the near future. Thus, a mixed strategy that includes both subsidies for EVs and biofuels may be the most effective approach.

Ultimately, California’s decision will likely depend on a combination of factors, including technological advancements, 2021 electricity lessons, and the pace of renewable energy deployment, and the state’s ability to balance short-term needs with long-term environmental goals. The road ahead is not easy, but California's leadership in clean energy will be crucial in shaping the nation’s response to climate change.

 

Related News

View more

Fixing California's electric grid is like repairing a car while driving

CAISO Clean Energy Transition outlines California's path to 100% carbon-free power by 2045, scaling renewables, battery storage, and offshore wind while safeguarding grid reliability, managing natural gas, and leveraging Western markets like EDAM.

 

Key Points

CAISO Clean Energy Transition is the plan to reach 100% carbon-free power by 2045 while maintaining grid reliability.

✅ Target: add 7 GW/year to reach 120 GW capacity by 2045

✅ Battery storage up 30x; smooths intermittent solar and wind

✅ EDAM and WEIM enhance imports, savings, and reliability

 

Mark Rothleder, Chief Operating Officer and Senior Vice President at the California Independent System Operator (CAISO), which manages roughly 80% of California’s electric grid, has expressed cautious optimism about meeting the state's ambitious clean energy targets while keeping the lights on across the grid. However, he acknowledges that this journey will not be without its challenges.

California aims to transition its power system to 100% carbon-free sources by 2045, ensuring a reliable electricity supply at reasonable costs for consumers. Rothleder, aware of the task's enormity, likens it to a complex car repair performed while the vehicle is in motion.

Recent achievements have demonstrated California's ability to temporarily sustain its grid using clean energy sources. According to Rothleder, the real challenge lies in maintaining this performance round the clock, every day of the year.

Adding thousands of megawatts of renewable energy into California’s existing 50-gigawatt system, which needs to expand to 120 gigawatts to meet the 2045 goal, poses a significant challenge, though recent grid upgrade funding offers some support for needed infrastructure. CAISO estimates that an addition of 7 gigawatts of clean power per year for the next two decades is necessary, all while ensuring uninterrupted power delivery.

While natural gas currently constitutes California's largest single source of power, Rothleder notes the need to gradually decrease reliance on it, even as it remains an operational necessity in the transition phase.

In 2023, CAISO added 5,660 megawatts of new power to the grid, with plans to integrate over 1,100 additional megawatts in the next six to eight months of 2024. Battery storage, crucial for mitigating the intermittent nature of wind and solar power, has seen substantial growth as California turns to batteries for grid support, increasing 30-fold in three years.

Rothleder emphasizes that electricity reliability is paramount, as consumers always expect power availability. He also highlights the potential of offshore wind projects to significantly contribute to California's power mix by 2045.

The offshore wind industry faces financial and supply chain challenges despite these plans. CAISO’s 20-year outlook indicates a significant increase in utility-scale solar, requiring extensive land use and wider deployment of advanced inverters for grid stability.

Addressing affordability is vital, especially as California residents face increasing utility bills. Rothleder suggests a broader energy cost perspective, encompassing utility and transportation expenses.

Despite smooth grid operations in 2023, challenges in previous years, including extreme weather-induced power outages driven by climate change, underscore the need for a robust, adaptable grid. California imports about a quarter of its power from neighbouring states and participates in the Western Energy Imbalance Market, which has yielded significant savings.

CAISO is also working on establishing an extended day-ahead electricity market (EDAM) to enhance the current energy market's success, building on insights from a Western grid integration report that supports expanded coordination.

Rothleder believes that a thoughtfully designed, diverse power system can offer greater reliability and resilience in the long run. A future grid reliant on multiple, smaller power sources such as microgrids could better absorb potential losses, ensuring a more reliable electricity supply for California.

 

Related News

View more

Electricity Prices Surge to Record as Europe Struggles to Keep Lights on

France Electricity Crisis drives record power prices as nuclear outages squeeze supply, forcing energy imports, fuel oil and coal generation, amid gas market shocks, weak wind output, and freezing weather straining the grid.

 

Key Points

A French power shortfall from nuclear outages, record prices, heavy imports, and oil-fired backup amid cold weather.

✅ EDF halted reactors; 10% capacity offline, 30% by January

✅ Imports surge; fuel oil and coal units dispatched

✅ Prices spike as gas reverses flow and wind output drops

 

Electricity prices surged to a fresh record as France scrambled to keep its lights on, sucking up supplies from the rest of Europe.

France, usually an exporter of power, is boosting electricity imports and even burning fuel oil, and has at times limited nuclear output due to high river temperatures during heatwaves. The crunch comes after Electricite de France SA said it would halt four reactors accounting for 10% of the nation’s nuclear capacity, straining power grids already facing cold weather. Six oil-fired units were turned on in France on Tuesday morning, according to a filing with Entsoe.

“It’s illustrating how severe it is when they’re actually starting to burn fuel oil and importing from all these countries,” said Fabian Ronningen, an analyst at Rystad Energy. The unexpected plant maintenance “is reflected in the market prices,” he said

Europe is facing an energy crisis, with utilities relying on coal and oil. Almost 30% of France’s nuclear capacity will be offline at the beginning of January, leaving the energy market at the mercy of the weather. To make matters worse, Germany is closing almost half of its nuclear capacity before the end of the year, as Europe loses nuclear power just when it really needs energy.

German power for delivery next year surged 10% to 278.50 euros a megawatt-hour, while the French contract for January added 9.5% to a record 700.60 euros. Prices also gained, under Europe’s marginal pricing system, as gas jumped after shipments from Russia via a key pipeline reversed direction, flowing eastward toward Poland instead.

Neighboring countries are boosting their exports to France this week to cover for lost nuclear output, with imports from Germany rising to highest level in at least four years. In the U.K., four coal power units were operating on Tuesday with as much as 1.5 gigawatts of hourly output being sent across the channel. 

The power crisis is so severe that the French government has asked EDF to restart some nuclear reactors earlier than planned amid outage risks for nuclear-powered France. Ecology Minister Barbara Pompili said last weekend that, in addition to the early reactor restarts and past river-temperature limits, the country had contracts with some companies in which they agreed to cut production during peak demand hours in exchange for payments from the government.

Higher energy prices threaten to derail Europe’s economic recovery just as the coronavirus omicron variety is spreading. Trafigura Group’s Nyrstar will pause production at its zinc smelter in France in the first week of January because of rising electricity prices. Norwegian fertilizer producer Yara International, which curbed output earlier this year, said it would continue to monitor the situation closely and curtail production where necessary.

Freezing weather this week is also sending short-term power prices surging as renewables can’t keep up, even though wind and solar overtook gas in the EU last year. German wind output plunged to a five-week low on Tuesday.

 

Related News

View more

US judge orders PG&E to use dividends to pay for efforts to reduce wildfire risks

PG&E dividend halt for wildfire mitigation directs cash from shareholders to tree clearing, wildfire risk reduction, and probation compliance under Judge William Alsup, amid bankruptcy, Camp Fire liabilities, and power line vegetation management mandates.

 

Key Points

A court-ordered dividend halt funding vegetation clearance and wildfire mitigation as PG&E meets probation terms.

✅ Judge Alsup bars dividends until mitigation targets met

✅ 375,000 trees cleared near power lines in high-risk zones

✅ Measures tied to probation amid bankruptcy and liabilities

 

A U.S. judge said on Tuesday that PG&E may not resume paying dividends and must use the money to fund its plan for cutting down trees to reduce the risk of wildfires in California, stopping short of more costly measures he proposed earlier this year.

The new criminal probation terms for PG&E are modest compared with ones the judge had in mind in January and that PG&E said could have cost upwards of $150 billion.

The terms will, however, keep PG&E under the supervision of Judge William Alsup of the U.S. District Court for the Northern District of California and hold the company, which also is in Chapter 11 bankruptcy and whose bankruptcy plan has drawn support from wildfire victims, to its target for clearing areas around its power lines of some 375,000 trees this year.

PG&E's probation stems from its felony conviction after a deadly 2010 natural gas pipeline blast in San Bruno, California, near San Francisco, that killed eight people and injured 58 others.

PG&E filed for bankruptcy protection on Jan. 29 in anticipation of liabilities from wildfires, including a catastrophic 2018 blaze, the Camp Fire, for which PG&E later pleaded guilty to 85 counts in state court. It killed 86 people in the deadliest and most destructive wildfire in California history.

At a January hearing, Alsup, who is overseeing PG&E's probation, said he felt compelled to propose additional probation terms in the aftermath of Camp Fire. San Francisco-based PG&E expects its equipment will be found to have caused the blaze.

The probation process is separate from San Francisco-based PG&E's bankruptcy filing and from operational measures such as its pandemic response and shutoff moratorium implemented to protect customers.

As the company faces $30 billion in wildfire liabilities and bankruptcy proceedings and has opened a wildfire assistance program for affected residents, the energy company is expected to name as its new chief executive Bill Johnson, a source said on Tuesday. Johnson has been the CEO of the Tennessee Valley Authority since 2013 and is retiring on Friday.

Additional probation terms imposed by Alsup on Tuesday will require PG&E to meet goals in a wildfire mitigation plan it unveiled in February.

The goals include removing 375,000 dead, dying or hazardous trees from areas at high risk of wildfires in 2019, compared with 160,000 last year.

The judge said PG&E will not be able to pay shareholders until it complies with his new probation terms.

Shares fell 2% on Tuesday to close at $17.66 on the New York Stock Exchange and are down 63% since November 2018 due to concerns about the company's bankruptcy and wildfire liabilities, though the utility has said rates are set to stabilize in 2025 as part of its long-term plan. The shares traded as low as $5.07 in January.

PG&E in December 2017 suspended its quarterly cash dividend, while continuing to pay significant property taxes to California counties, citing uncertainty about liabilities from wildfires in October of that year that struck Northern California.

PG&E paid $798 million in dividends in 2017 and $925 million in 2016, a period in which the company did a poor job of clearing areas around its power lines of hazardous trees, according to Alsup.

Money meant for shareholders should have been spent on efforts to reduce wildfire risks in recent years, Alsup said at Tuesday's hearing.

"PG&E has started way more than its share of these fires," Alsup said.

"I want to see the people of California safe," the judge added.

Lawyers for PG&E did not contest the new terms, which the company considers more feasible than terms Alsup proposed in January.

To comply with the terms Alsup proposed in January, PG&E said it would have to remove 100 million trees. The company added that shutting power lines during high winds as Alsup proposed would not be feasible because the lines traverse rural areas to service cities and suburbs.

Idling lines could also affect the power grid in other states, PG&E said.

Alsup on Tuesday said he was still considering his proposal to require PG&E to shut down power lines during windy weather to prevent tree branches from making contact and sparking wildfires linked to power lines in the region.

 

Related News

View more

America Going Electric: Dollars And Sense

California Net Zero Grid Investment will fuel electrification, renewable energy buildout, EV adoption, and grid modernization, boosting utilities, solar, and storage, while policy, IRA incentives, and transmission upgrades drive reliability and long-term rate base growth.

 

Key Points

Funding to electrify sectors and modernize the grid, scaling renewables, EVs, and storage to meet 2045 net zero goals.

✅ $370B over 22 years to meet 2045 net zero target

✅ Utilities lead gains via grid modernization and rate base growth

✅ EVs, solar, storage scale; IRA credits offset costs

 

$370 billion: That’s the investment Edison International CEO Pedro Pizarro says is needed for California’s power grid to meet the state’s “net zero” goal for CO2 emissions by 2045.

Getting there will require replacing fossil fuels with electricity in transportation, HVAC systems for buildings and industrial processes. Combined with population growth and data demand potentially augmented by artificial intelligence, that adds up to an 82 percent increase in electricity demand over 22 years, or 3 percent annually, and a potential looming shortage if buildout lags.

California’s plans also call for phasing out fossil fuel generation in the state, despite ongoing dependence on fossil power during peaks. And presumably, its last nuclear plant—PG&E Corp’s (PCG) Diablo Canyon—will be eventually be shuttered as well. So getting there also means trebling the state’s renewable energy generation and doubling usage of rooftop solar.

Assuming this investment is made, it’s relatively easy to put together a list of beneficiaries. Electric vehicles hit 20 percent market share in the state in Q2, even as pandemic-era demand shifts complicate load forecasting. And while competition from manufacturers has increased, leading manufacturers like Tesla TSLA -3% Inc (TSLA) can look forward to rising sales for some time—though that’s more than priced in for Elon Musk’s company at 65 times expected next 12 months earnings.

In the past year, California regulators have dialed back net metering through pricing changes affecting compensation, a subsidy previously paying rooftop solar owners premium prices for power sold back to the grid. That’s hit share prices of SunPower Corp (SPWR) and Sunrun Inc (RUN) quite hard, by further undermining business plans yet to demonstrate consistent profitability.

Nonetheless, these companies too can expect robust sales growth, as global prices for solar components drop and Inflation Reduction Act tax credits at least somewhat offset higher interest rates. And the combination of IRA tax credits and U.S. tariff walls will continue to boost sales at solar manufacturers like JinkoSolar Holding (JKS).

The surest, biggest beneficiaries of California’s drive to Net Zero are the utilities, reflecting broader utility trends in grid modernization, with investment increasing earnings and dividends. And as the state’s largest pure electric company, Edison has the clearest path.

Edison is currently requesting California regulators OK recovery over a 30-year period of $2.4 billion in losses related to 2017 wildfires. Assuming a amicable decision by early next year, management can then turn its attention to upgrading the grid. That investment is expected to generate long-term rate base growth of 8 percent at year, fueling 5 to 7 percent annual earnings growth through 2028 with commensurate dividend increases.

That’s a strong value proposition Edison stock, with trades at just 14 times expected next 12 months earnings. The yield of roughly 4.4 percent at current prices was increased 5.4 percent this year and is headed for a similar boost in December.

When California deregulated electricity in 1996, it required utilities with rare exceptions to divest their power generation. As a result, Edison’s growth opportunity is 100 percent upgrading its transmission and distribution grid. And its projects can typically be proposed, sited, permitted and built in less than a year, limiting risk of cost overruns to ensure regulatory approval and strong investment returns.

Edison’s investment plan is also pretty much immune to an unlikely backtracking on Net Zero goals by the state. And the company has a cost argument as well: Dr Pizarro cites U.S. Department of Energy and Department of Transportation data to project inflation-adjusted savings of 40 percent in California’s total customer energy bills from full electrification.

There’s even a reason to believe 40 percent savings will prove conservative. Mainly, gasoline currently accounts for a bit more than half energy expenditures. And after a more than 10-year global oil and gas investment drought, supplies are likely get tighter and prices possibly much higher in coming years.

Of course, those savings will only show up after significant investment is made. At this point, no major utility system in the world runs on 100 percent renewable energy, and California’s blackout politics underscore how reliability concerns shape deployment. And the magnitude of storage technology needed to overcome intermittency in solar and wind generation is not currently available let alone affordable, though both cost and efficiency are advancing.

Taking EVs from 20 to 100 percent of California’s new vehicle sales calls for a similar leap in efficiency and cost, even with generous federal and state subsidy. And while technology to fully electrify buildings and homes is there, economically retrofitting statewide is almost certainly going to be a slog.

At the end of the day, political will is likely to be as important as future technological advance for how much of Pizarro’s $370 billion actually gets spent. And the same will be true across the U.S., with state governments and regulators still by and large calling the shots for how electricity gets generated, transmitted and distributed—as well as who pays for it and how much, even as California’s exported policies influence Western markets.

Ironically, the one state where investors don’t need to worry about renewable energy’s prospects is one of the currently reddest politically. That’s Florida, where NextEra Energy NEE +2.8% (NEE) and other utilities can dramatically cut costs to customers and boost reliability by deploying solar and energy storage.

You won’t hear management asserting it can run the Sunshine State on 100 percent renewable energy, as utilities and regulators do in some of the bluer parts of the country. But by demonstrating the cost and reliability argument for solar deployment, NextEra is also making the case why its stock is America’s highest percentage bet on renewables’ growth—particularly at a time when all things energy are unfortunately becoming increasingly, intensely political.

 

Related News

View more

China's nuclear energy on steady development track, say experts

China Nuclear Power Expansion accelerates with reactor approvals, Hualong One and CAP1400 deployments, rising gigawatts, clean energy targets, carbon neutrality goals, and grid reliability benefits to meet coastal demand and reduce emissions.

 

Key Points

An accelerated reactor buildout to add clean capacity, curb emissions, and improve grid reliability nationwide.

✅ Approvals surge for Hualong One and CAP1400 third-gen reactors

✅ Capacity targets approach 100 GW installed by 2030

✅ Supports carbon neutrality, energy security, and lower costs

 

While China has failed to accomplish its 2020 nuclear target of 58 gigawatts under operation and 30 GW under construction, insiders are optimistic about prospects for the nonpolluting energy resource in China over the next five years as the country has stepped up nuclear approvals and construction since 2020.

China expects to record 49 operating nuclear facilities and capacity of more than 51 GW as of the end of 2020. Nuclear power currently makes up around 2.4 percent of the country's total installed energy capacity, said the China Nuclear Energy Association. There are 19 facilities that have received approval and are under construction, with capacity exceeding 20 GW, ranking top globally as nuclear project milestones worldwide continue, it said.

"With surging power demand from coastal regions, more domestic technology, including next-gen nuclear, will be adopted with installations likely nearing 100 GW by the end of 2030," said Wei Hanyang, a power market analyst at Bloomberg New Energy.

Following the Fukushima nuclear reactor disaster in 2011 in Japan, China has, like many countries including Japan, Germany and Switzerland, suspended nuclear power project approvals for a period, including construction of the pilot project of Shidaowan nuclear power plant in Shandong province that uses CAP1400 technology, based on third-generation Westinghouse AP1000 reactor technology.

As China promotes greener development and prioritizes safety and security of nuclear power plant construction, it has pledged to hit peak emissions before 2030 and achieve carbon neutrality by 2060, with electricity meeting 60% of energy use by 2060 according to Shell, the Shidaowan plant, originally scheduled to launch construction in 2014 and enter service in 2018, is expected to start fuel loading and begin operations this year.

Joseph Jacobelli, an independent energy analyst and executive vice-president for Asia business at Cenfura Ltd, a smart energy services company, said recent developments confirm China's ongoing commitment to further boost the country's nuclear sector.

"The nuclear plants can help meet China's goal of reducing greenhouse gas emissions as the country reduces coal power production and provide air pollution-free energy at a lower cost to consumers. China's need for clean energy means that nuclear power generation definitely has an important place in the long-term energy mix," Jacobelli said.

He added that Chinese companies' cost control capabilities and technological advancements, and operational performance improvements such as the AP1000 refueling outage record, are also likely to continue providing domestic companies with advantages, as the cost per kilowatt-hour is very important, especially as solar, wind and other clean energy solutions become even cheaper over the next few years.

China approved two nuclear projects in 2020- Hainan Changjiang nuclear power plant unit 2 and Zhejiang San'ao nuclear power plant unit 1. This is after the country launched three new nuclear power plants in 2019 in the provinces of Shandong, Fujian and Guangdong, which marked the end of a moratorium on new projects.

The Zhejiang San'ao nuclear power plant saw concrete poured for unit 1 on Dec 31, according to its operator China General Nuclear. It will be the first of six Hualong One pressurized water reactors to be built at the site as well as the first Chinese nuclear power plant project to involve private capital.

Jointly invested, constructed and operated by CGN, Zheneng Electric Power, Wenzhou Nuclear Energy Development, Cangnan County Haixi Construction Development and Geely Maijie Investment, the project creates a new model of mixed ownership of nuclear power enterprises, said CGN.

The world's first Hualong One reactor at unit 5 of China National Nuclear Corp's Fuqing nuclear plant in Fujian province was connected to the grid in November. With the start of work on San'ao unit 1, China now has further seven Hualong One units under construction, including Fuqing 6, which is scheduled to go online this year.

CNNC is also constructing one unit at Taipingling in Guangdong and two at Zhangzhou in Fujian province. CGN is building two at its Fangchenggang site in Guangxi Zhuang autonomous region. In addition, two Hualong One units are under construction at Karachi in Pakistan, while CGN proposes to use a UK version of the Hualong One at Bradwell in the United Kingdom, aligning with the country's green industrial revolution strategy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified