Expert panel says CANDU best for China

subscribe

An expert panel appointed by the China National Nuclear Corporation (CNNC) has concluded that CANDU technology is the ideal nuclear reactor design to further China's nuclear power program using thorium as an alternative nuclear fuel source.

The panel also noted the ability of CANDU pressurized heavy water reactors (PHWR) to reuse uranium recycled from light water reactor fuel and unanimously recommended that China consider building two new CANDU units to take advantage of CANDU's unique capabilities in utilizing alternative fuels.

The expert panel was comprised of representatives from China's leading nuclear academic, government, industry and R&D organizations. The panel confirmed that thorium use in Atomic Energy of Canada Limited's (AECL) Enhanced CANDU 6 (EC6) reactor design is "technically practical and feasible", and cited the design's "enhanced safety and good economics" as reasons it could be deployed in China in the near term.

"The panel's recommendation brings us one step closer to realizing the potential of CANDU nuclear technology for China to reduce dependence on imported nuclear fuel resources," says AECL President and Chief Executive Officer Hugh MacDiarmid. "China is in a good position to utilize its abundant domestic thorium supply to power its nuclear new-build growth plan."

CANDU PHWR technology offers clear advantages over other reactor technologies in using thorium fuel. AECL has investigated thorium fuels for over 50 years, including tests in a prototype CANDU power reactor in Canada, with promising results.

The panel's recommendation supports China's Third Qinshan Nuclear Power Co. Ltd. (TQNPC) in developing a formal proposal to CNNC and the Chinese Government for a new-build CANDU project as a part of China's coming five-year plan period 2011-2015.

Adds MacDiarmid: "Our history with China's nuclear program began with twin CANDU 6 units built ahead of schedule and under budget at Qinshan site, located southwest of Shanghai. We welcome the opportunity to cooperate with China once again to position both our countries as world leaders in the development and commercialization of alternative nuclear fuel sources."

The Qinshan Phase III nuclear power plant includes two 728 MWe CANDU 6 PHWR reactors designed by AECL and built in cooperation with TQNPC. The two CANDU units are ranked among the top performing nuclear power stations in China. Qinshan's CANDU Unit 2 ranks as the best performing reactor in China with a lifetime energy-availability factor to date of 88.8% according to the International Atomic Energy Agency's (IAEA) PRIS database.

The Enhanced CANDU 6 (EC6) is a Generation III 740 MWe heavy water-cooled, heavy water-moderated, natural-uranium fuelled pressure tube reactor retaining the proven features of the CANDU 6 design while incorporating design and safety improvements to ensure that the safety, operation and performance of the EC6 meet modern international standards.

Related News

china high tech roads

Roads Need More Electricity: They Will Make It Themselves

BEIJING - As more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more.

That toll gate, street light and traffic monitoring system all need electricity. Later, roads that deice and charge vehicles at speed will need huge amounts of electricity. For now, electricity for road systems is provided by very expensive infrastructure to the grid except for a few solar/ wind street lights in China and Korea for…

READ MORE

Can COVID-19 accelerate funding for access to electricity?

READ MORE

hydro quebec exports

Electricity exports to New York from Quebec will happen as early as 2025: Hydro-Quebec

READ MORE

nick clark

Calgary electricity retailer urges government to scrap overhaul of power market

READ MORE

power plant operations

IAEA - COVID-19 and Low Carbon Electricity Lessons for the Future

READ MORE