Can green avoid soaring nuclear costs?

By Toronto Star


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ontario needs a frank and public debate on how to protect electricity consumers from the rising costs of the McGuinty government's nuclear plans.

The government's decision to restrict public consultation on revisions to its long-term electricity plan to a web-based survey simply dodges any meaningful public debate. This will end up costing the ratepayer and the environment.

We were told in 2007 it would cost $26 billion to keep nuclear at 50 per cent of electricity supply. That would repair 12 operating reactors and build two new ones. Since then, we've learned that building just two new reactors would cost $26 billion - sucking up the entire 20-year nuclear spending plan.

It takes 10 years to build new reactors and up to five to repair old ones, so the full cost of the government's nuclear plan hasn't hit our bills yet. But painful price hikes are coming unless the Ontario government reins in its nuclear plans.

Four trends point to need for a plan to protect the ratepayer from nuclear cost increases. These require meaningful consultations with the public.

Rising reactor repair costs: All of Ontario's Candu reactors must be rebuilt or closed over the next decade. In the last 10 years, the estimated costs of repairing a Candu have jumped to $2.5 billion from $300 million. This means repairing both Darlington and Bruce B reactors over the next decade would top $20 billion before the inevitable cost over-runs.

Rising new reactor costs: The cost to build two new reactors in Ontario has jumped to a reported $26 billion from $6 billion. Yet the government's response was to reaffirm its commitment to new reactors.

Aging reactor maintenance costs: Keeping Ontario's old reactors operating safely costs a lot of money. The cost of operating the province's oldest reactors at Pickering ignoring the billions it cost to repair them just five years ago is three times more than the newest reactors at Darlington. We can expect these costs to continue rising.

Privatization of Atomic Energy of Canada Limited AECL: Ontario has always enjoyed subsidized maintenance and repair services from AECL, the federally backstopped reactor vendor. After more than $20 billion in subsidies, the Harper government is rightfully pulling the plug. Ontario will increasingly face the true costs of reactor operation and repair.

Politicians are ignoring these trends because voters won't feel the impact until after the next election. A more responsible approach, however, would be to prevent future nuclear rate hikes by expanding the province's existing impressive but limited green energy and conservation programs, which would have the side-benefit of creating more green jobs across Ontario.

First, the province's conservation programs need to start prioritizing the reduction of total energy consumption and not just shifting when it is used. This will deliver lower bills and less pollution.

Second, the government should expand the use of new green energy above its current target of 10 per cent of supply. Analysis and international experience show that green energy at current prices would be cheaper than building new reactors to replace the retiring Pickering reactors.

Finally, put measures in place to protect the ratepayer from the risks of reactor repair, construction and operation. Tell Ontario's nuclear operators — OPG and Bruce Power — they can't pass cost over-runs on to the ratepayer — just like renewable operators under the Green Energy Act.

Luckily, while nuclear costs have only risen over the industry's 50-year history, the costs for modern green power technologies are dropping rapidly. The government's Green Energy Act is admirably designed to lower the prices paid for new green power over time.

Ontario's other political parties should be asked how they will protect ratepayers from nuclear rate-hikes.

Tory Leader Tim Hudak is positioning himself as the defender of tax- and ratepayers. He should tell reactor operators they can't pass their cost over-runs on to Ontarians. Hudak should also explain how his calls for increasing nuclear reliance beyond the government's plans won't drive up electricity prices.

Andrea Howarth's NDP, the self-appointed defenders of public power, should be demanding why the McGuinty government has prohibited OPG from developing wind and solar power projects — and potentially doomed it to extinction by limiting it to running expensive aging reactors.

Ratepayers are still paying off the decades-old nuclear debt from building the first generation of reactors. We should not repeat that mistake again.

With nuclear costs increasing as green costs decrease, it's time we had an honest and transparent debate on the best path forward. A web survey doesn't cut it.

Related News

Energy authority clears TEPCO to restart Niigata nuclear plant

TEPCO Kashiwazaki-Kariwa restart plan clears NRA fitness review, anchored by a seven-point safety code, Niigata consent, Fukushima lessons, seismic risk analysis, and upgrades to No. 6 and No. 7 reactors, each rated 1.35 GW.

 

Key Points

TEPCO's plan to restart Kashiwazaki-Kariwa under NRA rules, pending Niigata consent and upgrades to Units 6 and 7.

✅ NRA deems TEPCO fit; legally binding seven-point safety code

✅ Local consent required: Niigata review of evacuation and health impacts

✅ Initial focus on Units 6 and 7; 1.35 GW each, seismic upgrades

 

Tokyo Electric Power Co. cleared a major regulatory hurdle toward restarting a nuclear power plant in Niigata Prefecture, but the utility’s bid to resume its operations still hangs in the balance of a series of political approvals.

The government’s nuclear watchdog concluded Sept. 23 that the utility is fit to operate the plant, based on new legally binding safety rules TEPCO drafted and pledged to follow, even as nuclear projects worldwide mark milestones across different regulatory environments today. If TEPCO is found to be in breach of those regulations, it could be ordered to halt the plant’s operations.

The Nuclear Regulation Authority’s green light now shifts the focus over to whether local governments will agree in the coming months to restart the Kashiwazaki-Kariwa plant.

TEPCO is keen to get the plant back up and running. It has been financially reeling from the closure of its nuclear plants in Fukushima Prefecture following the triple meltdown at the Fukushima No. 1 nuclear plant in 2011 triggered by the earthquake and tsunami disaster.

In parallel, Japan is investing in clean energy innovations such as a large hydrogen system being developed by Toshiba, Tohoku Electric Power and Iwatani.

The company plans to bring the No. 6 and No. 7 reactors back online at the Kashiwazaki-Kariwa nuclear complex, which is among the world’s largest nuclear plants, amid China’s nuclear energy continuing on a steady development track in the region.

The two reactors each boast 1.35 gigawatts in output capacity, while Kenya’s nuclear plant aims to power industry as part of that country’s expansion. They are the newest of the seven reactors there, first put into service between 1996 and 1997.

TEPCO has not revealed specific plans yet on what to do with the older five reactors.

In 2017, the NRA cleared the No. 6 and No. 7 reactors under the tougher new reactor regulations established in 2013 in response to the Fukushima nuclear disaster, while jurisdictions such as Ontario support continued operation at Pickering under strict oversight.

It also closely scrutinized the operator’s ability to run the Niigata Prefecture plant safely, given its history as the entity responsible for the nation’s most serious nuclear accident.

After several rounds of meetings with top TEPCO managers, the NRA managed to hold the utility’s feet to the fire enough to make it pledge, in writing, to abide by a new seven-point safety code for the Kashiwazaki-Kariwa plant.

The creation of the new code, which is legally binding, is meant to hold the company accountable for safety measures at the facility.

“As the top executive, the president of TEPCO will take responsibility for the safety of nuclear power,” one of the points reads. “TEPCO will not put the facility’s economic performance above its safety,” reads another.

The company promised to abide by the points set out in writing during the NRA’s examination of its safety regulations.

TEPCO also vowed to set up a system where the president is directly briefed on risks to the nuclear complex, including the likelihood of earthquakes more powerful than what the plant is designed to withstand. It must also draft safeguard measures to deal with those kinds of earthquakes and confirm whether precautionary steps are in place.

The utility additionally pledged to promptly release public records on the decision-making process concerning crucial matters related to nuclear safety, and to preserve the documents until the facility is decommissioned.

TEPCO plans to complete its work to reinforce the safety of the No. 7 reactor in December. It has not set a definite deadline for similar work for the No. 6 reactor.

To restart the Kashiwazki-Kariwa plant, TEPCO needs to obtain consent from local governments, including the Niigata prefectural government.

The prefectural government is studying the plant’s safety through a panel of experts, which is reviewing whether evacuation plans are adequate as off-limits areas reopen and the health impact on residents from the Fukushima nuclear disaster.

Niigata Governor Hideyo Hanazumi said he will not decide on the restart until the panel completes its review.

The nuclear complex suffered damage, including from fire at an electric transformer, when an earthquake it deemed able to withstand hit in 2007.

 

Related News

View more

Renewable energy now cheapest option for new electricity in most of the world: Report

Renewable Energy Cost Trends highlight IRENA data showing solar and wind undercut coal, as utility-scale projects drive lower levelized electricity costs worldwide, with the Middle East and UAE advancing mega solar parks.

 

Key Points

They track how solar and wind undercut new fossil fuels as utility-scale costs drop and investment accelerates.

✅ IRENA reports renewables cheapest for new installations

✅ Solar and wind LCOE fell sharply since 2010

✅ Middle East and UAE scale mega utility projects

 

Renewable energy is now the cheapest option for new electricity installation in most of the world, a report from the International Renewable Energy Agency (IRENA) on Tuesday said.

Renewable power projects have undercut traditional coal fuel plants, with solar and wind power costs in particular falling as record-breaking growth continues worldwide.

“Installing new renewables increasingly costs less than the cheapest fossil fuels. With or without the health and economic crisis, dirty coal plants were overdue to be consigned to the past, said Francesco La Camera, director-general of IRENA said in the report.

In 2019, renewables accounted for around 72 percent of all new capacity added worldwide, IRENA said, following a 2016 record year that highlighted the momentum, with lowering costs and technological improvements in solar and wind power helping this dynamic. For solar energy, IRENA notes that the cost for electricity from utility-scale plants fell by 82 percent in the decade between 2010 and 2019, as China's solar PV growth underscored in 2016.

“More than half of the renewable capacity added in 2019 achieved lower electricity costs than new coal, while new solar and wind projects are also undercutting the cheapest and least sustainable of existing coal-fired plants,” Camera added.

Costs for solar and wind power also fell year-on-year by 13 and 9 percent, respectively, with offshore wind costs showing steep declines as well. In 2019, more than half of all newly commissioned utility-scale renewable power plants provided electricity cheaper than the lowest cost of a new fossil fuel plant.

The Middle East

In mid-May, a report by UK-based law firm Ashurst suggested the Middle East is the second most popular region for renewable energy investment after North America, at a time when clean energy investment is outpacing fossil fuels.

The region is home to some of the largest renewable energy bets in the world, with Saudi wind expansion gathering pace. The UAE, for instance, is currently developing the Mohammed Bin Rashid Solar Park, the world’s largest concentrated solar power project in the world.

Around 26 percent of Middle East respondents in Ashurst’s survey said that they were presently investing in energy transition, marking the region as the most popular for current investment in renewables, while 11 percent added that they were considering investing.

In North America, the most popular region, 28 percent said that they were currently investing, with 11 percent stating they are considering investing.

 

Related News

View more

Fuel Cell Electric Buses Coming to Mississauga

Mississauga Fuel Cell Electric Buses advance zero-emission public transit, leveraging hydrogen fuel cells, green hydrogen supply, rapid refueling, and extended range to cut GHGs, improve air quality, and modernize sustainable urban mobility.

 

Key Points

Hydrogen fuel cell buses power electric drivetrains for zero-emission service, long range, and quick refueling.

✅ Zero tailpipe emissions improve urban air quality

✅ Longer route range than battery-electric buses

✅ Hydrogen fueling is rapid, enabling high uptime

 

Mississauga, Ontario, is gearing up for a significant shift in its public transportation landscape with the introduction of fuel cell electric buses (FCEBs). This initiative marks a pivotal step toward reducing greenhouse gas emissions and enhancing the sustainability of public transport in the region. The city, known for its vibrant urban environment and bustling economy, is making strides to ensure that its transit system evolves in harmony with environmental goals.

The recent announcement highlights the commitment of Mississauga to embrace clean energy solutions. The integration of FCEBs is part of a broader strategy to modernize the transit fleet while tackling climate change. As cities around the world seek to reduce their carbon footprints, Mississauga’s initiative aligns with global trends toward greener urban transport, where projects like the TTC battery-electric buses demonstrate practical pathways.

What are Fuel Cell Electric Buses?

Fuel cell electric buses utilize hydrogen fuel cells to generate electricity, which powers the vehicle's electric motor. Unlike traditional buses that run on diesel or gasoline, FCEBs produce zero tailpipe emissions, making them an environmentally friendly alternative. The only byproducts of their operation are water and heat, significantly reducing air pollution in urban areas.

The technology behind FCEBs is becoming increasingly viable as hydrogen production becomes more sustainable. With the advancement of green hydrogen production methods, which use renewable energy sources to create hydrogen, and because some electricity in Canada still comes from fossil fuels, the environmental benefits of fuel cell technology are further amplified. Mississauga’s investment in these buses is not only a commitment to cleaner air but also a boost for innovative technology in the transportation sector.

Benefits for Mississauga

The introduction of FCEBs is poised to offer numerous benefits to the residents of Mississauga. Firstly, the reduction in greenhouse gas emissions aligns with the city’s climate action goals and complements Canada’s EV goals at the national level. By investing in cleaner public transit options, Mississauga is taking significant steps to improve air quality and combat climate change.

Moreover, FCEBs are known for their efficiency and longer range compared to battery electric buses, such as the Metro Vancouver fleet now operating across the region, commonly used in Canadian cities. This means they can operate longer routes without the need for frequent recharging, making them ideal for busy transit systems. The use of hydrogen fuel can also result in shorter fueling times compared to electric charging, enhancing operational efficiency.

In addition to environmental and operational advantages, the introduction of these buses presents economic opportunities. The deployment of FCEBs can create jobs in the local economy, from maintenance to hydrogen production facilities, similar to how St. Albert’s electric buses supported local capabilities. This aligns with broader trends of sustainable economic development that prioritize green jobs.

Challenges Ahead

While the potential benefits of FCEBs are clear, the transition to this technology is not without its challenges. One of the main hurdles is the establishment of a robust hydrogen infrastructure. To support the operation of fuel cell buses, Mississauga will need to invest in hydrogen production, storage, and fueling stations, much as Edmonton’s first electric bus required dedicated charging infrastructure. Collaboration with regional and provincial partners will be crucial to develop this infrastructure effectively.

Additionally, public acceptance and awareness of hydrogen technology will be essential. As with any new technology, there may be skepticism regarding safety and efficiency. Educational campaigns will be necessary to inform the public about the advantages of FCEBs and how they contribute to a more sustainable future, and recent TTC’s battery-electric rollout offers a useful reference for outreach efforts.

Looking Forward

As Mississauga embarks on this innovative journey, the introduction of fuel cell electric buses signifies a forward-thinking approach to public transportation. The city’s commitment to sustainability not only enhances its transit system but also sets a precedent for other municipalities to follow.

In conclusion, the shift towards fuel cell electric buses in Mississauga exemplifies a significant leap toward greener public transport. With ongoing efforts to tackle climate change and improve urban air quality, Mississauga is positioning itself as a leader in sustainable transit solutions. The future looks promising for both the city and its residents as they embrace cleaner, more efficient transportation options. As this initiative unfolds, it will be closely watched by other cities looking to implement similar sustainable practices in their own transit systems.

 

Related News

View more

Maritime Electric team works on cleanup in Turks and Caicos

Maritime Electric Hurricane Irma Response details utility crews aiding Turks and Caicos with power restoration, storm recovery, debris removal, and essential services, coordinated with Fortis Inc., despite limited equipment, heat, and over 1,000 downed poles.

 

Key Points

A utility mission restoring power and essential services in Turks and Caicos after Irma, led by Maritime Electric.

✅ Over 1,000 poles down; crews climbing without bucket trucks

✅ Restoring hospitals, water, and communications first

✅ Fortis Inc. coordination; 2-3 week deployment with follow-on crews

 

Maritime Electric has sent a crew to help in the clean up and power restoration of Turks and Caicos after the Caribbean island was hit by Hurricane Irma, a storm that also saw FPL's massive response across Florida.

They arrived earlier this week and are working on removing debris and equipment so when supplies arrive, power can be brought back online, and similar mutual aid deployments, including Canadian crews to Florida, have been underway as well.

Fortis Inc., the parent company for Maritime Electric operates a utility in Turks and Caicos.

Kim Griffin, spokesperson for Maritime Electric, said there are over 1000 poles that were brought down by the storm, mirroring Florida restoration timelines reported elsewhere.

"It's really an intense storm recovery," she said. 'Good spirits'

The crew is working with less heavy equipment than they are used to, climbing poles instead of using bucket trucks, in hot and humid weather.

Griffin said their focus is getting essential services restored as quckly as possible, similar to progress in Puerto Rico's restoration efforts following recent hurricanes.

The crew will be there for two or three weeks and Griffin said Maritime Electric may send another group, as seen with Ontario's deployment to Florida, to continue the job.

She said the team has been well received and is in "good spirits."

"The people around them have been very positive that they're there," she said.

"They've said it's just been overwhelming how kind and generous the people have been to them."

 

Related News

View more

Is The Global Energy Transition On Track?

Global Decarbonization Strategies align renewable energy, electrification, clean air policies, IMO sulfur cap, LNG fuels, and the EU 2050 roadmap to cut carbon intensity and meet Paris Agreement targets via EVs and efficiency.

 

Key Points

Frameworks that cut emissions via renewables, EVs, efficiency, cleaner marine fuels, and EU policy roadmaps.

✅ Renewables scale as wind and solar outcompete new coal and gas.

✅ Electrification of transport grows as EV costs fall and charging expands.

✅ IMO 2020 sulfur cap and LNG shift cut shipping emissions and particulates.

 

Are we doing enough to save the planet? Silly question. The latest prognosis from the United Nations’ Intergovernmental Panel on Climate Change made for gloomy reading. Fundamental to the Paris Agreement is the target of keeping global average temperatures from rising beyond 2°C. The UN argues that radical measures are needed, and investment incentives for clean electricity are seen as critical by many leaders to accelerate progress to meet that target.

Renewable power and electrification of transport are the pillars of decarbonization. It’s well underway in renewables - the collapse in costs make wind and solar generation competitive with new build coal and gas.

Renewables’ share of the global power market will triple by 2040 from its current level of 6% according to our forecasts.

The consumption side is slower, awaiting technological breakthrough and informed by efforts in countries such as New Zealand’s electricity transition to replace fossil fuels with electricity. The lower battery costs needed for electric vehicles (EVs) to compete head on and displace internal combustion engine (ICE)  cars are some years away. These forces only start to have a significant impact on global carbon intensity in the 2030s. Our forecasts fall well short of the 2°C target, as does the IEA’s base case scenario.

Yet we can’t just wait for new technology to come to the rescue. There are encouraging signs that society sees the need to deal with a deteriorating environment. Three areas of focus came out in discussion during Wood Mackenzie’s London Energy Forum - unrelated, different in scope and scale, each pointing the way forward.

First, clean air in cities.  China has shown how to clean up a local environment quickly. The government reacted to poor air quality in Beijing and other major cities by closing older coal power plants and forcing energy intensive industry and the residential sector to shift away from coal. The country’s return on investment will include a substantial future health care dividend.

European cities are introducing restrictions on diesel cars to improve air quality. London’s 2017 “toxicity charge” is a precursor of an Ultra-Low Emission Zone in 2019, and aligns with UK net-zero policy changes that affect transport planning, to be extended across much of the city by 2020. Paris wants to ban diesel cars from the city centre by 2025 and ICE vehicles by 2030. Barcelona, Madrid, Hamburg and Stuttgart are hatching similar plans.

 

College Promise In California: Community-Wide Efforts To Support Student Success

Second, desulphurisation of global shipping. High sulphur fuel oil (HSFO) meets around 3.5 million barrels per day (b/d) of the total marine market of 5 million b/d. A maximum of 3.5% sulphur content is allowed currently. The International Maritime Organisation (IMO) implements a 0.5% limit on all shipping in 2020, dramatically reducing the release of sulphur oxides into the atmosphere.

Some ships will switch to very low sulphur fuel oil, of which only around 1.4 million b/d will be available in 2020. Others will have to choose between investing in scrubbers or buying premium-priced low sulphur marine gas oil.

Longer-term, lower carbon-intensity gas is a winner as liquefied natural gas becomes fuel of choice for many newbuilds. Marine LNG demand climbs from near zero to 50 million tonnes per annum (tpa) by 2040 on our forecasts, behind only China, India and Japan as a demand centre. LNG will displace over 1 million b/d of oil demand in shipping by 2040.

Third, Europe’s radical decarbonisation plans. Already in the vanguard of emissions reductions policy, the European Commission is proposing to reduce carbon emissions for new cars and vans by 30% by 2030 versus 2020. The targets come with incentives for car manufacturers linked to the uptake of EVs.

The 2050 roadmap, presently at the concept stage, envisages a far more demanding regime, with EU electricity plans for 2050 implying a much larger power system. The mooted 80% reduction in emissions compared with 1990 will embrace all sectors. Power and transport are already moving in this direction, but the legacy fuel mix in many other sectors will be disrupted, too.

Near zero-energy buildings and homes might be possible with energy efficiency improvements, renewables and heat pumps. Electrification, recycling and bioenergy could reduce fossil fuel use in energy intensive sectors like steel and aluminium, and Europe’s oil majors going electric illustrates how incumbents are adapting. Some sectors will cite the risk decarbonisation poses to Europe’s global competitiveness. If change is to come, industry will need to build new partnerships with society to meet these targets.

The 2050 roadmap signals the ambition and will be game changing for Europe if it is adopted. It would provide a template for a global roll out that would go a long way toward meeting UN’s concerns.

 

Related News

View more

Costa Rica hits record electricity generation from 99% renewable sources

Costa Rica Renewable Energy Record highlights 99.99% clean power in May 2019, driven by hydropower, wind, solar, geothermal, and biomass, enabling ICE REM electricity exports and reduced rates from optimized generation totaling 984.19 GWh.

 

Key Points

May 2019 benchmark: Costa Rica generated 99.99% of 984.19 GWh from renewables, shifting from imports to regional exports.

✅ 99.99% renewable share across hydro, wind, solar, geothermal, biomass

✅ 984.19 GWh generated; ICE suspended imports and exported via REM

✅ Geothermal output increased to offset dry-season hydropower variability

 

During the whole month of May 2019, Costa Rica generated a total of 984.19 gigawatt hours of electricity, the highest in the country’s history. What makes this feat even more impressive is the fact that 99.99% of this energy came from a portfolio of renewable sources such as hydropower, wind, biomass, solar, and geothermal.

With such a high generation rate, the state power company Instituto Costariccense de Electricidad (ICE) were able to suspend energy imports from the first week of May and shifted to exports, while U.S. renewable electricity surpassed coal in 2022 domestically. To date, the power company continues to sell electricity to the Regional Electricity Market (REM) which generates revenues and is likely to reduce local electricity rates, a trend echoed in places like Idaho where a vast majority of electricity comes from renewables.

The record-breaking power generation was made possible by optimization of the country’s renewable sources, much as U.S. wind capacity surpassed hydro capacity at the end of 2016 to reshape portfolios. As the period coincided with the tail end of the dry season, the geothermal quota had to be increased.

Costa Rica remains a leader in renewable power generation, whereas U.S. wind generation has become the most-used renewable source in recent years. In 2015, more than 98% of the country’s electrical generation came from renewable sources, while U.S. renewables hit a record 28% in April in one recent benchmark. Through the years, this figure has remained fairly constant despite dry bouts caused by the El Niño phenomenon, and U.S. solar generation also continued to rise.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified