Losing the war on climate gases

By Victoria Times Colonist


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The latest report on greenhouse gas emissions undercuts all the enthusiastic talk from politicians about the war on global warming. Canada's Kyoto accord commitment in 2002 called for greenhouse gas emissions to be reduced to six per cent below 1990 levels by 2012.

But by 2007, emissions had actually increased 26 per cent above 1990 levels, according to a new Environment Canada report to the United Nations on emissions trends.

To meet the commitment of a six per cent reduction from the 1990 level, Canada would now have to cut emissions by 25 per cent by 2012.

That would mean taking every vehicle off the country's roads permanently and grounding all domestic airlines.

The report supports the Conservative government's argument that years of inaction meant the Kyoto commitment was impossible to meet. But it also raises questions about the Harper government's efforts. Emissions rose by four per cent between 2006 and 2007; no progress is being made on reducing carbon dioxide emissions.

And the report points to the problem with the Harper government's push for "intensity-based emission targets." Rather than committing to meeting limits on emissions, the Conservatives want the test to be the amount of carbon dioxide produced per unit of output — per mile driven, or tonne of cement produced. Based on one version of that measure, Environment Canada reports that emission intensities have fallen by 21 per cent since 1990.

That illustrates the flaw in the intensity-based approach — in that period annual greenhouse gas emissions increased from 592 megatonnes to 747 megatonnes. If the aim is to reduce gas emissions that contribute to global warming, the Conservatives' approach won't work.

Why are emissions still increasing, despite all the talk about limiting greenhouse gases? One factor in 2007 was electricity generation, as problems with nuclear power plants in Ontario led to greater use of coal-fired plants.

The other major reason was increased production at Alberta's oilsands. Emissions from mining and oil and gas extraction jumped 39 per cent in one year, mainly because of four new oilsands plants. Since 1990, emissions from the sector have increased 276 per cent.

Industry is not the only source of rising emissions. Between 1990 and 2007, Environment Canada reported, emissions from cars declined by 10 per cent — a 4.7 megatonne reduction. But it's not because we drove less, or vehicles became markedly more fuel-efficient. In the same period, emissions from what's classified as "light-duty trucks" more than doubled, adding 24 megatonnes annually to our carbon footprint. The reason, the report found, was our infatuation with sport utility vehicles.

The steady increase in emissions poses questions for B.C. politicians as well. The government has committed to a one-third reduction in emissions between 2008 and 2020. It's still not clear how that will be accomplished.

Of course, purchased carbon credits and carbon trading offer potential solutions. The province, for example, sets aside $25 for every tonne of emissions from government travel to purchase carbon credits. The theory is the money will be used to fund offsetting carbon reductions — planting trees or improving energy efficiency. On that basis, Canada could meet its Kyoto commitment today by spending $475 million a year on carbon credits.

Cap-and-trade systems will allow industries to increase emissions by buying credits from another business that has reduced its emissions below its cap.

But credits and trading are open to manipulation and the arbitrary $25-per-tonne levy is likely far below the real cost of carbon offsets.

The Environment Canada report is a reminder that despite a decade of talk about global warming, there has been little effective action and the hard work is still ahead.

Related News

Britons could save on soaring bills as ministers plan to end link between gas and electricity prices

UK Electricity-Gas Price Decoupling aims to reform wholesale electricity pricing under the Energy Security Bill, shielding households from gas price spikes, supporting renewables, and easing the cost-of-living crisis through market redesign and transparent tariffs.

 

Key Points

Policy to decouple power prices from gas via the Energy Security Bill, stabilizing bills and reflecting renewables

✅ Breaks gas-to-power pricing link to cut electricity costs

✅ Reduces volatility; shields households from global gas shocks

✅ Highlights benefits of renewables and market transparency

 

Britons could be handed relief on rocketing household bills under Government plans to sever the link between the prices of gas and electricity, including proposals to restrict energy prices in the market, it has emerged.

Ministers are set to bring forward new laws under the Energy Security Bill to overhaul the UK's energy market in the face of the current cost-of-living crisis.

They have promised to provide greater protection for Britons against global fluctuations in energy prices, through a price cap on bills among other measures.

The current worldwide crisis has been exacerbated by the Ukraine war, which has sent gas prices spiralling higher.

Under the current make-up of Britain's energy market, soaring natural gas prices have had a knock-on effect on electricity costs.

But it has now been reported the new legislation will seek to prevent future shocks in the global gas market having a similar impact on electricity prices.

Yet the overhaul might not come in time to ease high winter energy costs for households ahead of this winter.

According to The Times, Business Secretary Kwasi Kwarteng will outline proposals for reforms in the coming weeks.

These will then form part of the Energy Security Bill to be introduced in the autumn, with officials anticipating a decrease in energy bills by April.

The newspaper said the plans will end the current system under which the wholesale cost of gas effectively determines the price of electricity for households.

Although more than a quarter of Britain's electricity comes from renewable sources, under current market rules it is the most expensive megawatt needed to meet demand that determines the price for all electricity generation.

This means that soaring gas prices have driven up all electricity costs in recent months, even though only around 40% of UK electricity comes from gas power stations.

Energy experts have compared the current market to train passengers having to pay the peak-period price for every journey they make.

One Government source told The Times: 'In the past it didn’t really matter because the price of gas was reasonably stable.

'Now it seems completely crazy that the price of electricity is based on the price of gas when a large amount of our generation is from renewables.'

It was also claimed ministers hope the reforms will make the market more transparent and emphasise to consumers the benefits of decarbonisation, amid an ongoing industry debate over free electricity for consumers.

A Government spokesperson said: 'The high global gas prices and linked high electricity prices that we are currently facing have given added urgency to the need to consider electricity market reform.

 

Related News

View more

Hydro-Quebec adopts a corporate structure designed to optimize the energy transition

Hydro-Québec Unified Corporate Structure advances the energy transition through integrated planning, strategy, infrastructure delivery, and customer operations, aligning generation, transmission, and distribution while ensuring non-discriminatory grid access and agile governance across assets and behind-the-meter technologies.

 

Key Points

A cross-functional model aligning strategy, planning, and operations to accelerate Quebec's low-carbon transition.

✅ Four groups: strategy, planning, infrastructure, operations.

✅ Ensures non-discriminatory transmission access compliance.

✅ No staff reductions; staged implementation from Feb 28.

 

As Hydro-Que9bec prepares to play a key role in the transition to a low-carbon economy, the complexity of the work to be done in the coming decade requires that it develop a global vision of its operations and assets, from the drop of water entering its turbines to the behind-the-meter technologies marketed by its subsidiary Hilo. This has prompted the company to implement a new corporate structure that will maximize cooperation and agility, including employee-led pandemic support that builds community trust, making it possible to bring about the energy transition efficiently with a view to supporting the realization of Quebecers’ collective aspirations.

Toward a single, unified Hydro

Hydro-Québec’s core mission revolves around four major functions that make up the company’s value chain, alongside policy choices like peak-rate relief during emergencies. These functions consist of:

  1. Developing corporate strategies based on current and future challenges and business opportunities
  2. Planning energy needs and effectively allocating financial capital, factoring in pandemic-related revenue impacts on demand and investment timing
  3. Designing and building the energy system’s multiple components
  4. Operating assets in an integrated fashion and providing the best customer experience by addressing customer choice and flexibility expectations across segments.

Accordingly, Hydro-Québec will henceforth comprise four groups respectively in charge of strategy and development; integrated energy needs planning; infrastructure and the energy system; and operations and customer experience, including billing accuracy concerns that can influence satisfaction. To enable the company to carry out its mission, these groups will be able to count on the support of other groups responsible for corporate functions.

Across Canada, leadership changes at other utilities highlight the need to rebuild ties with governments and investors, as seen with Hydro One's new CEO in Ontario.

“For over 20 years, Hydro-Québec has been operating in a vertical structure based on its main activities, namely power generation, transmission and distribution. This approach must now give way to one that provides a cross-functional perspective allowing us to take informed decisions in light of all our needs, as well as those of our customers and the society we have the privilege to serve,” explained Hydro-Québec’s President and Chief Executive Officer, Sophie Brochu.

In terms of gender parity, the management team continues to include several men and women, thus ensuring a diversity of viewpoints.

Hydro-Québec’s new structure complies with the regulatory requirements of the North American power markets, in particular with regard to the need to provide third parties with non-discriminatory access to the company’s transmission system. The frameworks in place ensure that certain functions remain separate and help coordinate responses to operational events such as urban distribution outages that challenge continuity of service.

These changes, which will be implemented gradually as of Monday, February 28, do not aim to achieve any staff reductions.

 

Related News

View more

3-layer non-medical masks now recommended by Canada's top public health doctor

Canada Three-Layer Mask Recommendation advises non-medical masks with a polypropylene filter layer and tightly woven cotton, aligned with WHO guidance, to curb COVID-19 aerosols indoors through better fit, coverage, and public health compliance.

 

Key Points

PHAC advises three-layer non-medical masks with a polypropylene filter to improve indoor COVID-19 protection.

✅ Two fabric layers plus a non-woven polypropylene filter

✅ Ensure snug fit: cover nose, mouth, chin without gaps

✅ Aligns with WHO guidance for aerosols and droplets

 

The Public Health Agency of Canada is now recommending Canadians choose three-layer non-medical masks with a filter layer to prevent the spread of COVID-19, even as an IEA report projects higher electricity needs for net-zero, as they prepare to spend more time indoors over the winter.

Chief Public Health Officer Dr. Theresa Tam made the recommendation during her bi-weekly pandemic briefing in Ottawa Tuesday, as officials also track electricity grid security amid critical infrastructure concerns.

"To improve the level of protection that can be provided by non-medical masks or face coverings, we are recommending that you consider a three-layer nonmedical mask," she said.

 

Trust MedProtect For All Your Mask Protection

www.medprotect.ca/collections/protective-masks

According to recently updated guidelines, two layers of the mask should be made of a tightly woven fabric, such as cotton or linen, and the middle layer should be a filter-type fabric, such as non-woven polypropylene fabric, as Canada explores post-COVID manufacturing capacity for PPE.

"We're not necessarily saying just throw out everything that you have," Tam told reporters, suggesting adding a filter can help with protection.

The Public Health website now includes instructions for making three-layer masks, while national goals like Canada's 2050 net-zero target continue to shape recovery efforts.

The World Health Organization has recommended three layers for non-medical masks since June, and experts note that cleaning up Canada's electricity is critical to broader climate resilience. When pressed about the sudden change for Canada, Tam said the research has evolved.

"This is an additional recommendation just to add another layer of protection. The science of masks has really accelerated during this particular pandemic. So we're just learning again as we go," she said.

"I do think that because it's winter, because we're all going inside, we're learning more about droplets and aerosols, and how indoor comfort systems from heating to air conditioning costs can influence behaviors."

She also urged Canadians to wear well-fitted masks that cover the nose, mouth and chin without gaping, as the federal government advances emissions and EV sales regulations alongside public health guidance.

Trust MedProtect For All Your Mask Protection

www.medprotect.ca/collections/protective-masks

 

 

Related News

View more

Philippines Ranks Highest in Coal-Generated Power Dependency

Philippines coal dependency underscores energy transition challenges, climate change risks, and air pollution, as rising electricity demand, fossil fuels, and emissions shape policy shifts toward renewable energy, grid reliability, and sustainable development.

 

Key Points

It is rising reliance on coal for power, driven by demand and cost, with climate, air pollution, and policy risks.

✅ Driven by rising demand, affordability, and grid reliability.

✅ Worsens emissions, air pollution, and public health burdens.

✅ Policy shifts aim at renewable energy, efficiency, and standards.

 

In a striking development, the Philippines has surpassed China and Indonesia to become the nation most dependent on coal-generated power in recent years. This shift highlights significant implications for the country's energy strategy, environmental policies, and its commitment to sustainable development, and comes as global power demand continues to surge worldwide.

Rising Dependency on Coal

The Philippines' increasing reliance on coal-generated power is driven by several factors, including rapid economic growth, rising electricity demand, and regional uncertainties in China's electricity sector that influence fuel markets, and the perceived affordability and reliability of coal as an energy source. Coal has historically been a key component of the Philippines' energy mix, providing a stable supply of electricity to support industrialization and urbanization efforts.

Environmental and Health Impacts

Despite its economic benefits, coal-generated power comes with significant environmental and health costs, especially as soaring electricity and coal use amplifies exposure to pollution. Coal combustion releases greenhouse gases such as carbon dioxide, contributing to global warming and climate change. Additionally, coal-fired power plants emit pollutants such as sulfur dioxide, nitrogen oxides, and particulate matter, which pose health risks to nearby communities and degrade air quality.

Policy and Regulatory Landscape

The Philippines' energy policies have evolved to address the challenges posed by coal dependency while promoting sustainable alternatives. The government has introduced initiatives to encourage renewable energy development, improve energy efficiency, and, alongside stricter emissions standards on coal-fired power plants, is evaluating nuclear power for inclusion in the energy mix to meet future demand. However, balancing economic growth with environmental protection remains a complex and ongoing challenge.

International and Domestic Pressures

Internationally, there is growing pressure on countries to reduce reliance on fossil fuels and transition towards cleaner energy sources as part of global climate commitments under the Paris Agreement, illustrated by the United Kingdom's plan to end coal power within its grid. The Philippines' status as the most coal-dependent nation underscores the urgency for policymakers to accelerate the shift towards renewable energy and reduce carbon emissions to mitigate climate impacts.

Challenges and Opportunities

Transitioning away from coal-generated power presents both challenges and opportunities for the Philippines. Challenges include overcoming entrenched interests in the coal industry, addressing energy security concerns, and navigating the economic implications of energy transition, particularly as clean energy investment in developing nations has recently declined, adding financial headwinds. However, embracing renewable energy offers opportunities to diversify the energy mix, reduce dependence on imported fuels, create green jobs, and improve energy access in remote areas.

Community and Stakeholder Engagement

Engaging communities and stakeholders is crucial in shaping the Philippines' energy transition strategy. Local residents, environmental advocates, industry leaders, and policymakers play essential roles in fostering dialogue, raising awareness about the benefits of renewable energy, and advocating for policies that promote sustainable development and protect public health.

Future Outlook

The Philippines' path towards reducing coal dependency and advancing renewable energy is critical to achieving long-term sustainability and resilience against climate change impacts. By investing in renewable energy infrastructure, enhancing energy efficiency measures, and fostering innovation in clean technologies, as renewables poised to eclipse coal indicate broader momentum, the country can mitigate environmental risks, improve energy security, and contribute to global efforts to combat climate change.

Conclusion

As the Philippines surpasses China and Indonesia in coal-generated power dependency, the nation faces pivotal decisions regarding its energy future. Balancing economic growth with environmental stewardship requires strategic investments in renewable energy, robust policy frameworks, and proactive engagement with stakeholders to achieve a sustainable and resilient energy system. By prioritizing clean energy solutions, the Philippines can pave the way towards a greener and more sustainable future for generations to come.

 

Related News

View more

Tesla updates Supercharger billing to add cost of electricity use for other than charging

Tesla Supercharger Billing Update details kWh-based pricing that now includes HVAC, battery thermal management, and other HV loads during charging sessions, improving cost transparency across pay-per-use markets and extreme climate scenarios.

 

Key Points

Tesla's update bills for kWh used by HVAC, battery heating, and HV loads during charging, reflecting true energy costs.

✅ kWh charges now include HVAC and battery thermal management

✅ Expect 10-25 kWh increases in extreme climates during sessions

✅ Some regions still bill per minute due to regulations

 

Tesla has updated its Supercharger billing policy to add the cost of electricity use for things other than charging, like HVAC, battery thermal management, etc, while charging at a Supercharger station, a shift that impacts overall EV charging costs for drivers. 

For a long time, Tesla’s Superchargers were free to use, or rather the use was included in the price of its vehicles. But the automaker has been moving to a pay-to-use model over the last two years in order to finance the growth of the charging network amid the Biden-era charging expansion in the United States.

Not charging owners for the electricity enabled Tesla to wait on developing a payment system for its Supercharger network.

It didn’t need one for the first five years of the network, and now the automaker has been fine-tuning its approach to charge owners for the electricity they consume as part of building better charging networks across markets.

At first, it meant fluctuating prices, and now Tesla is also adjusting how it calculates the total power consumption.

Last weekend, Tesla sent a memo to its staff to inform them that they are updating the calculation used to bill Supercharging sessions in order to take into account all the electricity used:

The calculation used to bill for Supercharging has been updated. Owners will also be billed for kWhs consumed by the car going toward the HVAC system, battery heater, and other HV loads during the session. Previously, owners were only billed for the energy used to charge the battery during the charging session.

Tesla says that the new method should more “accurately reflect the value delivered to the customer and the cost incurred by Tesla,” which mirrors recent moves in its solar and home battery pricing strategy as well.

The automaker says that customers in “extreme climates” could see a difference of 10 to 25 kWh for the energy consumed during a charging session:

Owners may see a noticeable increase in billed kWh if they are using energy-consuming features while charging, e.g., air conditioning, heating etc. This is more likely in extreme climates and could be a 10-25 kWh difference from what a customer experienced previously, as states like California explore grid-stability uses for EVs during peak events.

Of course, this is applicable where Tesla is able to charge by the kWh for charging sessions. In some markets, regulations push Tesla to charge by the minute amid ongoing fights over charging control between utilities and private operators.

Electrek’s Take
It actually looks like an oversight from Tesla in the first place. It’s fair to charge for the total electricity used during a session, and not just what was used to charge your battery pack, since Tesla is paying for both, even as some states add EV ownership fees like the Texas EV fee that further shape costs.

However, I wish Tesla would have a clearer way to break down the charging sessions and their costs.

There have been some complaints about Tesla wrongly billing owners for charging sessions, and this is bound to create more confusion if people see a difference between the kWhs gained during charging and what is shown on the bill.

 

Related News

View more

New Electricity Auctions Will Drive Down Costs for Ontario's Consumers

IESO Capacity Auctions will competitively procure resources for Ontario electricity needs, boosting reliability and resource adequacy through market-based bidding, enabling demand response, energy storage, and flexible supply to meet changing load and regional grid conditions.

 

Key Points

A competitive, technology-neutral auction buys capacity at lowest cost to keep Ontario's grid reliable and flexible.

✅ Market-based procurement reduces system costs.

✅ Enables demand response, storage, and hybrid resources.

✅ Increases flexibility and regional reliability in Ontario.

 

The Independent Electricity System Operator (IESO) is introducing changes to Ontario's electricity system that will help save Ontarians about $3.4 billion over a 10-year period. The changes include holding annual capacity auctions to acquire electricity resources at lowest cost that can be called upon when and where they are needed to meet Ontario electricity needs. 

Today's announcement marks the release of a high level design for future auctions, with changes for electricity consumers expected as the first is set to be held in late 2022.

"These auctions will specify how much electricity we need, and introduce a competitive process to determine who can meet that need. It's a competition among all eligible resources, and it's the Ontario consumer, including industrial electricity ratepayers, who benefits through lower costs and a more flexible system better able to respond to changing demand and supply conditions," says IESO President and CEO Peter Gregg.

In the past decade, electricity supply was typically acquired through very prescriptive means with defined targets for specific types of resources such as wind and solar, and secured through 20-year contracts.  While these long-term commitments helped Ontario transform its generation fleet over the last decade, electricity cost allocation also played a role, but longer term contracts provide limited flexibility in dealing with unexpected changes in the power system. 

"Imagine signing a 20-year contract for your cable TV service. In five years' time, electricity rates could be lower, new competitors may have entered the market, or entirely new and innovative platforms and services like Netflix may have emerged. You miss out on opportunities for improvement by being locked-in," says Gregg.

Provincial electricity demand has traditionally fluctuated over time due to factors like economic growth, conservation and the introduction of generating resources on local distribution systems, with occasional issues such as phantom demand affecting customers' costs as well. Technological changes are adding another layer of uncertainty to future demand as electric vehicles, energy storage and low-cost solar panels become more common.

"Our planners do their best to forecast electricity demand, but the truth is there's no such thing as certainty in electricity planning. That's why flexibility is so important. We don't want Ontarians to have to pay more on the typical Ontario electricity bill for electricity resources than are needed to ensure a reliable power system that can continue to meet Ontario's needs," says IESO Vice President and COO Leonard Kula.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified