50 Dirtiest U.S. Power Plants

By Electricity Forum


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Even as some of AmericaÂ’s dirtiest power plants start to clean up their act in terms of certain toxic emissions, the carbon dioxide (CO2) pollution linked to global warming from large, old, and inefficient electricity-generating facilities continues unchecked and could rise 34 percent by 2030, according to a report from the nonprofit Environmental Integrity Project (EIP).

A searchable database ranking 378 U.S. power plants on carbon dioxide, sulfur dioxide (SO2), nitrogen oxide (NOx) and mercury pollution is now available online at http://www.dirtykilowatts.org.

The 12 states with the heaviest concentrations of the dirtiest power plants - in terms of total tons of carbon dioxide emitted - are: Texas (five, including two of the top 10 dirtiest plants); Pennsylvania (four); Indiana (four, including two of the top 10 dirtiest plants); Alabama (three); Georgia (three, including two of the top three dirtiest plants); North Carolina (three); Ohio (three); West Virginia (three); Wyoming (two); Florida (two); Kentucky (two); and New Mexico (two).

The "Dirty Kilowatts" report also ranks the worst power plants on the basis of sulfur dioxide, nitrogen oxide and mercury, looking at all four pollutants both in terms of total tons of emissions and also emission rate (pounds per megawatt-hour of electricity produced). For example, just 14 percent of the 378 ranked fossil-fuel-burning power plants account for 40 percent of their sulfur dioxide emissions.

Taken together, the 378 plants ranked in this report represent about a third of all power plants tracked in EPAÂ’s inventory, but they account for almost 90 percent of the electricity generated by the plants in EPAÂ’s inventory, and approximately half of total U.S. electric generation. Plants in North Dakota, Ohio, Pennsylvania, Texas, Indiana, and South Dakota top the non-CO2 rankings.

The EIP report notes: “Nationwide, the power plants that provide electricity to run our homes, businesses, and factories also account for 40 percent of carbon dioxide, roughly two thirds of sulfur dioxide, 22 percent of nitrogen oxides, and roughly a third of all mercury emissions (in the U.S.)… Power plants are major contributors to global warming, emitting billions of tons of carbon dioxide (CO2) each year. In addition, power plants emit millions of tons of sulfur dioxide (SO2) and nitrogen oxides (NOx), pollutants that trigger asthma attacks and contribute to lung and heart disease, and cause smog and haze in cities and national parks. And, power plants emit dangerous toxins like mercury, a neurotoxin especially harmful to children and developing fetuses.”

Ilan Levin, counsel, Environmental Integrity Project, said: “While Congress is poised to seriously consider legislation to limit the greenhouse gases that made 2006 the hottest year on record, the electric power industry is racing to build a new fleet of coal-fired power plants that rely on conventional combustion technologies that would only accelerate global warming. Once utility companies secure their air pollution permits, we can expect them to argue that these new plants should be ‘grandfathered,’ or exempt from any pending limits on greenhouse gases. We’ve been through this before.

“When the original Clean Air Act was passed in 1970, the electric utility industry persuaded Congress to not impose strict pollution controls on old power plants, because they would soon be replaced by newer state-of-the-art facilities. Yet despite the industry’s promises, many of the nation’s oldest and dirtiest power plants continue to operate today. Americans pay the bill for that delay when they suffer the ill health consequences of breathing needlessly dirty air.”

Mary Ann Hitt, executive director of the regional nonprofit organization Appalachian Voices in Asheville, N.C., said: “On the ground in Appalachia, we see the impact of these dirty coal plants every day and in every part of our lives. We are losing homes and communities to mountaintop removal mining, and losing the lives of loved ones to health problems triggered by air pollution.”

Jan Jarrett, vice president, Citizens for Pennsylvania's Future (PennFuture), Harrisburg, PA, said: “This report shows, most of all, that the importance of strong environmental laws cannot be overstated. Reductions in sulfur dioxide and nitrogen pollution from power plants are a direct result of a strong federal Clean Air Act, but it took more than 30 years. That’s one of the reasons we fought so hard for the Pennsylvania mercury rule, which will cut mercury pollution by 90 percent by 2015. We knew the federal government wasn’t about to take action, so the state of Pennsylvania had to. Now it’s time to demand cuts in carbon dioxide pollution to fight global warming.”

Valerie True, spokesperson, Southern Alliance for Clean Energy, with offices in Georgia, Tennessee and North Carolina, said: “This report not only highlights the threats from old power plants, but the future risk should utility customers be forced to pay for the expansion of this dirty form of energy. Proposals for new coal-fired power plants are popping up across the nation. Given the imminent risks of global warming, the nation needs to take immediate action to clean up these old power plants and stop the construction of new coal-fired plants.”

Dean Hulse, member, Clean Electricity Committee of the Dakota Resource Council, Dickinson, N.D., said: “This report is the ‘canary in the coal mine’— it points out serious problems that require immediate attention. The global warming debate is over. We are heating up the earth, and the burning of coal is one of the biggest contributors of global warming pollution.

“Beyond the burning of coal is the issue of coal mining. Although not discussed in this report, the mining of coal damages land and water and moves farmers and ranchers off the land. In North Dakota, keeping the coal dinosaur alive hinders the economic development of renewable energy, including wind energy, in which North Dakota leads the nation.”

The new EIP report highlights ways to reduce CO2 emissions from power plants. First, the time has come to phase out and permanently retire the nationÂ’s oldest and least efficient plants, and reduce our dependence on coal. Reducing electricity demand, through smarter building codes, and low-cost conservation efforts such as weatherization of homes and installation of more efficient home and business appliances, will lead to CO2 reductions.

Investments in renewable energy sources, such as solar and wind power, should be encouraged, and investments in fossil fuel-based electric generation should be a last resort.

And, if new coal plants are to be built, then they must be designed to drastically reduce CO2 emissions. Carbon capture and sequestration have promise, and currently available and economically viable technologies – for example, “ultra-supercritical” designs for steam boilers, gas turbines (instead of steam), blending cleaner fuels with coal, such as natural gas and biomass – can almost double fossil-fuel-fired plants’ thermal efficiency, up to 60 percent, thus lowering CO2 emissions.

One bright spot in the EIP report: 37 years after the Clean Air Act, power plants are finally starting to clean up their sulfur dioxide emissions, thanks to a combination of factors including enforcement actions, tough state laws, and reductions anticipated from EPAÂ’s Clean Air Interstate Rule (CAIR).

The scrubbers that power companies are beginning to install will reduce sulfur dioxide emissions by as much as 90 percent as some of the dirtiest plants. However, while CAIR establishes a two-phase cap for S02, ending at 2.5 million tons in Eastern states in 2015, due to early reductions and banking of credits for use later, the cap is unlikely to be met until well beyond 2015.

KEY EIP FINDINGS

Carbon Dioxide: Given the absence of any federal standards, carbon dioxide emissions from power plants are now at roughly 2.5 billion tons per year. About two-thirds of the heat energy that is consumed at a typical coal-fired power plant is wasted, and that inefficiency contributes directly to high CO2 emissions from these facilities. Eliminating CO2 emissions from existing power plants is currently technically unfeasible, but reducing electricity demand, through energy efficiency and conservation measures, would yield significant CO2 reductions in the near-term, while new technologies develop.

One major cause for concern: A wave of new coal-fired power plants are being permitted and built across the country. Absent aggressive national climate policy and the retirement of existing facilities, these new coal plants will contribute to a projected 34 percent increase in U.S. carbon dioxide emissions over the 2005-2030 period.

Large lignite-burning power plants in North Dakota and Texas rank among the worst CO2 polluters based on emission rate. Lignite is a low-grade fuel, abundant in places like Texas and North Dakota, and its comparatively low BTU (heat) value means more CO2 for the electricity it generates. Nine plants across 8 states rank in the top 50 for both overall emissions rate and overall tons of CO2 emitted: Texas (TXUÂ’s Martin Lake and Monticello), Montana (Colstrip), Minnesota (Sherburne County), Wyoming (Laramie River), Indiana (Schahfer), Florida (Big Bend), Nebraska (Gerald Gentleman), and North Dakota (Coal Creek).

Sulfur Dioxide. Power plants, especially those that burn coal, are by far the largest single contributor of SO2 pollution in the United States, accounting for approximately 67 percent of all SO2 emissions nationwide. The top 50 plants averaged 21.1 pounds of sulfur dioxide per megawatt-hour, compared to only one pound per megawatt-hour for similar plants equipped with state of the art scrubbers.

Of all 378 plants ranked, the top 50 plants with the worst emission rates accounted for 40 percent of SO2 emissions, but only 13.7 percent of electric generation.

Indiana (five plants), Ohio (eight plants), Pennsylvania (eight plants), and Georgia (six plants) have the heaviest concentrations of the dirtiest plants in the nation for SO2. Together, these four states accounted for more than half of all the top 50 emitters. PSI EnergyÂ’s Gallagher plant, in Indiana, claimed the top spot as the nationÂ’s dirtiest power plant, generating just over 40 pounds of sulfur dioxide per megawatt-hour of electricity.

Southern Company’s Bowen plant in Georgia continued to lead the nation as the top SO2 emitter, with a whopping 206,441 tons in 2006 – 20,000 tons more than it emitted in 2005, and 40,000 tons more than it emitted in 2004. Reliant’s Keystone plant in Pennsylvania was the number two highest emitter, with more than 160,000 tons of SO2. Both these plants are expected to install scrubbers by 2010, which should substantially bring down SO2 emissions.

Nitrogen Oxide: Nitrogen oxides emissions dropped slightly in 2006, and are expected to decline still further in eastern states over the next five years. Rules to limit the interstate transport of NOx during the summer ozone season in eastern states were adopted in the late nineties (the “NOx SIP Call”), and emission ceilings have been ratcheted steadily downward by law.

Also, the CAIR rule moves the Acid Rain (Phase 1) NOx cap forward a year, to 2009, and sets a 1.3 million ton cap in 2015. Lastly, tough new state standards like the Maryland Healthy Air Act should lead to additional reductions in year-round NOx emissions.

Unfortunately, this trend is not apparent in Western states where neither CAIR nor ozone transport rules apply. Many plants with high NOx emissions are located in these states, and in states not included in the NOx “SIP Call,” such as North Dakota, Minnesota, and Florida.

The top 50 plants had an average emission rate of 5.47 pounds of NOx per megawatt-hour, more than double the 2.57 lbs/MWh average for all 378 of the nation’s largest power plants. Of the 378 plants, the top 50 accounted for 25 percent of all NOx emissions but only 11.7 percent of net electric generation. Many plants in the top 50 are in states with less stringent NOx emission limits because they do not fall under the “NOx SIP call,” a federal rule designed to reduce summertime ozone in many eastern U.S. states. (NOx is a precursor to ground-level ozone.) This shows, not surprisingly, that electric utilities do not reduce NOx emissions unless they are required by law to do so. Of the 378 plants ranked, the top 50 accounted for 41.5 percent of NOx emissions, and only 28.7 percent of net generation. Arizona Public Service Company’s Four Corners (New Mexico), and TVA’s Paradise (Kentucky) plants topped the list, emitting 44,658 tons and 43,022 tons, respectively.

Mercury: Power plant mercury emissions remain steady as compared to previous years. EIP’s report ranks plants based on 2005 data, which is the most recent publicly available information from EPA’s Toxics Release Inventory. The 486 plants that are tracked in EPA’s Toxics Release Inventory reported 48.3 tons of mercury air emissions in 2005. Of these, this report ranks only the 274 “large” power plants (i.e., those plants that generated at least 2 million MWh in 2005). These largest 274 plants emitted 43.5 tons of mercury in 2005. Many plants are installing scrubbers to control sulfur dioxide, and mercury emissions should decline as a co-benefit of SO2 controls. But, EPA’s new power plant mercury rule is unlikely to have any measurable benefit in the short-term. Power plant mercury emissions are expected to decline to roughly 24 tons in 2020 – significantly higher than EPA’s so-called cap of 15 tons by 2018, as power plants “bank” pollution allowances in the early years of the rule’s implementation. Widespread use of banked allowances means that EPA’s cap of 15 tons will likely not be met until 2026 or beyond.

For all plants ranked for mercury, the top 50 plants with the highest emission rates together emitted 16 tons of mercury – a third of all power plant mercury pollution – but generated less than 18 percent of the electricity. For the third year in a row, American Electric Power’s Pirkey plant (Texas) and Reliant’s Shawville plant (Pennsylvania) are the top two dirtiest plants based on mercury emission rates. The top fifty power plant mercury polluters accounted for almost 21 tons, or 43 percent of the electric power industry’s mercury emissions. TXU’s Martin Lake (Texas) plant ranked number one, with 1,705 pounds of mercury emissions. Southern Company’s Scherer plant (Georgia) came in second, emitting 1,662 pounds. Southern Company and TXU also shared the third place spot, reporting 1,595 pounds of mercury emissions from these companies’ Miller (Alabama) and Monticello (Texas) plants. A total of 23 plants in 12 states ranked in the top 50 for both emission rate and total pounds emitted. Six Texas plants rank in the top 50 for both emission rate and total pounds and two of these plants, TXU’s Big Brown and American Electric Power’s Pirkey, rank in the top 10 for both measures.

Power plants are responsible for about 40 percent of all man-made CO2 emissions in the nation, and unlike emissions of SO2 and NOx, the electric power industryÂ’s CO2 emissions are projected to steadily rise. Carbon dioxide emissions contribute to global warming.

Sulfates (from SO2) are major components of the fine particle pollution that plagues many parts of the country, especially communities nearby or directly downwind of coal-fired power plants. Sulfur dioxide also interacts with NOx to form nitric and sulfuric acids, commonly known as acid rain, which damages forests and acidifies soil and waterways. Harvard School of Public Health studies have shown that SO2 emissions from power plants significantly harm the cardiovascular and respiratory health of people who live near the plants. According to EPA studies, fine particle pollution from power plants results in thousands of premature deaths each year.

Nitrogen oxide is tied to ground-level ozone, which is especially harmful to children and people with respiratory problems such as asthma. Ground-level ozone is formed when NOx and volatile organic compounds (VOCs) react in sunlight. NOx also reacts with ammonia, moisture, and other compounds to form fine particle pollution, which damages lung tissue and is linked to premature death. Small particles penetrate deeply into sensitive parts of the lungs and can cause or worsen respiratory disease such as emphysema and bronchitis, and aggravate heart disease.

Coal-fired power plants are the single largest source of mercury air pollution, accounting for roughly 40 percent of all mercury emissions nationwide. Mercury is a highly toxic metal that, once released into the atmosphere, settles in lakes and rivers, where it moves up the food chain to humans. The Centers for Disease Control has found that roughly 10 percent of American women carry mercury concentrations at levels considered to put a fetus at risk of neurological damage.

Related News

Dubai Planning Large-Scale Solar Powered Hydrogen Production

Dubai Green Hydrogen advances electrolysis at the Mohammed Bin Rashid Al Maktoum Solar Park, with DEWA and Siemens enabling clean energy storage, re-electrification, and fuel-cell mobility for Expo 2020 Dubai and public transport.

 

Key Points

Dubai Green Hydrogen is a DEWA-Siemens project making solar hydrogen for storage, mobility, and reelectrification.

✅ Electrolysis at Mohammed Bin Rashid Al Maktoum Solar Park

✅ Partners: DEWA and Siemens; public-private demonstration plant

✅ Hydrogen for buses, re-electrification, and energy storage

 

Something you hear frequently if you are a clean tech aficionado is that excess solar and wind power can be used to split water into oxygen and hydrogen. The Dubai Supreme Council of Energy, the 2020 Dubai Higher Committee and the Dubai Electricity and Water Authority broke ground in early February on a solar power hydrogen electrolysis facility located in the Mohammed Bin Rashid Al Maktoum Solar Park, and related initiatives like the Solar Decathlon Middle East underscore Dubai's clean energy focus. Sheikh Ahmed bin Saeed Al Maktoum, chairman of the Dubai Supreme Council of Energy and chairman of the Expo 2020 Dubai Higher Committee, participated in the groundbreaking ceremony, according to a report by Khaleej Times.

Saeed Mohammed Al Tayer, CEO of DEWA, said at the groundbreaking ceremony the project is important to understanding the limits of green hydrogen technology and how it can contribute to the UAE’s vision of clean energy, and aligns with DEWA's latest renewable initiatives now progressing in the emirate. “This pioneering project is a role model for strategic partnerships between the public and private sectors. It will contribute to developing the green economy concept in the UAE and explore the potential of green hydrogen technology. The hydrogen produced at the facility will be stored and deployed for re-electrification, transportation and other uses.”

Siemens is providing much of the technology that will be used at the demonstration facility, while DEWA expands its China outreach to woo renewable energy firms that can contribute to the ecosystem. Joe Kaeser, president and CEO of Siemens, said the UAE was the perfect location for Siemens to test the technology, building on advances in offshore green hydrogen the company is pursuing. One of the primary uses of the hydrogen produced will be to power Dubai’s public transportation system.

“We are aware of the stress that is placed on vehicles in this region due to the high levels of heat; with hydrogen cells, you are not putting as much strain on the vehicle and that improves its longevity,” Kaeser said. “However, this is only the first step and we are eager to explore more ways in which we can adapt the technology to other sectors. The interest from various companies and partners has been immense and we are eager to work with all interested parties.”

“Dewa, Expo 2020 Dubai and Siemens are working together to help realize His Highness Sheikh Mohammed bin Rashid Al Maktoum, Vice-President and Prime Minister of the UAE and Ruler of Dubai’s, vision to identify new energy resources and provide sustainable power as part of a balanced approach that prioritizes the environment. Our aim is to make Dubai a model of energy efficiency and safety,” said Sheikh Ahmed.

Expo 2020 Dubai intends to use the hydrogen generated at the facility to transport visitors to the Expo 2020 Dubai and the Mohammed bin Rashid Al Maktoum Solar Park, reflecting regional momentum such as Saudi Arabia's clean energy plans over the next decade, in hydrogen fuel cell powered vehicles. Live data of the green hydrogen electrolysis will be displayed at Expo 2020 Dubai to help inform broader efforts like hydrogen hubs in the United States.

 

Related News

View more

Ontario Teachers Pension Plan agrees to acquire a 25% stake in SSEN Transmission

Ontario Teachers SSEN Transmission Investment advances UK renewable energy, with a 25% minority stake in SSE plc's electricity transmission network, backing offshore wind, grid expansion, and Net Zero 2050 goals across Scotland and UK.

 

Key Points

A 25% stake by Ontario Teachers in SSE's SSEN Transmission to fund UK grid upgrades and accelerate renewables.

✅ £1,465m cash for 25% minority stake in SSEN Transmission

✅ Supports offshore wind, grid expansion, and Net Zero targets

✅ Partnering SSE plc to deliver clean, affordable power in the UK

 

Ontario Teachers’ Pension Plan Board (‘Ontario Teachers’) has reached an agreement with Scotland-based energy provider SSE plc (‘SSE’) to acquire a 25% minority stake in its electricity transmission network business, SSEN Transmission, to provide clean, affordable renewable energy to millions of homes and businesses across the UK, reflecting how clean-energy generation powers both the economy and the environment.

The transaction is based on an effective economic date of 31 March 2022, and total cash proceeds of £1,465m for the 25% stake are expected at completion. The transaction is expected to complete shortly.

Measures such as Ontario's 2021 electricity rate reductions have aimed to ease costs for businesses, informing broader discussions on affordability.

SSEN Transmission, which operates under its licenced entity, Scottish Hydro Electric Transmission plc, transports electricity generated from renewable resources – including onshore and offshore wind and hydro – from the north of Scotland across more than a quarter of the UK land mass amid scrutiny of UK electricity and gas networks profits under the regulatory regime. The investment by Ontario Teachers’ will help support the UK Government’s Net Zero 2050 targets, including the delivery of 50GW of offshore wind capacity by 2030.

Charles Thomazi, Senior Managing Director, Head of EMEA Infrastructure & Natural Resources, from Ontario Teachers’ said, noting that in Canada decisions like the OEB decision on Hydro One's T&D rates guide utility planning:

“SSEN Transmission is one of Europe’s fastest growing transmission networks. Its network stretches across some of the most challenging terrain in Scotland – from the North Sea and across the Highlands – to deliver safe, reliable, renewable energy to demand centres across the UK.

We’re delighted to partner again with SSE and are committed to supporting the growth of its network and the vital role it plays in the UK’s green energy revolution.”

Investor views on regulated utilities can diverge, as illustrated by analyses of Hydro One's investment outlook that weigh uncertainties and risk factors.

Rob McDonald, Managing Director of SSEN Transmission, said:

“With the north of Scotland home to the UK’s greatest resources of renewable electricity we have a critical role to play in helping deliver the UK and Scottish Governments net zero commitments.  Our investments will also be key to securing the UK’s future energy independence through enabling the deployment of homegrown, affordable, low carbon power.

“With significant growth forecast in transmission, bringing in Ontario Teachers’ as a minority stake partner will help fund our ambitious investment plans as we continue to deliver a network for net zero emissions across the north of Scotland.” 

Ontario Teachers’ Infrastructure & Natural Resources group invests in electricity infrastructure worldwide to accelerate the energy transition with current investments including Caruna, Finland’s largest electricity distributor, Evoltz, a leading electricity transmission platform in Brazil, and Spark Infrastructure, which invests in essential energy infrastructure in Australia to serve over 5 million homes and businesses.

In Ontario, distribution consolidation has included the sale of Peterborough Distribution to Hydro One for $105 million, illustrating ongoing sector realignment.

 

Related News

View more

New Mexico Governor to Sign 100% Clean Electricity Bill ‘As Quickly As Possible’

New Mexico Energy Transition Act advances zero-carbon electricity, mandating public utilities deliver carbon-free electricity by 2045, with renewable targets of 50 percent by 2030 and 80 percent by 2040 to accelerate grid decarbonization.

 

Key Points

A state law requiring utilities to deliver carbon-free electricity by 2045, with 2030 and 2040 renewable targets.

✅ 100 percent carbon-free power from utilities by 2045

✅ Interim renewable targets: 50 percent by 2030, 80 percent by 2040

✅ Aligns with clean energy commitments in HI, CA, and DC

 

The New Mexico House of Representatives passed the Energy Transition Act Tuesday afternoon, sending the carbon-free electricity bill, a move aligned with proposals for a Clean Electricity Standard at the federal level, to Gov. Michelle Lujan Grisham.

Her opinions on it are known: she campaigned on raising the share of renewable energy, a priority echoed in many state renewable ambitions nationwide, and endorsed the ETA in a recent column.

"The governor will sign the bill as quickly as possible — we're hoping it is enrolled and engrossed and sent to her desk by Friday," spokesperson Tripp Stelnicki said in an email Tuesday afternoon.

Once signed, the legislation will commit the state to achieving zero-carbon electricity from public utilities by 2045. The bill also imposes interim renewable energy targets of 50 percent by 2030 and 80 percent by 2040, similar to Minnesota's 2040 carbon-free bill in its timeline.

The Senate passed the bill last week, 32-9. The House passed it 43-22.

The legislation would enter New Mexico into the company of Hawaii, California, where climate risks to grid reliability are shaping policy, and Washington, D.C., which have committed to eliminating carbon emissions from their grids. A dozen other states have proposed similar goals. Meanwhile, the Green New Deal resolution has prompted Congress to discuss the bigger task of decarbonizing the nation overall.

Though grid decarbonization has surged in the news cycle in recent months, even as some states consider moves in the opposite direction, such as a Wyoming bill restricting clean energy that would limit utility choices, New Mexico's bill arose from a years-long effort to rally stakeholders within the state's close-knit political community.

 

Related News

View more

Wind and Solar Double Global Share of Electricity in Five Years

Wind And Solar Energy Growth is reshaping the global power mix, accelerating grid decarbonization as coal declines; boosted by pandemic demand drops, renewables now supply near 10% of electricity, advancing climate targets toward net-zero trajectories.

 

Key Points

It is the rise in wind and solar's share of electricity, driving decarbonization and displacing coal globally.

✅ Share doubled in five years across 83% of global electricity

✅ Coal's share fell; renewables neared 10% in H1 2020

✅ Growth still insufficient for 1.5 C; needs ~13% coal cuts yearly

 

Wind and solar energy doubled its share of the global power mix over the last five years, with renewable power records underscoring the trend, moving the world closer to a path that would limit the worst effects of global warming.

The sources of renewable energy made up nearly 10% of power in most parts of the world in the first half of this year, according to analysis from U.K. environmental group Ember, while globally over 30% of electricity is renewable in broader assessments.

That decarbonization of the power grid was boosted this year as shutdowns to contain the coronavirus reduced demand overall, leaving renewables to pick up the slack.

Ember analyzed generation in 48 countries that represent 83% of global electricity. The data showed wind and solar power increased 14% in the first half of 2020 compared with the same period last year while global demand fell 3% because of the impact of the coronavirus.

At the same time that wind turbines and solar panels have proliferated, coal’s share of the mix has fallen around the world. In some, mainly western European countries, where renewables surpassed fossil fuels, coal has been all but eliminated from electricity generation.


China relied on the dirtiest fossil fuel for 68% of its power five years ago, and solar PV growth in China has accelerated since then. That share dipped to 62% this year and renewables made up 10% of all electricity generated.

Still, the growth of renewables may not be going fast enough for the world to hit its climate goals, even as the U.S. is projected to have one-fourth of electricity from renewables soon, and coal is still being burnt for power in many parts of the world.

Coal use needs to fall by about 79% by 2030 from last year’s levels - a fall of 13% every year throughout the decade to come, and in the U.S. renewable electricity surpassed coal in 2022, Ember said.

New installations of wind farms are set to hold more or less steady in the next five years, according to data from BloombergNEF on deployment trends. That will make it difficult to realize a sustained pace of doubling renewable power every five years.

“If your expectations are that we need to be on target for 1.5 degrees, clearly we’re not going fast enough,” said Dave Jones, an analyst at Ember. “We’re not on a trajectory where we’re reducing coal emissions fast enough.”

 

Related News

View more

First US coal plant in years opens where no options exist

Alaska Coal-Fired CHP Plant opens near Usibelli mine, supplying electricity and district heat to UAF; remote location without gas pipelines, low wind and solar potential, and high heating demand shaped fuel choice.

 

Key Points

A 17 MW coal CHP at UAF producing power and campus heat, chosen for remoteness and lack of gas pipelines.

✅ 17 MW generator supplying electricity and district heat

✅ Near Usibelli mine; limited pipeline access shapes fuel

✅ Alternative options like LNG, wind, solar not cost-effective

 

One way to boost coal in the US: Find a spot near a mine with no access to oil or natural gas pipelines, where it’s not particularly windy and it’s dark much of the year.

That’s how the first coal-fired plant to open in the U.S. since 2015 bucked the trend in an industry that’s seen scores of facilities close in recent years. A 17-megawatt generator, built for $245 million, is set to open in April at the University of Alaska Fairbanks, just 100 miles from the state’s only coal mine.

“Geography really drove what options are available to us,” said Kari Burrell, the university’s vice chancellor for administrative services, in an interview. “We are not saying this is ideal by any means.”

The new plant is arriving as coal fuels about 25 percent of electrical generation in the U.S., down from 45 percent a decade earlier, even as some forecasts point to a near-term increase in coal-fired generation in 2021. A near-record 18 coal plants closed in 2018, and 14 more are expected to follow this year, according to BloombergNEF.

The biggest bright spot for U.S. coal miners recently has been exports to overseas power plants. At home, one of the few growth areas has been in pizza ovens.

There are a handful of other U.S. coal power projects that have been proposed, including plans to build an 850 megawatt facility in Georgia and an 895 megawatt plant in Kansas, even as a Minnesota utility reports declining coal returns across parts of its portfolio. But Ashley Burke, a spokeswoman for the National Mining Association, said she’s unaware of any U.S. plants actively under development besides the one in Alaska.

 

Future of power

“The future of power in the U.S. does not include coal,” Tessie Petion, an analyst for HSBC Holdings Plc, said in a research note, a view echoed by regions such as Alberta retiring coal power early in their transition.

Fairbanks sits on the banks of the Chena River, amid the vast subarctic forests in the heart of Alaska. The oil and gas fields of the state’s North slope are 500 miles north. The nearest major port is in Anchorage, 350 miles south.

The university’s new plant is a combined heat and power generator, which will create steam both to generate electricity and heat campus buildings. Before opting for coal, the school looked into using liquid natural gas, wind and solar, bio-mass and a host of other options, as new projects in Southeast Alaska seek lower electricity costs across the region. None of them penciled out, said Mike Ruckhaus, a senior project manager at the university.

The project, financed with university and state-municipal bonds, replaces a coal plant that went into service in 1964. University spokeswoman Marmian Grimes said it’s worth noting that the new plant will emit fewer emissions.

The coal will come from Usibelli Coal Mine Inc., a family-owned business that produces between 1.2 and 2 million tons per year from a mine along the Alaska railroad, according to the company’s website.

While any new plant is good news for coal miners, Clarksons Platou Securities Inc. analyst Jeremy Sussman said this one is "an isolated situation."

“We think the best producers can hope for domestically is a slow down in plant closures,” he said, even as jurisdictions like Alberta close their last coal plant entirely.

 

Related News

View more

Ontario introduces new 'ultra-low' overnight hydro pricing

Ontario Ultra-Low Overnight Electricity Rates cut costs for shift workers and EV charging, with time-of-use pricing, off-peak savings, on-peak premiums, kilowatt-hour details, and Ontario Energy Board guidance for homes and businesses across participating utilities.

 

Key Points

Ontario's ultra-low overnight plan: 2.4c/kWh 11pm-7am for EVs, shift workers; higher daytime on-peak pricing.

✅ 2.4c/kWh 11pm-7am; 24c/kWh on-peak 4pm-9pm

✅ Best for EV charging, shift work, night usage

✅ Available provincewide by Nov 1 via local utilities

 

The Ontario government is introducing a new ultra-low overnight price plan that can benefit shift workers and individuals who charge electric vehicles while they sleep.

Speaking at a news conference on Tuesday, Energy Minister Todd Smith said the new plan could save customers up to $90 a year.

“Consumer preferences are still changing and our government realized there was more we could do, especially as the province continues to have an excess supply of clean electricity at night when province-wide electricity demand is lower,” Smith said, noting a trend underscored by Ottawa's demand decline during the pandemic.

The new rate, which will be available as an opt-in option as of May 1, will be 2.4 cents per kilowatt-hour from 11 p.m. to 7 a.m. Officials say this is 67 per cent lower than the current off-peak rate, which saw a off-peak relief extension during the pandemic.

However, customers should be aware that this plan will mean a higher on-peak rate, as unlike earlier calls to cut peak rates, Hydro One peak charges remained unchanged for self-isolating customers.

The new plan will be offered by Toronto Hydro, London Hydro, Centre Wellington Hydro, Hearst Power, Renfrew Hydro, Wasaga Distribution, and Sioux Lookout Hydro by May. Officials have said this will be expanded to all local distribution companies by Nov. 1.

With the new addition of the “ultra low” pricing, there are now three different electricity plans that Ontarians can choose from. Here is what you have to know about the new hydro options:

TIME OF USE:
Most residential customers, businesses and farms are eligible for these rates, similar to BC Hydro time-of-use proposals in another province, which are divided into off-peak, mid-peak and on-peak hours.

This is what customers will pay as of May 1 according to the Ontario Energy Board, following earlier COVID-19 electricity relief measures that temporarily adjusted rates:

 Off-peak (Weekdays between 7 p.m. and 7 a.m. and on weekends/holidays): 7.4 cents per kilowatt-hour
 Mid-Peak (Weekdays between 7 a.m. and 11 a.m., and between 5 p.m. and 7 p.m.): 10.2 cents per kilowatt-hour
 On-Peak ( Weekdays 11 a.m. to 5 p.m.): 15.1 cents per kilowatt-hour

TIERED RATES
This plan allows customers to get a standard rate depending on how much electricity is used. There are various thresholds per tier, and once a household exceeds that threshold, a higher price applies. Officials say this option may be beneficial for retirees who are home often during the day or those who use less electricity overall.

The tiers change depending on the season. This is what customers will pay as of May 1:

 Residential households that use 600 kilowatts of electricity per month and non-residential businesses that use 750 kilowatts per month: 8.7 cents per kilowatt-hour.
 Residences and businesses that use more than that will pay a flat rate of 10.3 cents per kilowatt-hour


ULTRA-LOW OVERNIGHT RATES
Customers can opt-in to this plan if they use most of their electricity overnight.

This is what customers will pay as of May 1:

  •  Between 11 p.m. and 7 a.m.: 2.4 cents per kilowatt-hour
  •  Weekends and holidays between 7 a.m. and 11 p.m.: 7.4 cents per kilowatt-hour
  •  Mid-Peak (Weekdays between 7 a.m. and 4 p.m., and between 9 p.m. and 11 p.m.): 10.2 cents per kilowatt-hour
  •  On-Peak (weekdays between 4 p.m. and 9 p.m.): 24 cents per kilowatt-hour

More information on these plans can be found on the Ontario Energy Board website, alongside stable pricing for industrial and commercial updates from the province.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.