BWE - Wind power potential even higher than expected


wind turbines

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

German Wind Power 2030 Outlook highlights onshore and offshore growth, repowering, higher full-load hours, and efficiency gains. Deutsche WindGuard, BWE, and LEE NRW project 200+ TWh, potentially 500 TWh, covering rising electricity demand.

 

Key Points

Forecast: efficiency and full-load gains could double onshore wind to 200+ TWh; added land could lift output to 500 TWh.

✅ Modern turbines and repowering boost full-load hours and yields

✅ Onshore generation could hit 200+ TWh on existing areas by 2030

✅ Expanding land to 2% may enable 500 TWh; offshore adds more

 

Wind turbines have become more and more efficient over the past two decades, a trend reflected in Denmark's new green record for wind-powered generation.

A new study by Deutsche WindGuard calculates the effect on the actual generation volumes for the first time, underscoring Germany's energy transition balancing act as targets scale. Conclusion of the analysis: The technical progress enables a doubling of the wind power generation by 2030.

Progressive technological developments make wind turbines more powerful and also enable more and more full-load hours, with wind leading the power mix in many markets today. This means that more electricity can be generated continuously than previously assumed. This is shown by a new study by Deutsche WindGuard, which was commissioned by the Federal Wind Energy Association (BWE) and the State Association of Renewable Energies NRW (LEE NRW).

The study 'Full load hours of wind turbines on land - development, influences, effects' describes in detail for the first time the effects of advances in wind energy technology on the actual generation volumes. It can thus serve as the basis for further calculations and potential assessments, reflecting milestones like UK wind surpassing coal in 2016 in broader analyses.

The results of the investigation show that the use of modern wind turbines with higher full load hours alone on the previously designated areas could double wind power generation to over 200 terawatt hours (TWh) by 2030. With an additional area designation, generation could even be increased to 500 TWh. If the electricity from offshore wind energy is added, the entire German electricity consumption from wind energy could theoretically be covered, and renewables recently outdelivered coal and nuclear in Germany as a sign of momentum: The current electricity consumption in Germany is currently a good 530 TWh, but will increase in the future.

Christian Mildenberger, Managing Director of LEE NRW: 'Wind can do much more: In the past 20 years, technology has made great leaps and bounds. Modern wind turbines produce around ten times as much electricity today as those built at the turn of the millennium. This must also be better reflected in potential studies by the federal and state governments. '

Wolfram Axthelm, BWE Managing Director: 'We need a new look at the existing areas and the repowering. Today in Germany not even one percent of the area is designated for wind energy inland. But even with this we could cover almost 40 percent of the electricity demand by 2030. If this area share were increased to only 2 percent of the federal area, it would be almost 100 percent of the electricity demand! Wind energy is indispensable for a CO2-neutral future. This requires a clever provision of space in all federal states. '

Dr. Dennis Kruse, Managing Director of Deutsche WindGuard: 'It turns out that the potential of onshore wind energy in Germany is still significantly underestimated. Modern wind turbines achieve a significantly higher number of full load hours than previously assumed. That means: The wind can be used more and more efficiently and deliver more income. '

On the areas already designated today, numerous older systems will be replaced by modern ones by 2030 (repowering). However, many old systems will still be in operation. According to Windguard's calculations, the remaining existing systems, together with around 12,500 new, modern wind systems, could generate 212 TWh in 2030. If the area backdrop were expanded from 0.9 percent today to 2 percent of the land area, around 500 TWh would be generated by inland wind, despite grid expansion challenges in Europe that shape deployment.

The ongoing technological development must also be taken into account. The manufacturers of wind turbines are currently working on a new class of turbines with an output of over seven megawatts that will be available in three to five years. According to calculations by the LEE NRW, by 2040 the same number of wind turbines as today could produce over 700 TWh of electricity inland. The electricity demand, which will increase in the future due to electromobility, heat pumps and the production of green hydrogen, can thus be completely covered by a combination of onshore wind, offshore wind, solar power, bioenergy, hydropower and geothermal energy, and a net-zero roadmap for Germany points to significant cost reductions.

 

Related News

Related News

Ukraine sees new virtue in wind power: It's harder to destroy

Ukraine Wind Energy Resilience shields the grid with wind power along the Black Sea, dispersing turbines to withstand missile attacks, accelerate clean energy transition, aid EU integration, and strengthen energy security and rapid recovery.

 

Key Points

A strategy in Ukraine using wind farms to harden the grid, ensure clean power, and speed recovery from missile strikes.

✅ Distributed turbines reduce single-point-of-failure risk

✅ Faster repair of substations and lines than power plants

✅ Supports EU-aligned clean energy and grid security goals

 

The giants catch the wind with their huge arms, helping to keep the lights on in Ukraine — newly built windmills, on plains along the Black Sea.

In 15 months of war, Russia has launched countless missiles and exploding drones at power plants, hydroelectric dams and substations, trying to black out as much of Ukraine as it can, as often as it can, even amid talk of limiting attacks on energy sites that has surfaced, in its campaign to pound the country into submission.

The new Tyligulska wind farm stands only a few dozen miles from Russian artillery, but Ukrainians say it has a crucial advantage over most of the country’s grid, helping stabilize the system even as electricity exports have occasionally resumed under fire.

A single, well-placed missile can damage a power plant severely enough to take it out of action, but Ukrainian officials say that doing the same to a set of windmills — each one tens of meters apart from any other — would require dozens of missiles. A wind farm can be temporarily disabled by striking a transformer substation or transmission lines, but these are much easier to repair than power plants.

“It is our response to Russians,” said Maksym Timchenko, CEO of DTEK Group, the company that built the turbines in the southern Mykolaiv region — the first phase of what is planned as Eastern Europe’s largest wind farm. “It is the most profitable and, as we know now, most secure form of energy.”

Ukraine has had laws in place since 2014 to promote a transition to renewable energy, both to lower dependence on Russian energy imports, with periods when electricity exports resumed to neighbors, and because it was profitable. But that transition still has a long way to go, and the war makes its prospects, like everything else about Ukraine’s future, murky.

In 2020, 12% of Ukraine’s electricity came from renewable sources — barely half the percentage for the European Union. Plans for the Tyligulska project call for 85 turbines producing up to 500 megawatts of electricity. That’s enough for 500,000 apartments — an impressive output for a wind farm, but less than 1% of the country’s prewar generating capacity.

After the Kremlin began its full-scale invasion of Ukraine in February 2022, the need for new power sources became acute, prompting deliveries such as a mobile gas turbine power plant to bolster capacity. Russia has bombarded Ukraine’s power plants and cut off delivery of the natural gas that fueled some of them.

Russian occupation forces have seized a large part of the country’s power supply, and Russia has built power lines to reactivate the Zaporizhzhia plant in occupied territory, ensuring that its output does not reach territory still held by Ukraine. They hold the single largest generator, the 5,700-megawatt Zaporizhzhia Nuclear Power Plant, which has been damaged repeatedly in fighting and has stopped transmitting energy to the grid, with UN inspectors warning of mines at the site during recent visits. They also control 90% of Ukraine’s renewable energy plants, which are concentrated in the southeast.

The postwar recovery plans Ukraine has presented to supporters including the European Union, which it hopes to join, feature a major new commitment to clean energy, even as a controversial proposal on Ukraine’s nuclear plants continues to stir debate.

 

Related News

View more

China To Generate Electricity From Compressed Air

China Compressed-Air Energy Storage enables grid flexibility using salt caverns in Jiangsu, delivering long-duration storage for wind and solar, 60 MW capacity, dispatchable power, and low-cost, safe, round-the-clock clean energy integration.

 

Key Points

Stores off-peak power by compressing air in salt caverns, then drives turbines on demand to balance renewables.

✅ 60 MW Jintan plant connects to grid; commercial CAES milestone

✅ Uses salt caverns; low-cost long-duration storage; high safety

✅ Balances wind and solar; improves grid flexibility and reliability

 

China is set to connect its first commercial compressed-air energy storage plant to the grid as it seeks more ways to harness fast-growing clean power resources, including new hydropower alongside other long-duration options such as gravity power technologies for around-the-clock use.

China Huaneng Group Co. said its Jiangsu Jintan Salt Cave project recently underwent four days of successful trials and is now ready for commercial operations. The 60-megawatt plant will be the largest compressed air energy storage plant built anywhere in the world since 1991, and the first in China outside of small-scale technology demonstration projects, as China's electricity demand patterns remain in flux, according to BloombergNEF.

The plant will use electricity at night when demand is low to pump air into an underground salt cavern. Then, when demand is high during the day, it can release the compressed air at high enough pressure to spin a turbine and produce electricity, aligning with projections that 60% electricity by 2060 could be reached according to industry outlooks.

Underground compressed air is considered one of the least costly forms of long-term energy storage and has low safety concerns, according to BloombergNEF. But its reliance on certain topographical features such as underground caverns may limit wider deployment, a challenge shared by other regions weighing large-scale storage options for reliability. It’s gained a foothold in China, with nearly four gigawatts of projects in the pipeline, while there are less than two gigawatts combined planned in the rest of the world. Shandong province said just this week in this year's work plan that it would build three projects using the technology.

The Jintan salt caves in Jiangsu, China’s second-biggest provincial economy just north of Shanghai, can store about 10 million cubic meters of gas, enough to power four gigawatts of compressed air plants, according to a Science and Technology Daily report from last year. 

Energy storage is a key part of China’s plan to build a larger and more flexible grid as it tries to peak carbon emissions before 2030 and zero them out before 2060, alongside continued nuclear energy development to stabilize baseload supply. The country is adding a world-leading amount of wind and solar power every year, but their intermittency strains grids that need to be able to deliver electricity all the time, spurring interest in green hydrogen as a flexible complement. China has set targets of 30 gigawatts of new-energy storage by 2025 and 120 gigawatts of pumped hydro storage by 2030. 

 

Related News

View more

Europe must catch up with Asian countries on hydrogen fuel cells - report

Germany Hydrogen Fuel Cell Market gains momentum as policy, mobility, and R&D align; National Hydrogen Strategy, regulatory frameworks, and cost-of-ownership advances boost heavy transport, while Europe races Asia amid battery-electric competition and infrastructure scale-up.

 

Key Points

It is Germany and Europe's hydrogen fuel cell ecosystem across policy, costs, R&D, and mobility and freight deployments.

✅ Policy support via National Hydrogen Strategy and tax incentives

✅ TCO parity improves for heavy transport vs other low-emission tech

✅ R&D targets higher temps, compactness for road, rail, sea, air

 

In a new report examining the status of the German and European hydrogen fuel cell markets, the German government-backed National Platform Future of Mobility (NPM) says there is “a good chance that fuel cell technology can achieve a break-through in mobile applications,” even as the age of electric cars accelerates across markets.

However, Europe must catch up with Asian countries, it adds, even as a push for electricity shapes climate policy. For Germany and Europe to take on a leading role in fuel cell technologies, their industries need to be strengthened and sustainably developed, the report finds. In its paper, the NPM Working Group 4 – which aims to secure Germany as a place for mobility, battery cell production, recycling, training and qualification – states that the “chances of fuel cell technology achieving a break-through in the automotive industry – even in Europe – are better than ever,” echoing recent remarks from BMW's chief about hydrogen's appeal.

The development, expansion and use of the technology in various applications are now supported by “a significantly modified regulatory framework and new political ambitions, as stipulated in the National Hydrogen Strategy,” while updated forecasts show e-mobility driving electricity demand in Germany, the report stresses. In terms of cost of ownership, “hydrogen solutions can hold their own compared to other technologies” and there are “many promising developments in the transport sector, especially in heavy transport.”

If research and development efforts can help optimise installation space and weight as well as increase the operating temperature of fuel cells, hydrogen solutions can also become attractive for maritime, rail and air transport, even as other electrochemical approaches, such as flow battery cars, progress, the report notes. Tax incentives -- such as the Renewable Energy Sources Act (EEG) surcharge exemption for green hydrogen -- can contribute to the technology’s appeal, it adds.

Fuel cell drives are often seen as a way to decarbonise certain areas of transport, such as heavy trucks. However, producing the hydrogen in a sustainable way consumes a lot of renewable electricity that power companies must supply in other sectors, and experts say electricity vs hydrogen trade-offs favor battery-electric trucks because they are much cheaper to run than other low-emission technologies, including fuel cells.

 

Related News

View more

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

The government's 2035 electric vehicle mandate is delusional

Canada 2035 Zero-Emission Vehicle Mandate sets EV sales targets, raising concerns over affordability, battery materials like lithium and copper, charging infrastructure, grid capacity, renewable energy mix, and policy impacts across provinces.

 

Key Points

Mandate makes all new light-duty vehicles zero-emission by 2035, affecting costs, charging, and electric grid planning.

✅ 100% ZEV sales target for cars, SUVs, light trucks by 2035

✅ Cost pressures from lithium, copper, nickel; EVs remain pricey

✅ Grid, charging build-out needed; impacts vary by provincial mix

 

Whether or not you want one, can afford one or think they will do essentially nothing to stop global warming, electric vehicles are coming to Canada en masse. This week, the Canadian government set 2035 as the “mandatory target” for the sale of zero-emission SUVs and light-duty trucks as part of ambitious EV goals announced by Ottawa.

That means the sale of gasoline and diesel cars has to stop by then. Transport Minister Omar Alghabra called the target “a must.” The previous target was 2040.

It is a highly aspirational plan that verges on the delusional according to skeptics of an EV revolution who argue its scale is overstated, even if it earns Canada – a perennial laggard on the emission-reduction front – a few points at climate conferences. Herewith, a few reasons why the plan may be unworkable, unfair or less green than advertised.

Liberals say by 2035 all new cars, light-duty trucks sold in Canada will be electric, as Ottawa develops EV sales regulations to implement the mandate.

Parkland to roll out electric-vehicle charging network in B.C. and Alberta

Sticker shock: There is a reason why EVs remain niche products in almost every market in the world (the notable exception is in wealthy Norway): They are bloody expensive and often in short supply in many markets. Unless EV prices drop dramatically in the next decade, Ottawa’s announcement will price the poor out of the car market. Transportation costs are a big issue with the unrich. The 2018 gilets jaunes mass protests in France were triggered by rising fuel costs.

While some EVs are getting cheaper, even the least expensive ones are about double the price of a comparable product with an internal combustion engine. Most EVs are luxury items. The market leader in Canada and the United States is Tesla. In Canada the cheapest Tesla, the Model 3 (“standard range plus” version), costs $49,000 before adding options and subtracting any government purchase incentives. A high-end Model S can set you back $170,000.

To be sure, prices will come down as production volumes increase. But the price decline might be slow for the simple reason that the cost of all the materials needed to make an EV – copper, cobalt, lithium, nickel among them – is climbing sharply and may keep climbing as production increases, straining supply lines.

Lithium prices have doubled since November. Copper has almost doubled in the past year. An EV contains five times more copper than a regular car. Glencore, one of the biggest mining companies, estimated that copper production needs to increase by a million tonnes a year until 2050 to meet the rising demand for EVs and wind turbines, a daunting task given the dearth of new mining projects.

Will EVs be as cheap as gas cars in a decade or so? Impossible to say, but given the recent price trends for raw materials, probably not.

Not so green: There is no such thing as a zero-emission vehicle, even if that’s the label used by governments to describe battery-powered cars. So think twice if you are buying an EV purely to paint yourself green, as research finds they are not a silver bullet for climate change.

In regions in Canada and elsewhere in the world that produce a lot of electricity from fossil-fuel plants, driving an EV merely shifts the output of greenhouse gases and pollutants from the vehicle itself to the generating plant (according to recent estimates, about 18% of Canada’s electricity comes from coal, natural gas and oil; in the United States, 60 per cent).

An EV might make sense in Quebec, where almost all the electricity comes from renewable sources and policymakers push EV dominance across the market. An EV makes little sense in Saskatchewan, where only 17 per cent comes from renewables – the rest from fossil fuels. In Alberta, only 8 per cent comes from renewables.

The EV supply chain is also energy-intensive. And speaking of the environment, recycling or disposing of millions of toxic car batteries is bound to be a grubby process.

Where’s the juice?: Since the roofs of most homes in Canada and other parts of the world are not covered in solar panels, plugging in an EV to recharge the battery means plugging into the electrical grid. What if millions of cars get plugged in at once on a hot day, when everyone is running air conditioners?

The next few decades could emerge as an epic energy battle between power-hungry air conditioners, whose demand is rising as summer temperatures rise, and EVs. The strain of millions of AC units running at once in the summer of 2020 during California’s run of record-high temperatures pushed the state into rolling blackouts. A few days ago, Alberta’s electricity system operator asked Albertans not to plug in their EVs because air conditioner use was straining the electricity supply.

According to the MIT Technology Review, rising incomes, populations and temperatures will triple the number of air conditioners used worldwide, to six billion, by mid-century. How will any warm country have enough power to recharge EVs and run air conditioners at the same time? The Canadian government didn’t say in its news release on the 2035 EV mandate. Will it fund the construction of new fleets of power stations?

The wrong government policy: The government’s announcement made it clear that widespread EV use – more cars – is central to its climate policy. Why not fewer cars and more public transportation? Cities don’t need more cars, no matter the propulsion system. They need electrified buses, subways and trains powered by renewable energy. But the idea of making cities more livable while reducing emissions is apparently an alien concept to this government.

 

Related News

View more

Shanghai Electric Signs Agreement to Launch PEM Hydrogen Production Technology R&D Center, Empowering Green Hydrogen Development in China

Shanghai Electric PEM Hydrogen R&D Center advances green hydrogen via PEM electrolysis, modular megawatt electrolyzers, zero carbon production, and full-chain industrial applications, accelerating decarbonization, clean energy integration, and hydrogen economy scale-up across China.

 

Key Points

A joint R&D hub advancing PEM electrolysis, modular megawatt systems, and green hydrogen industrialization.

✅ Megawatt modular PEM electrolyzer design and system integration

✅ Zero-carbon hydrogen targeting mobility, chemicals, and power

✅ Full-chain collaboration from R&D to EPC and demonstration projects

 

Shanghai Electric has reached an agreement with the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences (the "Dalian Institute") to inaugurate the Proton Exchange Membrane (PEM) Hydrogen Production Technology R&D Center on March 4. The two parties signed a project cooperation agreement on Megawatt Modular and High-Efficiency PEM Hydrogen Production Equipment and System Development, marking an important step forward for Shanghai Electric in the field of hydrogen energy.

As one of China's largest energy equipment manufacturers, Shanghai Electric is at the forefront in the development of green hydrogen as part of China's clean energy drive. During this year's Two Sessions, the 14th Five-Year Plan was actively discussed, in which green hydrogen features prominently, and Shell's 2060 electricity forecast underscores the scale of electrification. With strong government support and widespread industry interest, 2021 is emerging as Year Zero for the hydrogen energy industry.

Currently, Shanghai Electric and the Dalian Institute have reached a preliminary agreement on the industrial development path for new energy power generation and electrolyzed water hydrogen production. As part of the cooperation, both will also continue to enhance the transformational potential of PEM electrolyzed water hydrogen production, accelerate the development of competitive PEM electrolyzed hydrogen products, and promote industrial applications and scenarios, drawing on projects like Japan's large H2 energy system to inform deployment. Moreover, they will continue to carry out in-depth cooperation across the entire hydrogen energy industry chain to accelerate overall industrialization.

Hydrogen energy boasts the biggest potential of all the current forms of clean energy, and the key to its development lies in its production. At present, hydrogen production primarily stems from fossil fuels, industrial by-product hydrogen recovery and purification, and production by water electrolysis. These processes result in significant carbon emissions. The rapid development of PEM water electrolysis equipment worldwide in recent years has enabled current technologies to achieve zero carbon emissions, effectively realizing green, clean hydrogen. This breakthrough will be instrumental in helping China achieve its carbon peak and carbon-neutrality goals.

The market potential for hydrogen production from electrolyzed water is therefore massive. Forecasts indicate that, by 2050, hydrogen energy will account for approximately 10% of China's energy market, with demand reaching 60 million tons and annual output value exceeding RMB 10 trillion. The Hydrogen: Tracking Energy Integration report released by the International Energy Agency in June 2020 notes that the number of global electrolysis hydrogen production projects and installed capacity have both increased significantly, with output skyrocketing from 1 MW in 2010 to more than 25 MW in 2019. Much of the excitement comes from hydrogen's potential to join the ranks of natural gas as an energy resource that plays a pivotal role in international trade, as seen in Germany's call for hydrogen-ready power plants shaping future power systems, with the possibility of even replacing it one day. In PwC's 2020 The Dawn of Green Hydrogen report, the advisory predicts that experimental hydrogen will reach 530 million tons by mid-century.

Shanghai Electric set its focus on hydrogen energy years ago, given its major potential for growth as one of the new energy technologies of the future and, in particular, its ability to power new energy vehicles. In 2016, the Central Research Institute of Shanghai Electric began to invest in R&D for key fuel cell systems and stack technologies. In 2020, Shanghai Electric's independently-developed fuel cell engine, which boasts a power capacity of 66 kW and can start in cold temperature environments of as low as -30°C, passed the inspection test of the National Motor Vehicle Product Quality Inspection Center. It adopts Shanghai Electric's proprietary hydrogen circulation system, which delivers strong power and impressive endurance, with the potential to replace gasoline and diesel engines in commercial vehicles.

As the technology matures, hydrogen has entered a stage of accelerated industrialization, with international moves such as Egypt's hydrogen MoU with Eni signaling broader momentum. Shanghai Electric is leveraging the opportunities to propel its development and the green energy transformation. As part of these efforts, Shanghai Electric established a Hydrogen Energy Division in 2020 to further accelerate the development and bring about a new era of green, clean energy.

As one of the largest energy equipment manufacturing companies in China, Shanghai Electric, with its capability for project development, marketing, investment and financing and engineering, procurement and construction (EPC), continues to accelerate the development and innovation of new energy. The Company has a synergistic foundation and resource advantages across the industrial chain from upstream power generation, including China's nuclear energy development efforts, to downstream chemical metallurgy. The combined elements will accelerate the pace of Shanghai Electric's entry into the field of hydrogen production.

Currently, Shanghai Electric has deployed a number of leading green hydrogen integrated energy industry demonstration projects in Ningdong Base, one of China's four modern coal chemical industry demonstration zones. Among them, the Ningdong Energy Base "source-grid-load-storage-hydrogen" project integrates renewable energy generation, energy storage, hydrogen production from electrolysis, and the entire industrial chain of green chemical/metallurgy, where applications like green steel production in Germany illustrate heavy-industry decarbonization.

In December 2020, Shanghai Electric inked a cooperation agreement to develop a "source-grid-load-storage-hydrogen" energy project in Otog Front Banner, Inner Mongolia. Equipped with large-scale electrochemical energy storage and technologies such as compressed air energy storage options, the project will build a massive new energy power generation base and help the region to achieve efficient cold, heat, electricity, steam and hydrogen energy supply.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified