The economics of wind energy

By Patricia Weis-Taylor, IEA


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Although many countries do not report cost information, several member countries reported stable or slightly increasing wind turbine costs from 2007 to 2008.

Turbine costs reported by the IEA Wind member countries averaged from a low of 977 (euros) €/kW (U.S.) to a high of 1,800 €/kW (Austria) for 2008. Total installed costs onshore for 2008 in the reporting countries ranged from a low of 984 €/kW (Mexico) to a high of 1,885 €/kW (Switzerland). Total installed costs offshore ranged from 2,100 €/kW (UK) to 3,230 €/kW (Germany).

Some member countries have reported how costs of wind projects are distributed. In Italy, the cost of installed wind turbines is at substantially the same level as it was in 2007. The average installed plant cost of a medium-sized wind farm (30 MW) at a site of medium complexity, with 15 km of paths/roads and 12 km of electric line for connection to the high-voltage grid, is approximately 1,800 €/kW. This cost is generally subdivided as follows:

• Turbines, installation, and commissioning, 1,270 €/kW: 70.6%;

• Development, namely site qualification, design, administrative procedures, and so on, 236 €/kW: 13.1%;

• Interest on loans, 196 €/kW: 10.9%;

• Connection to the grid, 73.8 €/kW: 4.1%;

• Civil engineering work, 23.4 €/kW: 1.3%.

Annual cost of operation and maintenance has been estimated to be about 54 € /kW, which includes leasing of terrain, insurance, and guarantees. Decommissioning cost has been estimated at approximately 5 €/kW. Explanations for higher costs varied by country. Spain reports that the increasing use of large wind turbines (2 MW of nominal power), the increasing prices of raw materials, the shortage of main components, and the excess demand for wind turbines have increased prices for wind generators.

In Portugal, the cost depends on the turbines characteristics and/or the country of manufacture. In the United Kingdom, the higher capital costs of offshore are due to the increase in size of structures and the logistics of installing the turbines at sea. The costs of foundations, construction, installations, and grid connection are significantly higher offshore than onshore. Typically, for example, offshore turbines are 20% more expensive, and towers and foundations can cost more than 2.5 times offshore than onshore for a project of similar size.

Costs for service, consumables, repair, insurance, administration, lease of site, and so on, for new large turbines ranged from 1.3% to 1.5% of capital cost per year. When O&M costs are mentioned by the member countries, they are reported as fairly constant over the years. O&M costs are higher for offshore turbines.

Key to the economic viability of a wind project is the balance of costs and revenue. Wind energy tariffs, feed-in tariffs, and buyback rates are the payments to the wind farm owner for electricity generated. In some countries, this is the market price of electricity. In others, the wind energy tariff includes environmental bonuses or other added incentives to encourage wind energy development.

In many countries, the revenue of each wind farm is governed by the contract (power purchase agreement) negotiated with the power purchaser, so the numbers reported by the IEA Wind member countries are estimated averages or ranges. IEA Wind Task 26 Cost of Wind Energy, which will begin work in 2009, will survey the state of the art of calculating the cost of wind energy in preparation for developing recommended practices for such calculations.

Several countries explained how cost of energy might be calculated. In Finland, on coastal sites the cost of wind energy production could be about 50 €/MWh to 80 €/MWh without subsidies (15 years, 7% internal rate of return), while the cost of offshore production could be about 80 €/MWh to 100 €/MWh. The average spot price in the electricity market Nord Pool was 51 €/MWh in 2008 (30 €/MWh in 2007). Emission trade effects on the operating costs of thermal power have resulted in an increase of spot market prices; however, emission permit prices have been volatile and future and forward prices are about 40 €/MWh for 2009–2010. Wind power still needs subsidies to compete, even on the best available sites in Finland.

In Canada, wind generation costs are estimated to be between 44 €/MWh and 70 €/MWh. For example, provincial calls for power in British Columbia, Ontario, and Québec and the Renewable Portfolio Standard (RPS) in Prince Edward Island resulted in electricity prices from wind energy in the range 45 €/MWh to 56 €/MWh.

In most cases, the latest price proposals have shown the highest prices. The primary variables associated with this cost range are the cost of the wind turbines themselves, the quality of wind resources, transmission connection fees, the scale of operation, and the size of turbines.

In Greece, the cost of wind generated electricity could be assumed to be between 26 €/MWh and 47 €/MWh, depending on the site and project cost. The typical interest rate for financing wind energy projects is 7% to 8%. In Norway, estimates of production costs from sites with good wind conditions suggest a production cost of about 66 €/MWh, including capital costs (discount rate 8.0%, 20-year period), operation, and maintenance.

During 2008, the spot market electricity price on the Nord Pool (Nordic electricity market place) increased until autumn 2008 and then dropped noticeably. The forward price by the end of December 2008 was 38 €/MWh. So far, wind energy is not competitive with the price of many new hydropower projects; hydro still is an option for new green power in Norway.

Wind energy tariffs or buyback rates vary by country according to the incentive structure. In Germany, the wind energy tariff includes an initial remuneration of 92 €/MWh for at least 5 years and a maximum of 20 years. After the initial period, the tariff is 50.2 €/MWh for a maximum of 20 years. Offshore turbines put into operation by 31 December 2015 receive an initial remuneration of 150 €/MWh for 12 years. After that period, the basic tariff is 35 €/MWh until the maximum remuneration period (20 years plus year of commissioning) is reached. Wind farms more than 12 nautical miles away from the coast and in waters deeper than 20 m receive a longer initial period.

In Spain, payment for electricity generated by wind farms is based on a feed-in scheme. The owners of wind farms can choose payment for electricity generated by a wind farm independent of the size of the installation and the year of start-up. For 2009, the value is 78.183 €/MWh; the update is based on the Retail Price Index minus an adjustment factor. They can choose instead payment calculated as the market price of electricity plus a premium, plus a supplement, and minus the cost of deviations from energy forecasting.

There is a lower limit to guarantee the economic viability of the installations and an upper limit (floor and cap). For instance, the values for 2009 are reference premium 31.27€/MWh, lower limit 76.098 €/MWh, and upper limit 90.692 €/ MWh. In 2008, the market price of electricity in Spain reached 64.43 €/MWh.

In the United States, the sales price of electricity was estimated by weighing projects by nameplate capacity to represent actual market prices. The average electricity sales price for projects built in 2008 was roughly 51.5 USD/MWh (36.98 €/MWh), up from a low of 30.9 USD/MWh (22.19 €/MWh) for projects built in 2002 to 2003. This price is what the utility pays to the wind plant operator and includes the benefit of the federal production tax credit and state incentives.

In each country, the mix of incentive types and the level of government at which they are applied is unique and changing. Widely ranging incentives are operating in the IEA Wind member countries. Those mentioned most often include direct capital investment such as subsidies or grants for projects, providing a premium price for electricity generated by wind (tariffs or production subsidies), obliging utilities to purchase renewable energy, and providing a free market for green electricity.

Tax credit incentives based on investment or electrical generation are also gaining popularity. In the United States, the very effective production tax credit (PTC) and investment tax credits (ITC) for wind energy development were extended through 2012. The PTC provides an income tax credit based on electricity production from wind projects. The ITC allows 30% of the investment in wind projects to be refunded in the form of reduced income taxes. The ITC may also be taken in the form of an up-front grant equivalent to 30% of the project value. The inflation-adjusted value of the PTC in 2008 was 21(USD)/MWh (15 €/MWh) for wind energy.

In Canada, the ecoENERGY for Renewable Power program provides tax write-offs as a production incentive to all renewable energy technologies. The 14-year program will invest close to 1.5 billion CAD (0.88 billion €) to increase Canada’s supply of clean electricity from renewable sources such as wind, biomass, low-impact hydro, geothermal, PV, and ocean energy. In 2007, the tax write-off was increased from 30% to 50% per year on a declining-balance basis.

Some IEA Wind member countries have national and state governments that require utilities to purchase a percentage of their overall generating capacity from renewable resources. Often called renewable portfolio standards (RPS) or renewables production obligation (RPO), they allow utilities to select the most economical renewable technology. The preferred option by most utilities to satisfy this obligation is wind energy. In the United States, 28 of the 50 states had adopted RPS approaches that collectively called for utilities to procure about 23 billion kWh of renewable energy in 2008. Wind energy qualifies as green electricity used to meet utility RPOs, to trade as certificates, or to meet consumer preferences.

In Australia, a state-based renewable energy target scheme requires electricity retailers and wholesale purchasers in Victoria to acquire Victorian Renewable Energy Certificates. Because wind projects can create these certificates, at least two large wind energy projects were able to move forward. Clear, consistent programs give the industry a firm foundation.

Other kinds of support have also accelerated the development of wind energy in the IEA Wind member countries. For example, publishing wind energy atlases developed with public research money helps developers select productive sites (Austria, Finland, Italy). In Canada, some provincial initiatives require projects to have elements manufactured in the region. This has helped develop a wind industrial base in Canada. To stimulate the industrial base, Portugal has also used domestic manufacturing as a requirement for government-supported project proposals.

Microgeneration (i.e., small wind turbines) is being promoted in several countries with new incentive approaches. An indirect incentive for the deployment of microgeneration is provided in Ireland under the Building Energy Ratings scheme (BER). Irish building regulations require that new dwellings have a portion of their energy demands met by renewable sources on site. The designer has a choice between sourcing this energy through either renewable thermal or renewable electrical means (4 kWh/m2/year electrical or 10 kWh/m2/year thermal). The contribution of a wind turbine can be included in the BER once its performance over a year has been verified.

In the United States, many states also have policies and incentives for small wind electric systems. These incentives include rebates and buy-downs, production incentives, tax incentives, and net metering. The subsidy or rebate may be as much as 50% of the cost of a small wind turbine. The rebates become even more effective when combined with low-interest loans and net metering programs. In Ireland, there is growing interest in microgeneration. Interest is expected to increase further now that the largest electricity supplier intends to offer 0.09 €/kWh to its domestic customers for electricity they deliver to the grid.

Related News

Former B.C. Hydro CEO earns half a million without working a single day

B.C. Hydro Salary Continuance Payout spotlights executive compensation, severance, and governance at a Crown corporation after a firing, citing financial disclosure reports, Site C dam ties, and a leadership change under a new government.

 

Key Points

Severance-style pay for B.C. Hydro's fired CEO, via salary continuance and disclosed in public filings.

✅ $541,615 total compensation without working days

✅ Salary continuance after NDP firing; financial disclosures

✅ Later named Canada Post interim CEO amid strike

 

Former B.C. Hydro president and chief executive officer Jessica McDonald received a total of $541,615 in compensation during the 2017-2018 fiscal year, a figure that sits amid wider debates over executive pay at utilities such as Hydro One CEO pay at the provincial utility, without having worked a single day for the Crown corporation.

She earned this money under a compensation package after the in-coming New Democratic government of John Horgan fired her, a move comparable to Ontario's decision when the Hydro One CEO and board exit amid share declines. The previous B.C. Liberal government named her president and CEO of B.C. Hydro in 2014, and McDonald was a strong supporter of the controversial Site C dam project now going ahead following a review.

The current New Democratic government placed her on what financial disclosure documents call “salary continuance” effective July 21, 2017 — the day the government announced her departure — at a utility scrutinized in a misled regulator report that raised oversight concerns.

According to financial disclosure statements, McDonald remained on “salary continuance” until Sept. 21 of this year, and the utility has also been assessed in a deferred operating costs report released by the auditor general. During this period, she earned $272,659, a figure that includes benefits, pension and other compensation.

McDonald — who used to be the deputy minister to former premier Gordon Campbell — is now working for Canada Post, which appointed her as interim president and chief executive officer in March, while developments at Manitoba Hydro highlight broader political pressures on Crown utilities.

She started in her new role on April 2, 2018, and now finds herself in the middle of managing a postal carrier strike.

 

Related News

View more

USA: 3 Ways Fossil Energy Ensures U.S. Energy Security

DOE Office of Fossil Energy safeguards energy security via the Strategic Petroleum Reserve, domestic critical minerals from coal byproducts, and carbon capture to curb CO2, strengthening resiliency amid shocks and supporting U.S. manufacturing and defense.

 

Key Points

A DOE program advancing energy security through SPR stewardship, critical minerals R&D, and carbon capture.

✅ Manages the Strategic Petroleum Reserve for emergency crude supply

✅ Develops domestic critical minerals from coal and mining byproducts

✅ Deploys carbon capture, utilization, and storage to cut CO2

 

The global economy has just experienced a period of unique transformation because of COVID-19. The fact that remains constant in this new economic landscape is that our society relies on energy; it’s an integral part of our day-to-day lives, even as U.S. energy use has evolved over time. According to the U.S. Energy Information Administration, approximately 80 percent of energy consumption in the United States comes from fossil fuels, so having access to a secure and reliable supply of those energy resources is more important than ever for national energy security considerations today. Below are three examples that highlight how our work at the U.S. Department of Energy’s Office of Fossil Energy (FE) helps ensure the Nation’s energy security and resiliency.

(1) Open crude oil reserves to respond to crises

FE has overall program responsibility for carrying out the mission of the Strategic Petroleum Reserve (SPR), the world’s largest supply of emergency crude oil. These federally-owned stocks are stored in massive underground salt caverns along the coastline of the Gulf of Mexico. The SPR is a powerful tool U.S. leaders use to respond to a wide range of crises, including energy crisis impacts on electricity and fuels, involving crude oil disruption or demand loss.  When the COVID-19 pandemic hit, the oil markets crashed and crude oil demand dropped drastically across the world. U.S. oil producers turned to the SPR to store their oil while broader energy dominance constraints were becoming evident in practice. This helped alleviate the pressure on producers to shut in oil production and proved to be a critical asset for American energy and national security.

(2) Use the Nation’s abundant coal reserves to produce valuable materials

Critical materials, including rare earth elements, are a group of chemical elements and materials with unique properties that support manufacturing of most modern technologies. They are essential components for critical defense and homeland security applications, green energy technologies, hybrid and electric vehicles, and high-value electronics. While these materials are not rare, they are hard to separate and expensive to extract. The United States relies heavily on imports from China. To reduce U.S. dependence on foreign sources, FE has a research and development program aimed at producing a domestic supply of critical materials from the Nation’s abundant coal resources and associated byproducts from legacy and current mining operations. Many of the technologies being developed can also be used to separate critical minerals from other mining materials and byproducts. Tapping into these resources has the potential to create new industries and revitalize coal communities and the workforce in coal-producing regions.

(3) Decrease carbon emissions for a cleaner energy future

FE is committed to balancing the Nation’s energy use with the need to protect the environment, and has a comprehensive portfolio of technological solutions that help keep carbon dioxide (CO2) emissions out of the atmosphere. For example, amid high natural gas prices that reinforce the case for clean electricity, the Department has been investing in carbon capture, utilization, and storage technologies for over a decade. These technologies capture CO2 emissions from various sources, including coal-fired power plants and manufacturing plants, before they enter the atmosphere. Several of these cutting-edge technologies have been deployed at major demonstration sites, supported by clean energy funding that aims to benefit millions. Three of these projects—Petra Nova, Archer Daniels Midland, and Air Products & Chemicals—have captured and injected over 10.8 million metric tons of CO2. The success of these projects is paving the way toward a cleaner and more sustainable American energy future.

 

Related News

View more

Warning: Manitoba Hydro can't service new 'energy intensive' customers

Manitoba Hydro capacity constraints challenge clean energy growth as industrial demand, hydrogen projects, EV batteries, and electrification strain the grid; limited surplus, renewables, storage, and transmission bottlenecks hinder new high-load connections.

 

Key Points

Limited surplus power blocks new energy-intensive loads until added generation and transmission expand Manitoba's grid.

✅ No firm commitments for new energy-intensive industrial customers

✅ Single large load could consume remaining surplus capacity

✅ New renewables need transmission; gas, nuclear face trade-offs

 

Manitoba Hydro lacks the capacity to provide electricity to any new "energy intensive" industrial customers, the Crown corporation warns in a confidential briefing note that undercuts the idea this province can lure large businesses with an ample supply of clean, green energy, as the need for new power generation looms for the utility.

On July 28, provincial economic development officials unveiled an "energy roadmap" that said Manitoba Hydro must double or triple its generating capacity, as electrical demand could double over the next two decades in order to meet industrial and consumer demand for electricity produced without burning fossil fuels.

Those officials said 18 potential new customers with high energy needs were looking at setting up operations in Manitoba — and warned the province must be careful to choose businesses that provide the greatest economic benefit as well as the lowest environmental impact.

In a briefing note dated Sept. 13, obtained by CBC News, Manitoba Hydro warns it doesn't have enough excess power to hook up any of these new heavy electricity-using customers to the provincial power grid.

There are actually 57 proposals to use large volumes of electricity, Hydro says in the note, including eight projects already in the detailed study phase and nine where the proponents are working on construction agreements.

"Manitoba Hydro is unable to offer firm commitments to prospective customers that may align with Manitoba's energy roadmap and/or provincial economic development objectives," Hydro warns in the note, explaining it is legally obliged to serve all existing customers who need more electricity.

"As such, Manitoba Hydro cannot reserve electric supply for particular projects."

Hydro says in the note its "near-term surplus electricity supply" is so limited amid a Western Canada drought that "a single energy-intensive connection may consume all remaining electrical capacity."

Adding more electrical generating capacity won't be easy, even with new turbine investments underway, and will not happen in time to meet demands from customers looking to set up shop in the province, Hydro warns.

The Crown corporation goes on to say it's grappling with numerous requests from existing and prospective energy-intensive customers, mainly for producing hydrogen, manufacturing electric vehicle batteries and switching from fossil fuels to electricity, such as to use electricity for heat in buildings.

In a statement, Hydro said it wants to ensure Manitobans know the corporation is not running out of power — just the ability to meet the needs of large new customers, and continues to provide clean energy to neighboring provinces today.

"The size of loads looking to come to Manitoba are significantly larger than we typically see, and until additional supply is available, that limits our ability to connect them," Hydro spokesperson Bruce Owen said in a statement.

Adding wind power or battery storage, for example, would require the construction of more transmission lines, and deals such as SaskPower's purchase depend on that interprovincial infrastructure as well.

Natural gas plants are relatively inexpensive to build but do not align with efforts to reduce carbon emissions. Nuclear power plants require at least a decade of lead time to build, and tend to generate local opposition.

Hydro has also ruled out building another hydroelectric dam on the Nelson River, where the Conawapa project was put on hold in 2014.

 

Related News

View more

Bright Feeds Powers Berlin Facility with Solar Energy

Bright Feeds Solar Upgrade integrates a 300-kW DC PV system and 625 solar panels at the Berlin, CT plant, supplying one-third of power, cutting carbon emissions, and advancing clean, renewable energy in agriculture.

 

Key Points

An initiative powering Bright Feeds' Berlin plant with a 300-kW DC PV array, reducing costs and carbon emissions.

✅ 300-kW DC PV with 625 panels by Solect Energy

✅ Supplies ~33% of facility power; lowers operating costs

✅ Offsets 2,100+ tons CO2e; advances clean, sustainable agriculture

 

Bright Feeds, a New England-based startup, has successfully transitioned its Berlin, Connecticut, animal feed production facility to solar energy. The company installed a 300-kilowatt direct current (DC) solar photovoltaic (PV) system at its 25,000-square-foot plant, mirroring progress seen at projects like the Arvato solar plant in advancing onsite generation. This move aligns with Bright Feeds' commitment to sustainability and reducing its carbon footprint.

Solar Installation Details

The solar system comprises 625 solar panels and was developed and installed by Solect Energy, a Massachusetts-based company, reflecting momentum as projects like Building Energy's launch come online nationwide. Over its lifetime, the system is projected to offset more than 2,100 tons of carbon emissions, contributing significantly to the company's environmental goals. This initiative not only reduces energy expenses but also supports Bright Feeds' mission to promote clean energy solutions in the agricultural sector. 

Bright Feeds' Sustainable Operations

At its Berlin facility, Bright Feeds employs advanced artificial intelligence and drying technology to transform surplus food into an all-natural, nutrient-rich alternative to soy and corn in animal feed, complementing emerging agrivoltaics approaches that pair energy with agriculture. The company supplies its innovative feed product to a broad range of customers across the Northeast, including animal feed distributors and dairy farms. By processing food that would otherwise go to waste, the facility diverts tens of thousands of tons of food from the regional waste stream each year. When operating at full capacity, the environmental benefit of the plant’s process is comparable to taking more than 33,000 cars off the road annually.

Industry Impact

Bright Feeds' adoption of solar energy sets a precedent for sustainability in the agricultural sector. The integration of renewable energy sources into production processes not only reduces operational costs but also demonstrates a commitment to environmental stewardship, amid rising European demand for U.S. solar equipment that underscores market momentum. As the demand for sustainable practices grows, and as rural clean energy delivers measurable benefits, other companies in the industry may look to Bright Feeds as a model for integrating clean energy solutions into their operations.

Bright Feeds' initiative to power its Berlin facility with solar energy underscores the company's dedication to sustainability and innovation. By harnessing the power of the sun, Bright Feeds is not only reducing its carbon footprint but also contributing to a cleaner, more sustainable future for the agricultural industry, and when paired with solar batteries can further enhance resilience. This move serves as an example for other companies seeking to align their operations with environmental responsibility and renewable energy adoption, as new milestones like a U.S. clean energy factory signal expanding capacity across the sector.

 

Related News

View more

Georgia Power customers to see $21 reduction on June bills

Georgia Power June bill credit delivers PSC-approved savings, lower fuel rates, and COVID-19 relief for residential customers, driven by natural gas prices and 2018 earnings, with typical 1,000 kWh users seeing June bill reductions.

 

Key Points

A PSC-approved one-time credit and lower fuel rates reducing June bills for Georgia Power residential customers.

✅ $11.29 credit for 1,000 kWh usage on June bills

✅ Fuel rate cut saves $10.26 per month from June to September 2020

✅ PSC-approved $51.5M credit based on Georgia Power's 2018 results

 

Georgia Power announced that the typical residential customer using 1,000-kilowatt hours will receive an $11.29 credit on their June bill, reflecting a lump-sum credit model also used elsewhere.

This reflects implementation of a one-time $51.5 million credit for customers, similar to Gulf Power's bill decrease efforts, approved by the Georgia Public Service Commission, as a result of

Georgia Power's 2018 financial results.

Pairing the June credit with new, lower fuel rates recently announced, the typical residential customer would see a reduction of $21.55 in June, even as some regions face increases like Pennsylvania's winter price hikes elsewhere.

The amount each customer receives will vary based on their 2018 usage. Georgia Power will apply the credit to June bills for customers who had active accounts as of Dec. 31, 2018, and are still active or receiving a final bill as of June 2020, and the company has issued pandemic scam warnings to help customers stay informed.

Fuel rate lowered 17.2 percent

In addition to the approved one-time credit in June, the Georgia PSC recently approved Georgia Power’s plan to reduce its fuel rates by 17.2 percent and total billings by approximately $740 million over a two-year period. The implementation of a special interim reduction will provide customers additional relief during the COVID-19 pandemic through even lower fuel rates over the upcoming 2020 summer months. The lower fuel rate and special interim reduction will lower the total bill of a typical residential customer using an average of 1,000-kilowatt hours by a total of $10.26 per month from June through September 2020.

The reduction in the company’s fuel rate is driven primarily by lower natural gas prices, even as FPL proposed multiyear rate hikes in Florida, as a result of increased natural gas supplies, which the company is able to take advantage of to benefit customers due to its diverse generation sources.

February bill credit due to tax law savings

Georgia Power completed earlier this year the third and final bill credit associated with the Tax Cuts and Jobs Act of 2017, resulting in credits totaling $106 million. The typical residential customer using an average of 1,000 kilowatt-hours per month received a credit of approximately $22 on their February Georgia Power bill, a helpful offset as U.S. electric bills rose 5% in 2022 according to national data.

 

Related News

View more

Hydro One and Alectra announce major investments to strengthen electricity infrastructure and improve local reliability in the Hamilton area

Hydro One and Alectra Hamilton Grid Upgrades will modernize electricity infrastructure with new transformers, protection devices, transmission and distribution improvements, tree trimming, pole replacements, and line refurbishments to boost reliability and reduce outages across region.

 

Key Points

A $250M plan to modernize Hamilton transmission and distribution, reducing outages and improving reliability by 2022.

✅ New transformers and protection devices to cut outages

✅ Refurbished 1915 line powering Hamilton West Mountain

✅ Tree trimming and pole replacements across 1,260 km

 

Hydro One Networks Inc. (Hydro One), Ontario's largest electricity transmission and distribution company whose delivery rates recently increased, and Alectra Utilities have announced they expect to complete approximately $250 million of work in the Hamilton area by 2022 to upgrade local electricity infrastructure and improve service reliability.

As part of these plans to strengthen the electricity grid in the Hamilton region, where utilities must adapt to climate change pressures, investments are expected to include:

installing quieter, more efficient transformers in four stations across Hamilton to assist in reducing the number of outages;
replacing protection and switching devices across the city to shorten outage restoration times, reflecting how transmission line work underpins reliability;
refurbishing a power line originally installed in 1915 that is critical to powering the Hamilton West Mountain area; and,
trimming hazardous trees across more than 1,260 km of overhead powerlines and replacing more than 270 poles.
Hydro One will be working with Alectra Utilities to replace aging infrastructure at Elgin transmission station.

"A loss of power grinds life to a halt, impacting businesses, families and productivity. That's why Hydro One is partnering with Alectra Utilities to support a growing local economy in Hamilton, while improving power reliability for its residents," said Jason Fitzsimmons, Chief Corporate Affairs and Customer Care Officer. "Replacing aging infrastructure and modernizing equipment is part of our plan to build a stronger, safer and more reliable electricity system for Ontario now and into the future." 

"Partnering with Hydro One to invest in our local community will create a safer, more resilient and reliable system for the future," said Max Cananzi, President, Alectra Utilities.  "In addition to investments in the transmission system, Alectra Utilities also plans to invest $235 million over the next five years to renew, upgrade and connect customers to the electrical distribution and supporting systems in Hamilton. Investments in the transmission and distribution systems in Hamilton will contribute to the long-term sustainability of our communities."

"I am pleased to see Hydro One and Alectra investing in modernizing local electricity infrastructure and improving reliability," said Member of Provincial Parliament, Donna Skelly.  "Safe and reliable power is essential to supporting local families, businesses and our community."

Across Ontario, First Nations call for action on urgently needed transmission lines highlight the importance of timely grid investments.

Hydro One's investments included in this announcement are captured in its previously disclosed future capital expenditures, amid proposed projects like the Meaford hydro project across Ontario.

Much of Hydro One's electricity system was built in the 1950s, and replacing aging assets is critical as delays affecting a cross-border transmission line elsewhere have shown. Its three-year, $5 billion investment plan supports safe and reliable power to communities across Ontario, and strong regulatory oversight illustrated by the ATCO Electric penalty helps maintain public trust.


 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified