Movers and shakers of the eco revolution

By The Independent


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Green jobs. They sound good, don't they?

First off, any job in a recession is welcome. Then you get the satisfaction of, well, let's not be shy about it, getting paid to save the planet. And finally there's the prospect of meeting all sorts of like-minded people and comparing tips on composting. Reality, of course, hits like a blast of biomass.

"We are on the edge of a low-carbon industrial revolution," claimed the Business Secretary Peter Mandelson in March – although he did scale back Gordon Brown's promise of 100,000 recession-busting "Green New Deal" jobs to just "tens of thousands" of new jobs in the approaching low-carbon economy. The definition of a "green job" is equally nebulous. At the executive end of the spectrum, they are jobs in sustainability and corporate responsibility.

"Such jobs transcend all sectors of the economy," explains Andy Cartland, founder of leading recruitment agency Acre Resources. But a broader sweep might include cycle instructors and furniture restorers alongside hydrologists and climatologists. Indeed, you may already have a green tinge to your collar already without realizing it.

As well as jobs in renewable energy, from installers of photovoltaic panels (or maybe you know them as solar panels) and wind turbines to scientists developing biofuel from algae (a technology in which the UK leads the world), there are green jobs in facilities management (has everyone switched off the lights for the night?) and the waste industry.

In 20 years, chemical engineers currently employed to get oil out of the ground will be paid by governments to clean up after the oil companies. In the next 50 years, some believe many green jobs will be in climate-change mitigation, such as flood defences and carbon sequestration.

But that's all some way off. This summer, the green jobs revolution stalled on the runway when the Danish firm Vestas, the only major wind-turbine manufacturer in the UK, pulled out of the Isle of Wight. Citing the absence of a viable market in the UK and a growing market in the U.S., Vestas and its business logic can't be faulted: 425 jobs were lost in Britain but Vestas created 5,000 more in the US and China.

The company decided it made greater economic and environmental sense to build its turbines close to where they would be used. Dan Ledger, a wind-turbine installer in the UK, explains further: "The irony is that the British public will be swamped with wind farms in the next five years and the seas off Cornwall will be covered in them, but they won't be made here. If the government had introduced new regulations five years ago during the building boom, it would have been different."

Legislation, says Cartland, drives much of the worldwide green jobs boom, from the £300 million for green-jobs training provided by Obama's American Recovery and Reinvestment Act of February to the 285,000 jobs in Germany's clean-energy sector.

Munich-based Siemens, Europe's biggest employer, expects to reap an additional £13 billion worldwide over the next three years from assorted stimulus programs, with green tech accounting for 40 per cent of ' the order book. But they see only 500 new skilled jobs in the UK's green sector. Instead, their factories will be in the Midwest of America, where the financial incentives are greatest.

There are lessons to be learnt from across the Atlantic.

In a tale of two cities, Professor Joan Fitzgerald, an expert in green economic development from Northeastern University in Boston, Massachusetts, compares the fortunes of Austin, Texas, a high-tech city with a supportive political leadership and an educated workforce, with Ohio's Toledo, an old-fashioned, blue-collar manufacturing city.

Which city is thriving today? After updating its industrial base, especially its glass manufacturing, Toledo now has 6,000 new jobs in 15 businesses in the solar-energy sector. Progressive Austin, a city that passed a renewable energy resolution a decade ago, is struggling. Expensively funded high-tech enterprises have delivered hundreds rather than thousands of jobs.

Back in Britain, Paul Cowley of Bristol's Sustainable Energy Installations is complaining how hard it is to find qualified workmen to fit photovoltaic panels: "They're few and far between, so most travel big distances."

Yet, despite the recession and the botched introduction of a feed-in tariff, due next April, for homeowners with wind turbines and solar panels to sell clean energy back to the national grid, Cowley believes the prospects for installers are good. By 2016, all new homes in Britain will have to be carbon- neutral, so, says Cowley, "the bread-and-butter work for electricians and roofers will change in the next few years."

Are we ready for the green industrial revolution?

Although innovative companies such as Elektromotive manufacture in the UK, these sorts of stable, long-term jobs and their valuable hands-on skills are thin on the ground.

"We are good at finance but aren't performing so well in manufacturing," agrees Cartland. And installers of green technology like Ledger complain they are wrapped up in red tape before they set foot on a ladder. But, with world energy consumption set to double by 2030 according to the International Energy Agency, perhaps it's time to brush off the CV and start saving up on biofuels.

Related News

Is tidal energy the surge remote coastal communities need?

BC Tidal Energy Micro-Grids harness predictable tidal currents to replace diesel in remote Indigenous coastal communities, integrating marine renewables, storage, and demand management for resilient off-grid power along Vancouver Island and Haida Gwaii.

 

Key Points

Community-run tidal turbines and storage deliver reliable, diesel-free electricity to remote B.C. coastal communities.

✅ Predictable power from tidal currents reduces diesel dependence

✅ Integrates storage, demand management, and microgrid controls

✅ Local jobs via marine supply chains and community ownership

 

Many remote West Coast communities are reliant on diesel for electricity generation, which poses a number of negative economic and environmental effects.

But some sites along B.C.’s extensive coastline are ideal for tidal energy micro-grids that may well be the answer for off-grid communities to generate clean power, suggested experts at a COAST (Centre for Ocean Applied Sustainable Technologies) virtual event Wednesday.

There are 40 isolated coastal communities, many Indigenous communities, and 32 of them are primarily reliant on diesel for electricity generation, said Ben Whitby, program manager at PRIMED, a marine renewable energy research lab at the University of Victoria (UVic).

Besides being a costly and unreliable source of energy, there are environmental and community health considerations associated with shipping diesel to remote communities and running generators, Whitby said.

“It's not purely an economic question,” he said.

“You've got the emissions associated with diesel generation. There's also the risks of transporting diesel … and sometimes in a lot of remote communities on Vancouver Island, when deliveries of diesel don't come through, they end up with no power for three or four days at a time.”

The Heiltsuk First Nation, which suffered a 110,000-litre diesel spill in its territorial waters in 2016, is an unfortunate case study for the potential environmental, social, and cultural risks remote coastal communities face from the transport of fossil fuels along the rough shoreline.

A U.S. barge hauling fuel for coastal communities in Alaska ran aground in Gale Pass, fouling a sacred and primary Heiltsuk food-harvesting area.

There are a number of potential tidal energy sites near off-grid communities along the mainland, on both sides of Vancouver Island, and in the Haida Gwaii region, Whitby said.

Tidal energy exploits the natural ebb and flow of the coast’s tidal water using technologies like underwater kite turbines to capture currents, and is a highly predictable source of renewable energy, he said.

Micro-grids are self-reliant energy systems drawing on renewables from ocean, wave power resources, wind, solar, small hydro, and geothermal sources.

The community, rather than a public utility like BC Hydro, is responsible for demand management, storage, and generation with the power systems running independently or alongside backup fuel generators — offering the operators a measure of energy sovereignty.

Depending on proximity, cost, and renewable solutions, tidal energy isn’t necessarily the solution for every community, Whitby noted, adding that in comparison to hydro, tidal energy is still more expensive.

However, the best candidates for tidal energy are small, off-grid communities largely dependent on costly fossil fuels, Whitby said.

“That's really why the focus in B.C. is at a smaller scale,” he said.

“The time it would take (these communities) to recoup any capital investment is a lot shorter.

“And the cost is actually on a par because they're already paying a significant amount of money for that diesel-generated power.”

Lisa Kalynchuk, vice-president of research and innovation at UVic, said she was excited by the possibilities associated with tidal power, not only in B.C., but for all of Canada’s coasts.

“Canada has approximately 40,000 megawatts available on our three coastlines,” Kalynchuk said.

“Of course, not all this power can be realized, but it does exist, so that leads us to the hard part — tapping into this available energy and delivering it to those remote communities that need it.”

Challenges to establishing tidal power include the added cost and complexity of construction in remote communities, the storage of intermittent power for later use, the economic model, though B.C.’s streamlined regulatory process may ease approvals, the costs associated with tidal power installations, and financing for small communities, she said.

But smaller tidal energy projects can potentially set a track record for more nascent marine renewables, as groups like Marine Renewables Canada pivot to offshore wind development, at a lower cost and without facing the same social or regulatory resistance a large-scale project might face.

A successful tidal energy demo project was set up using a MAVI tidal turbine in Blind Channel to power a private resort on West Thurlow Island, part of the outer Discovery Islands chain wedged between Vancouver Island and the mainland, Whitby said.

The channel’s strong tidal currents, which routinely reach six knots and are close to the marina, proved a good site to test the small-scale turbine and associated micro-grid system that could be replicated to power remote communities, he said.

The mooring system, cable, and turbine were installed fairly rapidly and ran through the summer of 2017. The system is no longer active as provincial and federal funding for the project came to an end.

“But as a proof of concept, we think it was very successful,” Whitby said, adding micro-grid tidal power is still in the early stages of development.

Ideally, the project will be revived with new funding, so it can continue to act as a test site for marine renewable energy and to showcase the system to remote coastal communities that might want to consider tidal power, he said.

In addition to harnessing a local, renewable energy source and increasing energy independence, tidal energy micro-grids can fuel employment and new business opportunities, said Whitby.

The Blind Channel project was installed using the local supply chain out of nearby Campbell River, he said.

“Most of the vessels and support came from that area, so it was all really locally sourced.”

Funding from senior levels of government would likely need to be provided to set up a permanent tidal energy demonstration site, with recent tidal energy investments in Nova Scotia offering a model, or to help a community do case studies and finance a project, Whitby said.

Both the federal and provincial governments have established funding streams to transition remote communities away from relying on diesel.

But remote community projects funded federally or provincially to date have focused on more established renewables, such as hydro, solar, biomass, or wind.

The goal of B.C.’s Remote Community Energy Strategy, part of the CleanBC plan and aligned with zero-emissions electricity by 2035 targets across Canada, is to reduce diesel use for electricity 80 per cent by 2030 by targeting 22 of the largest diesel locations in the province, many of which fall along the coast.

The province has announced a number of significant investments to shift Indigenous coastal communities away from diesel-generated electricity, but they predominantly involve solar or hydro projects.

A situation that’s not likely to change, as the funding application guide in 2020 deemed tidal projects as ineligible for cash.

Yet, the potential for establishing tidal energy micro-grids in B.C. is good, Kalynchuk said, noting UVic is a hub for significant research expertise and several local companies, including ocean and river power innovators working in the region, are employing and developing related service technologies to install and maintain the systems.

“It also addresses our growing need to find alternative sources of energy in the face of the current climate crisis,” she said.

“The path forward is complex and layered, but one essential component in combating climate change is a move away from fossil fuels to other sources of energy that are renewable and environmentally friendly.”

 

Related News

View more

Ontario Providing Support for Industrial and Commercial Electricity Consumers During COVID-19

Ontario Global Adjustment Deferral provides COVID-19 relief to industrial and commercial electricity consumers, holding GA charges at pre-COVID levels, aligning Class A and Class B rates, and deferring non-RPP costs from April to June 2020.

 

Key Points

An emergency measure that defers a portion of GA charges to stabilize electricity bills for non-RPP Class A/B consumers.

✅ Holds GA near pre-COVID levels at $115/MWh for Class B.

✅ Applies equal percentage relief to Class A customers.

✅ Deferred costs recovered over 12 months from Jan 2021.

 

Through an emergency order passed today, the Ontario government is taking steps to defer a portion of Global Adjustment (GA) charges for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan for the period starting from April 2020, at a time when Toronto's growing electricity needs require careful planning. This initiative is intended to provide companies with temporary immediate relief on their monthly electricity bills, as utilities use AI to adapt to shifting electricity demands in April, May and June 2020. The government intends to keep this emergency order in place until May 31, 2020, and subsequent regulatory amendments would, if approved, provide for the deferral of these charges for June 2020 as well.

This relief will prevent a marked increase in Global Adjustment charges due to the low electricity demand caused by the COVID-19 outbreak. Without this emergency order, a small industrial or commercial consumer (i.e., Class B) could have seen bills increase by 15 per cent or more. This emergency order will hold GA rates in line with pre-COVID-19 levels, even as clean energy initiatives in British Columbia accelerate across the sector.

"Ontario's industrial and commercial electricity consumers are being impacted by COVID-19. They employ thousands of hardworking Ontarians, and we know this is a challenging time for them," said Greg Rickford, Minister of Energy, Northern Development and Mines. "This would provide immediate financial support for more than 50,000 companies when they need it most: as they do their part to stop the spread of COVID-19 and as they prepare to help get our economy moving again with Toronto preparing for a surge in electricity demand in the years ahead."

Quick Facts

  • The GA rate for smaller industrial and commercial consumers (i.e., Class B) has been set at $115 per megawatt-hour, which is roughly in line with the March 2020 value, alongside efforts to develop IoT security standards for electricity sector devices today. Large industrial and commercial consumers (i.e., Class A) will receive the same percentage reduction in GA charges as Class B consumers.
  • Subject to the approval of subsequent amendments, deferred costs would be recovered over a 12-month period beginning in January 2021, amid increasing exposure to harsh weather across Canadian grids.

 

Related News

View more

China's electric power woes cast clouds on U.S. solar's near-term future

China Power Rationing disrupts the solar supply chain as coal shortages, price controls, and dual-control emissions policy curb electricity, squeezing polysilicon, aluminum, and module production and raising equipment costs amid surging post-Covid industrial demand.

 

Key Points

China's electricity curbs from coal shortages, price caps, and emissions targets disrupt solar output and materials.

✅ Polysilicon and aluminum output cut by power rationing

✅ Coal price spikes and power price caps squeeze generators

✅ Dual-control emissions policy triggers provincial curbs

 

The solar manufacturing supply chain is among the industries being affected by a combination of soaring power demand, coal shortages, and carbon emission reduction measures which have seen widespread power cuts in China.

In Yunnan province, in southwest China, producers of the silicon metal which feeds polysilicon have been operating at 10% of the output they achieved in August. They are expected to continue to do so for the rest of the year as provincial authorities try to control electricity demand with a measure that is also affecting the phosphorus industry.

Fellow solar supply chain members from the aluminum industry in Guangxi province, in the south, have been forced to operate just two days per week, alongside peers in the concrete, steel, lime, and ceramics segments. Manufacturers in neighboring Guangdong have access to normal power supplies only on Fridays and Saturdays with electricity rationed to a 15% grid security load for the rest of the time.

pv magazine USA reported that a Tier 1 solar module manufacturer warned customers in an email that energy shortages in China have forced it to reduce or stop production at its Chinese manufacturing sites. The company warned the event will also affect output from its downstream cell and module production facilities in Southeast Asia.

The memo said that in order to recover from the effects of the “potential Force Majeure event,” it may delay or stop equipment delivery or seek to renegotiate contracts to pass through higher prices.

Raw material sourcing
With reports of drastic power shortages emerging from China in recent days, the country has actually been experiencing problems since late June, and similar pressures have seen India ration coal supplies this year, but rationing is not unusual during the peak summer hours.

What has changed this time is that the outages have continued and prompted rationing measures across 19 of the nation’s provinces for the rest of the year. The problems have been caused by a combination of rising post-Covid electricity demand at a time when the politically-motivated ban on imports of Australian coal has tightened supply; and the manner in which Beijing controls power prices, with the situation further exacerbated by carbon emissions reduction policy.

Demand
Electricity demand from industry, underscoring China’s electricity appetite, was 13.5 percentage points higher in the first eight months of the year than in the same period of 2020, at 3,585 TWh. That reflected a 13.8% year-on-year rise in total consumption, following earlier power demand drops when coronavirus shuttered plants, to 5.47 PWh, according to data from state energy industry trade body the China Electricity Council.

Figures produced by the China General Administration of Customs tell the same story: a rebound driven by the global recovery from the pandemic, as global power demand surges above pre-pandemic levels, with China recording import and export trade worth RMB2.48 trillion ($385 billion) in January-to-August. That was up 23.7% on the same period of last year and 22.8% higher than in the first eight months of 2019.

With Beijing having enforced an unofficial ban on imports of Australian coal for the last year or so – as the result of an ongoing diplomatic spat with Australia – rising demand for coal (which provided around 73% of Chinese electricity in the first half of the year) has further raised prices for the fossil fuel.

The problem for Chinese coal-fired power generators is that Beijing maintains strict controls on the price of electricity. As a result, input costs cannot be passed on to consumers. The mismatch between a liberalized coal market and centrally controlled end-user prices is illustrated by the current situation in Guangdong. There, a coal price of RMB1,560 per ton ($242) has pushed the cost of coal-fired electricity up to RMB0.472 per kilowatt-hour ($0.073). With coal power companies facing an electricity price ceiling of around RMB0.463/kWh ($0.071), generators are losing around RMB0.12 for every kilowatt-hour they generate. In that situation, rationing electricity supplies is an obvious remedy.

The crisis has been worsened by the introduction of China’s “dual control” energy policy, which aims to help meet President Xi Jinping’s climate change pledge of hitting peak carbon emissions this decade and a net zero economy by 2060, and to reduce coal power production over time. Dual control refers to attempts to wind down greenhouse gas emissions at both a national level and in more local areas, such as provinces and cities.

Red status
With the finer details of the carbon reduction policy yet to be ironed out, government departments and provincial and city authorities have started to set their own emission-reduction targets. In mid-August, state planning body the China National Development and Reform Commission (NDRC) published a table of the energy control situation across the nation. With nine provinces marked red for their energy consumption, and a further 10 highlighted as yellow, officials received another motivation to introduce power rationing.

China’s solar industry is being impacted by coal shortages for electric power generation. In this 2014 photo, a thermal generating plant’s cooling towers loom over a street in Henan Province.
Image: flickr/V.T. Polywoda

The current approach of rolling blackouts seems unlikely to be a sustainable solution, as surging electricity demand strains power systems worldwide, given the damage it could inflict on industry and the resentment it would cause in parts of the nation already preparing for winter.

The choice facing China’s policymakers is whether to ramp up coal supplies to force prices down by using decommissioned domestic supplies and halting the ban on Australian imports, or to raise electricity prices to prompt generators to get the lights back on. While the drawbacks of raising household electricity bills seem obvious, the first approach of using more coal could endanger the nation’s climate change commitments on the even of the COP26 meeting in Glasgow, Scotland, in November. Sources close to the NDRC have suggested the electricity price may be set to rise soon.

GDP
What is clear is the effect the energy crisis is having on the Chinese economy and on the solar supply chain. Leading up to a  national day holiday in China, the coal price in northern China rose to around RMB2,000 per ton ($310), three times higher than at the beginning of the year.

Investment bank China International Capital Corp. blamed the dual control emission reduction policy for the electricity shortages. It predicted a 0.1-0.15 percentage point impact on economic growth in the last quarter of 2021.  Morgan Stanley has put that figure at 1% in the current quarter, if industrial output restrictions continue. And Japan’s Nomura Securities revised down its annual forecast on Chinese growth from 8.2% to 7.7%. It now expects GDP gains in the third and fourth quarters to cool from 5.1% to 4.7%, and from 4.4% to 3%, respectively.

 

Related News

View more

Wind Leading Power

UK Wind Power Surpasses Gas as offshore wind and solar drive record electricity generation, National Grid milestones, and net zero progress, despite grid capacity bottlenecks, onshore planning reforms, demand from heat pumps and transport electrification.

 

Key Points

A milestone where wind turbines generated more UK electricity than gas, advancing progress toward a net zero grid.

✅ Offshore wind delivered the majority of UK wind generation

✅ Grid connection delays stall billions in green projects

✅ Planning reforms may restart onshore wind development

 

Wind turbines have generated more electricity than gas, as wind becomes the main source for the first time in the UK.

In the first three months of this year a third of the country's electricity came from wind farms, as the UK set a wind generation record that underscored the trend, research from Imperial College London has shown.

National Grid has also confirmed that April saw a record period of solar energy generation, and wind and solar outproduced nuclear in earlier milestones.

By 2035 the UK aims for all of its electricity to have net zero emissions, after a 2019 stall in low-carbon generation highlighted the challenge.

"There are still many hurdles to reaching a completely fossil fuel-free grid, but wind out-supplying gas for the first time is a genuine milestone event," said Iain Staffell, energy researcher at Imperial College and lead author of the report.

The research was commissioned by Drax Electrical Insights, which is funded by Drax energy company.

The majority of the UK's wind power has come from offshore wind farms, and the country leads the G20 for wind's electricity share according to recent analyses. Installing new onshore wind turbines has effectively been banned since 2015 in England.

Under current planning rules, companies can only apply to build onshore wind turbines on land specifically identified for development in the land-use plans drawn up by local councils. Prime Minister Rishi Sunak agreed in December to relax these planning restrictions to speed up development.

Scientists say switching to renewable power is crucial to curb the impacts of climate change, which are already being felt, including in the UK, which last year recorded its hottest year since records began.

Solar and wind have seen significant growth in the UK, with wind surpassing coal in 2016 as a milestone. In the first quarter of 2023, 42% of the UK's electricity came from renewable energy, with 33% coming from fossil fuels like gas and coal.

But BBC research revealed on Thursday that billions of pounds' worth of green energy projects are stuck on hold due to delays with getting connections to the grid, as peak power prices also climbed amid system pressures.

Some new solar and wind sites are waiting up to 10 to 15 years to be connected because of a lack of capacity in the electricity system.

And electricity only accounts for 18% of the UK's total power needs. There are many demands for energy which electricity is not meeting, such as heating our homes, manufacturing and transport.

Currently the majority of UK homes use gas for their heating - the government is seeking to move households away from gas boilers and on to heat pumps which use electricity.

 

Related News

View more

China's Data Centers Alone Will Soon Use More Electricity Than All Of Australia

Cloud Data Centers Environmental Impact highlights massive electricity use, carbon emissions, and cooling demands, with coal-heavy grids in China; big tech shifts to renewable energy, green data centers, and cooler climates to boost sustainability.

 

Key Points

Energy use, emissions, and cooling load of cloud systems, and shifts to renewables to reduce climate impact.

✅ Global data centers use 3-5% of electricity, akin to airlines

✅ Cooling drives energy demand; siting in cool climates saves power

✅ Shift from coal to renewables lowers CO2 and improves PUE

 

A hidden environmental price makes storing data in the cloud a costly convenience.

Between 3 to 5% of all electricity used globally comes from data centers that house massive computer systems, with computing power forecasts warning consumption could climb, an amount comparable to the airline industry, says Ben Brock Johnson, Here & Now’s tech analyst.

Instead of stashing information locally on our own personal devices, the cloud allows users to free up storage space by sending photos and files to data centers via the internet.

The cloud can also use large data sets to solve problems and host innovative technologies that make cities and homes smarter, but storing information at data centers uses energy — a lot of it.

"Ironically, the phrase 'moving everything to the cloud' is a problem for our actual climate right now," Johnson says.

A new study from Greenpeace and North China Electric Power University reports that in five years, China's data centers alone will consume as much power as the total amount used in Australia in 2018. The industry's electricity consumption is set to increase by 66% over that time.

Buildings storing data produced 99 million metric tons of carbon last year in China, the study finds, with SF6 in electrical equipment compounding warming impacts, which is equivalent to 21 million cars.

The amount of electricity required to run a data center is a global problem, but in China, 73% of these data centers run on coal, even as coal-fired electricity is projected to fall globally this year.

The Chinese government started a pilot program for green data centers in 2015, which Johnson says signals the country is thinking about the environmental consequences of the cloud.

"Beijing’s environmental awareness in the last decade has really come from a visible impact of its reliance on fossil fuels," he says. "The smog of Chinese cities is now legendary and super dangerous."

The country's solar power innovations have allowed the country to surpass the U.S. in cleantech, he says.

Chinese conglomerate Alibaba Group has launched data centers powered by solar and hydroelectric power.

"While I don't know how committed the government is necessarily to making data centers run on clean technology," Johnson says. "I do think it is possible that a larger evolution of the government's feelings on environmental responsibility might impact this newer tech sector."

In the U.S., there has been a big push to make data centers more sustainable amid warnings that the electric grid is not designed for mounting climate impacts.

Canada has made notable progress decarbonizing power, with nationwide electricity gains supporting cleaner data workloads.

Apple now says all of its data centers use clean energy. Microsoft is aiming for 70% renewable energy by 2023, aligning with declining power-sector emissions as producers move away from coal.

Amazon is behind the curve, for once, with about 50%, Johnson says. Around 1,000 employees are planning to walk out on Sept. 20 in protest of the company’s failure to address environmental issues.

"Environmental responsibility fits the brand identities these companies want to project," he says. "And as large tech companies become more competitive with each other, as Apple becomes more of a service company and Google becomes a device company, they want to convince users more and more to think of them as somehow different even if they aren't."

Google and Facebook are talking about building data centers in cooler places like Finland and Sweden instead of hot deserts like Nevada, he says.

In Canada, cleaning up electricity is critical to meeting climate pledges, according to recent analysis.

Computer systems heat up and need to be cooled down by air conditioning units, so putting a data center in a warm climate will require greater cooling efforts and use more energy.

In China, 40% of the electricity used at data centers goes toward cooling equipment, according to the study.

The more data centers consolidate, Johnson says they can rely on fewer servers and focus on larger cooling efforts.

But storing data in the cloud isn't the only way tech users are unknowingly using large amounts of energy: One Google search requires an amount of electricity equivalent to powering a 60-watt light bulb for 17 seconds, magazine Yale Environment 360 reports.

"In some ways, we're making strides even as we are creating a bigger problem," he says. "Which is like, humanity's MO, I guess."

 

Related News

View more

France's nuclear power stations to limit energy output due to high river temperatures

France Nuclear Heatwave Output Restrictions signal reduced reactor capacity along the Rhone River, as EDF curbs output to meet cooling-water rules, balance the grid, integrate solar peaks, and limit impacts on power prices.

 

Key Points

EDF limits reactor output during heat to protect rivers and keep the grid stable under cooling-water rules.

✅ Cuts likely at midday/weekends when solar peaks

✅ Bugey, Saint Alban maintain minimum grid output

✅ France net exporter; price impact expected small

 

The high temperature warning has come early this year but will affect fewer nuclear power plants, amid a broader France-Germany nuclear dispute over atomic power policy that shapes regional energy flows.

High temperatures could halve nuclear power production at plants along France's Rhone River this week, as European power hits records during extreme heat. 

Output restrictions are expected at two nuclear plants in eastern France due to high temperature forecasts, nuclear operator EDF said, which may limit energy output during heatwaves. It comes several days ahead of a similar warning that was made last year but will affect fewer plants.

The hot weather is likely to halve the available power supply from the 3.6 GW Bugey plant from 13 July and the 2.6 GW Saint Alban plant from 16 July, the operator said.

However, production will be at least 1.8 GW at Bugey and 1.3 GW at Saint Alban to meet grid requirements, and may change according to grid needs, the operator said.

Kpler analyst Emeric de Vigan said the restrictions were likely to have little effect on output in practice. Cuts are likely only at the weekend or midday when solar output was at its peak so the impact on power prices would be slim.

During recent lockdowns, power demand held firm in Europe, offering context for current price dynamics.

He said the situation would need monitoring in the coming weeks, however, noting it was unusually early in the summer for such restrictions to be imposed.

Water temperatures at the Bugey plant already eclipsed the initial threshold for restrictions on 9 July, underscoring France's outage risks under heat-driven constraints. They are currently forecast to peak next week and then drop again, Refinitiv data showed.

"France is currently net exporting large amounts of power – single nuclear units' supply restrictions will not have the same effect as last year," Refinitiv analyst Nathalie Gerl said.

The Garonne River in southern France has the highest potential for critical levels of warming, but its Golfech plant is currently offline for maintenance until mid-August, the data showed, highlighting how Europe is losing nuclear power during critical periods.

"(The restrictions were) to be expected and it will probably occur more often," Greenpeace campaigner Roger Spautz said.

"The authorities must stick to existing regulations for water discharges. Otherwise, the ecosystems will be even more affected," he added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.