One million testing miles reveal EV performance

By PhysOrg.com


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The U.S. Department of Energy (DOE), through its Advanced Vehicle Testing Activity (AVTA) at Idaho National Laboratory, has completed 1 million miles of plug-in hybrid electric vehicle (PHEV) testing.

The AVTA's testing of PHEVs demonstrates PHEV concepts in real-world usage by using fleet and public drivers. The 1 million test miles and more than 26,000 charging events have been accumulated in on-road operations across the United States and Canada. More than 215 PHEVs, comprising 12 different PHEV models, have made up the PHEV test fleet to date. PHEV testing results can be found at http://avt.inl.gov/phev.shtml.

The PHEV testing benchmarks vehicle performance by quantifying energy consumption, both in terms of gasoline and electricity, in a wide variety of operating conditions in 23 states and Canada. The testing also demonstrates how environmental conditions, such as air temperature and human behavior, influence the performance of PHEV technologies. By evaluating how the vehicles are driven and how they are charged, the AVTA is able to demonstrate vehicle energy consumption results and potential electric grid impacts.

The AVTA testing of PHEVs supports DOE's goal of evaluating technologies that have potential to reduce petroleum consumption. Results are shared with industry and government research and development groups to aid in technology development and target setting. Information is also made publicly available via presentations and the AVTA Web site to help fleet managers and private consumers make knowledgeable decisions when acquiring advanced technology vehicles.

The AVTA's PHEV testing effort involves more than 75 testing partners, including electric utilities; city, county, state, federal and provincial governments; universities and colleges; clean air agencies; private companies and other organizations. As part of the AVTA, INL also collaborates with testing partner Argonne National Laboratory, which performs laboratory dynamometer testing of each PHEV model tested on the road. This testing partnership provides an important link between standard laboratory test results and real-world performance. In addition to Argonne, INL also collaborates with other DOE laboratories by sharing PHEV data analysis and reporting.

The AVTA is conducted by Idaho National Laboratory and the Electric Transportation Engineering Corporation (eTec) for DOE's Vehicle Technologies Program. The AVTA also tests other electric drive vehicles such as hybrid electric vehicles and neighborhood electric vehicles. Additional information about the testing results can be found at http://avt.inel.gov/.

INL is one of DOE's 10 multi-program national laboratories. The INL performs work in each of DOE's strategic goal areas: energy, national security, science and environment. INL is the nation's leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

Related News

Britain's National Grid Drops China-Based Supplier Over Cybersecurity Fears

National Grid Cybersecurity Component Removal signals NCSC and GCHQ oversight of critical infrastructure, replacing NR Electric and Nari Technology grid control systems to mitigate supply chain risk, cyber threats, and blackout risk.

 

Key Points

A UK move to remove China-linked grid components after NCSC/GCHQ advice, reducing cyber and blackout risks.

✅ NCSC advice to remove NR Electric components

✅ GCHQ-linked review flags critical infrastructure risks

✅ Aims to cut blackout risk and supply chain exposure

 

Britain's National Grid has started removing components supplied by a unit of China-backed Nari Technology's from the electricity transmission network over cybersecurity fears, reflecting a wider push on protecting the power grid across critical sectors.

The decision came in April after the utility sought advice from the National Cyber Security Center (NCSC), a branch of the nation's signals intelligence agency, Government Communications Headquarters (GCHQ), amid campaigns like the Dragonfly campaign documented by Symantec, the newspaper quoted a Whitehall official as saying.

National Grid declined to comment citing "confidential contractual matters." "We take the security of our infrastructure very seriously and have effective controls in place to protect our employees and critical assets, while preparing for an independent operator transition in Great Britain, to ensure we can continue to reliably, safely and securely transmit electricity," it said in a statement.

The report said an employee at the Nari subsidiary, NR Electric Company-U.K., had said the company no longer had access to sites where the components were installed, at a time when utilities worldwide have faced control-room intrusions by state-linked hackers, and that National Grid did not disclose a reason for terminating the contracts.

It quoted another person it did not name as saying the decision was based on NR Electric Company-U.K.'s components that help control and balance the grid, respond to work-from-home demand shifts, and minimize the risk of blackouts.

It was unclear whether the components remained in the electricity transmission network, the report said, amid reports of U.S. power plant breaches that have heightened vigilance.

NR Electric Company-U.K., GCHQ and the Chinese Embassy in London did not immediately respond to requests for comment outside of business hours.

Britain's Department for Energy Security and Net Zero said that it did not comment on the individual business decisions taken by private organizations. "As a government department we work closely with the private sector to safeguard our national security, and to support efforts to fast-track grid connections across the network," it said in a statement.
 

 

Related News

View more

Is Hydrogen The Future For Power Companies?

Hydrogen Energy Transition accelerates green hydrogen, electrolyzers, renewables, and fuel cells, as the EU and US scale decarbonization, NextEra tests hydrogen-to-power, and DOE funds pilots to replace natural gas and cut CO2.

 

Key Points

A shift to deploy green hydrogen tech to decarbonize power, industry, and transport across EU and US energy systems.

✅ EU targets 40 GW electrolyzers plus 40 GW imports by 2030

✅ DOE funds pilots; NextEra trials hydrogen-to-power at Okeechobee

✅ Aims to replace natural gas, enable fuel cells, cut CO2

 

Last month, the European Union set out a comprehensive hydrogen strategy as part of its goal to achieve carbon neutrality for all its industries by 2050. The EU has an ambitious target to build out at least 40 gigawatts of electrolyzers within its borders by 2030 and also support the development of another 40 gigawatts of green hydrogen in nearby countries that can export to the region by the same date. The announcement came as little surprise, given that Europe is regarded as being far ahead of the United States in the shift to renewable energy, even as it looks to catch up on fuel cells with Asian leaders today.

But the hydrogen bug has finally arrived stateside: The U.S. Department of Energy has unveiled the H2@Scale initiative whereby a handful of companies including Cummins Inc. (NYSE: CMI), Caterpillar Inc.(NYSE: CAT), 3M Company (NYSE: MMM), Plug Power Inc.(NASDAQ: PLUG) and EV startup Nikola Corp.(NASDAQ: NKLA), even as the industry faces threats to the EV boom that investors are watching, will receive $64 million in government funding for hydrogen research projects.

Hot on the heels of the DoE initiative: American electric utility and renewable energy giant, NextEra Energy Inc.(NYSE: NEE), has unveiled an equally ambitious plan to start replacing its natural gas-powered plants with hydrogen.

During its latest earnings call, NextEra’s CFO Rebecca Kujawa said the company is “…particularly excited about the long-term potential of hydrogen” and discussed plans to start a pilot hydrogen project at one of its generating stations at Okeechobee Clean Energy Center owned by its subsidiary, Florida Power & Light (FPL). NextEra reported Q2 revenue of $4.2B (-15.5% Y/Y), which fell short of Wall Street’s consensus by $1.12B while GAAP EPS of $2.59 (+1.1% Y/Y) beat estimates by $0.09. The company attributed the big revenue slump to the effects of Covid-19.

Renewable energy and hydrogen stocks have lately become hot property as EV adoption hits an inflection point worldwide, with NEE up 16% in the year-to-date; PLUG +144%, Bloom Energy Corp. (NYSE: BE) +62.8% while Ballard Power Systems (NASDAQ: BLDP) has gained 98.2% over the timeframe.

NextEra’s usual modus operandi involves conducting small experiments with new technologies to establish their cost-effectiveness, a pragmatic approach informed by how electricity changed in 2021 across the grid, before going big if the trials are successful.

CFO Kujawa told analysts:
“Based on our ongoing analysis of the long-term potential of low-cost renewables, we remain confident as ever that wind, solar, and battery storage will be hugely disruptive to the country’s existing generation fleet, while reducing cost for customers and helping to achieve future CO2 emissions reductions. However, to achieve an emissions-free future, we believe that other technologies will be necessary, and we are particularly excited about the long-term potential of hydrogen.”

NextEra plans to test the electricity-to-hydrogen-to-electricity model at its natural gas-powered Okeechobee Clean Energy Center that came online in 2019. Okeechobee is already regarded as one of the cleanest thermal energy facilities anywhere on the globe. However, replacing natural gas with zero emissions hydrogen would be a significant step in helping the company achieve its goal to become 100% emissions-free by 2050.

Kujawa said the company plans to continue evaluating other potential hydrogen opportunities to accelerate the decarbonization of transportation fuel, amid the debate over the future of vehicles between electricity and hydrogen, and industrial feedstock and also support future demand for low-cost renewables.

Another critical milestone: NextEra finished the quarter with a renewables backlog of approximately 14,400 megawatts, its largest in its 20-year development history. To put that backlog into context, NextEra revealed that it is larger than the operating wind and solar portfolios of all but two companies in the world.

Hydrogen Bubble?
That said, not everybody is buying the hydrogen hype.

Barron’s Bill Apton says Wall Street has discovered hydrogen this year and that hydrogen stocks are a bubble, even as hybrid vehicles gain momentum in the U.S. market according to recent reports. Apton says the huge runup by Plug Power, Ballard Energy, and Bloom Energy has left them trading at more than 50x future cash flow, making it hard for them to grow into their steep valuations. He notes that smaller hydrogen companies are up against big players and deep-pocketed manufacturers, including government-backed rivals in China and the likes of Cummins.

According to Apton, it could take a decade or more before environmentally-friendly hydrogen can become competitive with natural gas on a cost-basis, while new ideas like flow battery cars also vie for attention, making hydrogen stocks better long-term picks than the cult stocks they have become.

 

Related News

View more

China's Path to Carbon Neutrality

China Unified Power Market enables carbon neutrality through renewable integration, cross-provincial electricity trading, smart grid upgrades, energy storage, and market reform, reducing coal dependence and improving grid flexibility, efficiency, and emissions mitigation.

 

Key Points

A national power market integrating renewables and grids to cut coal use and accelerate carbon neutrality.

✅ Harmonizes pricing and cross-provincial electricity trading.

✅ Boosts renewable integration with storage and smart grids.

✅ Improves dispatch efficiency, reliability, and emissions cuts.

 

China's ambitious goal to achieve carbon neutrality has become a focal point in global climate discussions around the global energy transition worldwide, with experts emphasizing the pivotal role of a unified power market in realizing this objective. This article explores China's commitment to carbon neutrality, the challenges it faces, and how a unified power market could facilitate the transition to a low-carbon economy.

China's Commitment to Carbon Neutrality

China, as the world's largest emitter of greenhouse gases, has committed to achieving carbon neutrality by 2060. This ambitious goal signals a significant shift towards reducing carbon emissions and mitigating climate change impacts. Achieving carbon neutrality requires transitioning away from fossil fuels, including investing in carbon-free electricity pathways and enhancing energy efficiency across sectors such as industry, transportation, and residential energy consumption.

Challenges in China's Energy Landscape

China's energy landscape is characterized by its heavy reliance on coal, which accounts for a substantial portion of electricity generation and contributes significantly to carbon emissions. Transitioning to renewable energy sources such as wind, solar, hydroelectric, and nuclear power is essential to reducing carbon emissions and achieving carbon neutrality. However, integrating these renewable sources into the existing energy grid poses technical, regulatory, and financial challenges that often hinge on adequate clean electricity investment levels and policy coordination.

Role of a Unified Power Market

A unified power market in China could play a crucial role in facilitating the transition to a low-carbon economy. By integrating regional power grids and promoting cross-provincial electricity trading, a unified market can optimize the use of renewable energy resources, incorporate lessons from decarbonizing electricity grids initiatives to enhance grid stability, and reduce reliance on coal-fired power plants. This market mechanism encourages competition among energy producers, incentivizes investment in renewable energy projects, and improves overall efficiency in electricity generation and distribution.

Benefits of a Unified Power Market

Implementing a unified power market in China offers several benefits in advancing its carbon neutrality goals. It promotes renewable energy development by providing a larger market for electricity generated from wind, solar, and other clean sources that underpin the race to net-zero in many economies. It also enhances grid flexibility, enabling better management of fluctuations in renewable energy supply and demand. Moreover, a unified market encourages innovation in energy storage technologies and smart grid infrastructure, essential components for integrating variable renewable energy sources.

Policy and Regulatory Considerations

Achieving a unified power market in China requires coordinated policy efforts and regulatory reforms. This includes harmonizing electricity pricing mechanisms, streamlining administrative procedures for electricity trading across provinces, and ensuring fair competition among energy producers. Clear and consistent policies that support renewable energy deployment and grid modernization, and align with insights on climate policy and grid implications from other jurisdictions, are essential to attracting investment and fostering a sustainable energy transition.

International Collaboration and Leadership

China's commitment to carbon neutrality presents opportunities for international collaboration and leadership in climate action. Engaging with global partners, sharing best practices, and promoting technology transfer, as seen with Canada's 2050 net-zero target commitments, can accelerate progress towards a low-carbon future. By demonstrating leadership in clean energy innovation and climate resilience, China can contribute to global efforts to mitigate climate change and achieve sustainable development goals.

Conclusion

China's pursuit of carbon neutrality by 2060 represents a monumental endeavor that requires transformative changes in its energy sector. A unified power market holds promise as a critical enabler in this transition, facilitating the integration of renewable energy sources, enhancing grid flexibility, and optimizing energy efficiency. By prioritizing policy coherence, regulatory reform, and international cooperation, China can pave the way towards a sustainable energy future while addressing global climate challenges.

 

Related News

View more

ACCIONA Energía Launches 280 MW Wind Farm in Alberta

Forty Mile Wind Farm delivers 280 MW of renewable wind power in Alberta, with 49 Nordex turbines by ACCIONA Energía, supplying clean electricity to the grid, lowering carbon emissions, and enabling future 120 MW expansion.

 

Key Points

A 280 MW ACCIONA Energía wind farm in Alberta with 49 Nordex turbines, delivering clean power and cutting carbon.

✅ 280 MW via 49 Nordex N155 turbines on 108 m towers

✅ Supplies clean power to 85,000+ homes, reducing emissions

✅ Phase II could add 120 MW, reaching 400 MW capacity

 

ACCIONA Energía, a global leader in renewable energy, has successfully launched its Forty Mile Wind Farm in southern Alberta, Canada, amid momentum from a new $200 million wind project announced elsewhere in the province. This 280-megawatt (MW) project, powered by 49 Nordex turbines, is now supplying clean electricity to the provincial grid and stands as one of Canada's ten largest wind farms. It also marks the company's largest wind installation in North America to date. 

Strategic Location and Technological Specifications

Situated approximately 50 kilometers southwest of Medicine Hat, the Forty Mile Wind Farm is strategically located in the County of Forty Mile No. 8. Each of the 49 Nordex N155 turbines boasts a 5.7 MW capacity and stands 108 meters tall. The project's design allows for future expansion, with a potential Phase II that could add an additional 120 MW, bringing the total capacity to 400 MW, a scale comparable to Enel's 450 MW U.S. wind farm now in operation. 

Economic and Community Impact

The Forty Mile Wind Farm has significantly contributed to the local economy. During its peak construction phase, the project created approximately 250 jobs, with 25 permanent positions anticipated upon full operation. These outcomes align with an Alberta renewable energy surge projected to power thousands of jobs across the province. Additionally, the project has injected new tax revenues into the local economy and provided direct financial support to local non-profit organizations, including the Forty Mile Family & Community Support Services, the Medicine Hat Women’s Shelter Society, and the Root Cellar Food & Wellness Hub. 

Environmental Benefits

Once fully operational, the Forty Mile Wind Farm is expected to generate enough clean energy to power more than 85,000 homes, supporting wind power's competitiveness in electricity markets today. This substantial contribution to Alberta's energy mix aligns with ACCIONA Energía's commitment to sustainability and its goal of reducing carbon emissions. The project is part of the company's broader strategy to expand its renewable energy footprint in North America and support the transition to a low-carbon economy. 

Future Prospects

Looking ahead, ACCIONA Energía plans to continue its expansion in the renewable energy sector, as peers like TransAlta add 119 MW in the U.S. to their portfolios. The success of the Forty Mile Wind Farm serves as a model for future projects and underscores the company's dedication to delivering sustainable energy solutions, even as Alberta's energy future presents periodic headwinds. With ongoing developments and a focus on innovation, ACCIONA Energía is poised to play a pivotal role in shaping the future of renewable energy in North America.

The Forty Mile Wind Farm exemplifies ACCIONA Energía's commitment to advancing renewable energy, supporting local communities, and contributing to environmental sustainability, and it benefits from evolving demand signals, including a federal green electricity contract initiative in Canada that encourages clean supply. As the project continues to operate and expand, it stands as a testament to the potential of wind energy in Canada's clean energy landscape.

 

Related News

View more

Are Norwegian energy firms ‘best in class’ for environmental management?

CO2 Tax for UK Offshore Energy Efficiency can accelerate adoption of aero-derivative gas turbines, flare gas recovery, and combined cycle power, reducing emissions on platforms like Equinor's Mariner and supporting net zero goals.

 

Key Points

A carbon price pushing operators to adopt efficient turbines, flare recovery, and combined cycle to cut emissions.

✅ Aero-derivative turbines beat industrial units on efficiency

✅ Flare gas recovery cuts routine flaring and fuel waste

✅ Combined cycle raises efficiency and lowers emissions

 

By Tom Baxter

The recent Energy Voice article from the Equinor chairman concerning the Mariner project heralding a ‘significant point of reference’ for growth highlighted the energy efficiency achievements associated with the platform.

I view energy efficiency as a key enabler to net zero, and alongside this the UK must start large-scale storage to meet system needs; it is a topic I have been involved with for many years.

As part of my energy efficiency work, I investigated Norwegian practices and compared them with the UK.

There were many differences, here are three;


1. Power for offshore installations is usually supplied from gas turbines burning fuel from the oil and gas processing plant, and even as the UK's offshore wind supply accelerates, installations convert that to electricity or couple the gas turbine to a machine such as a gas compressor.

There are two main generic types of gas turbine – aero-derivative and industrial. As the name implies aero-derivatives are aviation engines used in a static environment. Aero-derivative turbines are designed to be energy efficient as that is very import for the aviation industry.

Not so with industrial type gas turbines; they are typically 5-10% less efficient than a comparable aero-derivative.

Industrial machines do have some advantages – they can be cheaper, require less frequent maintenance, they have a wide fuel composition tolerance and they can be procured within a shorter time frame.

My comparison showed that aero-derivative machines prevailed in Norway because of the energy efficiency advantages – not the case in the UK where there are many more offshore industrial gas turbines.

Tom Baxter is visiting professor of chemical engineering at Strathclyde University and a retired technical director at Genesis Oil and Gas Consultants


2. Offshore gas flaring is probably the most obvious source of inefficient use of energy with consequent greenhouse gas emissions.

On UK installations gas is always flared due to the design of the oil and gas processing plant.

Though not a large quantity of gas, a continuous flow of gas is routinely sent to flare from some of the process plant.

In addition the flare requires pilot flames to be maintained burning at all times and, while Europe explores electricity storage in gas pipes, a purge of hydrocarbon gas is introduced into the pipes to prevent unsafe air ingress that could lead to an explosive mixture.

On many Norwegian installations the flare system is designed differently. Flare gas recovery systems are deployed which results in no flaring during continuous operations.

Flare gas recovery systems improve energy efficiency but they are costly and add additional operational complexity.


3. Returning to gas turbines, all UK offshore gas turbines are open cycle – gas is burned to produce energy and the very hot exhaust gases are vented to the atmosphere. Around 60 -70% of the energy is lost in the exhaust gases.

Some UK fields use this hot gas as a heat source for some of the oil and gas treatment operations hence improving energy efficiency.

There is another option for gas turbines that will significantly improve energy efficiency – combined cycle, and in parallel plans for nuclear power under the green industrial revolution aim to decarbonise supply.

Here the exhaust gases from an open cycle machine are taken to a separate turbine. This additional turbine utilises exhaust heat to produce steam with the steam used to drive a second turbine to generate supplementary electricity. It is the system used in most UK power stations, even as UK low-carbon generation stalled in 2019 across the grid.

Open cycle gas turbines are around 30 – 40% efficient whereas combined cycle turbines are typically 50 – 60%. Clearly deploying a combined cycle will result in a huge greenhouse gas saving.

I have worked on the development of many UK oil and gas fields and combined cycle has rarely been considered.

The reason being is that, despite the clear energy saving, they are too costly and complex to justify deploying offshore.

However that is not the case in Norway where combined cycle is used on Oseberg, Snorre and Eldfisk.

What makes the improved Norwegian energy efficiency practices different from the UK – the answer is clear; the Norwegian CO2 tax.

A tax that makes CO2 a significant part of offshore operating costs.

The consequence being that deploying energy efficient technology is much easier to justify in Norway when compared to the UK.

Do we need a CO2 tax in the UK to meet net zero – I am convinced we do. I am in good company. BP, Shell, ExxonMobil and Total are supporting a carbon tax.

Not without justification there has been much criticism of Labour’s recent oil tax plans, alongside proposals for state-owned electricity generation that aim to reshape the power market.

To my mind Labour’s laudable aims to tackle the Climate Emergency would be much better served by supporting a CO2 tax that complements the UK's coal-free energy record by strengthening renewable investment.

 

Related News

View more

Britain got its cleanest electricity ever during lockdown

UK Clean Electricity Record as wind, solar, and biomass boost renewable energy output, slashing carbon emissions and wholesale power prices during lockdown, while lower demand challenges grid balancing and drives a drop to 153 g/kWh.

 

Key Points

A milestone where wind, solar and biomass lifted renewables, cutting carbon intensity to 153 g/kWh during lockdown.

✅ Carbon intensity averaged 153 g/kWh in Q2 2020.

✅ Renewables output rose 32% via wind, solar, biomass.

✅ Wholesale power prices slumped 42% amid lower demand.

 

U.K electricity has never been cleaner. As wind, solar and biomass plants produced more power than ever in the second quarter, with a new wind generation record set, carbon emissions fell by a third from a year earlier, according to Drax Electric Insight’s quarterly report. Power prices slumped 42 per cent as demand plunged during lockdown. Total renewable energy output jumped 32 per cent in the period, as wind became the main source of electricity at times.

“The past few months have given the country a glimpse into the future for our power system, with higher levels of renewable energy, as wind led the power mix, and lower demand making for a difficult balancing act,”said  Iain Staffell, from Imperial College London and lead author of the report.

The findings of the report point to the impact energy efficiency can have on reducing emissions, as coal's share fell to record lows across the electricity system. Millions of people furloughed or working from home and shuttered shops up and down the country resulted in daily electricity demand dropping about 10% and being about four gigawatts lower than expected in the three months through June.

Average carbon emissions fell to a new low of 153 grams per kWh of electricity consumed over the quarter, as coal-free generation records were extended, even though low-carbon generation stalled in 2019, according to the report.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.