ReneSola wins Chinese solar power plant deal

By Reuters


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Chinese solar wafer manufacturer ReneSola won exclusive rights to develop a $706 million, 150-megawatt solar power plant in northern China, sending its share price sharply higher.

The project, awarded by the Taiyangshan Development Zone near the city of Wuzhong, is subject to a feasibility study and government approval. The company expects to begin work on the four-year project in the Ningxia Hui Autonomous Region in 2010.

Winning the contract to develop the plant, whose 150 MW capacity equates to some of the larger wind farms operating in Europe and the United States, fits the company's strategy of branching out from its core business of solar wafer production.

"Our plan for domestic solar construction is we want to partner with large international solar companies," Chief Executive Xiahshou Li told Reuters. "We want to base our relationship on introducing them to the (Chinese) market, partnering them and having them provide part of the financing."

China's move from simply manufacturing solar products for export toward using them to generate electricity domestically presented an opportunity for new revenue streams, Li added.

His comments came as former British Prime Minister Tony Blair said, following a meeting with Chinese Premier Wen Jiabao, that the country appeared committed to taking stronger steps to contain greenhouse emissions.

A study by some of China's top climate change advisers recommended setting firm targets to limit greenhouse gas emissions and ensure they peak by around 2030.

Ian Osburn, an analyst at Edison Investment Research, said that after a pause in the alternative energy market during the credit crisis, China was starting to invest significant amounts in the sector again.

"The market seems to be still treating alternative energy as a boom-time luxury, like gym membership, but if the scientists are right about climate change, then it's investment that has to happen. With companies like ReneSola there's going to be a return to growth," he said.

The company said last month it had signed a letter of intent with the Yancheng city government in Jiangsu Province to develop a 500-megawatt solar power generation project.

Li said ReneSola was also winning contracts under China's Golden Sun project which offers subsidies for solar production, and that a hoped-for feed-in tariff would likely lead to a dramatic rise in demand for panels from private households.

The new projects will not alter the company's short-term revenue or shipment forecasts.

"We expect a 60-70 percent increase in revenues from the second to the third quarter, but we still need to absorb $85 per kilo of polysilicon inventory costs, and that will lead to losses," Li said in an interview. "We still expect losses for the third quarter."

But inventory costs were likely to fall to $65 to $70 a kilo in the fourth quarter, he added.

Analysts are cautiously optimistic about ReneSola's performance in the medium term.

Nick Edwards of the London brokerage firm Mirabaud said the company had large debts but that diversification and a fall in polysilicon prices would help it to become competitive again after a "pretty torrid time" over the last year or two.

"ReneSola looks like it'll have module costs... (on a par) with some of the better low-cost Chinese producers like Yingli, and better placed than the higher cost European producers," Edwards said.

Related News

NT Power Penalized $75,000 for Delayed Disconnection Notices

NT Power OEB Compliance Penalty highlights a $75,000 fine for improper disconnection notices, 14-day rule violations, process oversight failures, refunds, LEAP support, and corrective training to strengthen consumer protection and regulatory adherence in Ontario areas.

 

Key Points

A $75,000 OEB fine to NT Power for improper disconnection notices; refunds, LEAP support, and improved compliance.

✅ $75k administrative monetary penalty; $25k LEAP donation; refunds

✅ 870 notices misdated; 14-day rule training implemented

✅ 10 disconnects reconnected; $100 goodwill credits

 

The Ontario Energy Board recently ruled against Newmarket-Tay Power Distribution Ltd. (NT Power), fining them $75,000 for failing to issue timely disconnection notices to 870 customers between April and August 2022. These notices did not comply with the Ontario Energy Board's distribution system code, similar to standards reaffirmed in the OEB decision on Hydro One rates earlier this year, which mandates a minimum 14-day notice period before disconnection.

Out of the affected customers, ten had their electricity services disconnected, and six were additionally charged reconnection fees. However, NT Power has since reconnected all disconnected customers and refunded the reconnection fees, as confirmed by the Ontario Energy Board.

In response to these issues, NT Power has voluntarily accepted an assurance of compliance. This agreement stipulates that NT Power will pay a $75,000 administrative monetary penalty. Furthermore, they will make an additional payment of $25,000 to the Salvation Army's Northridge Community Church, which administers the Low-income Energy Assistance Program (LEAP) within NT Power's service area, aligning with broader efforts to reduce costs for industry highlighted by Canadian Manufacturers & Exporters recently, according to the association.

This is not the first time NT Power has faced compliance issues in this regard. The utility company admitted that this incident marks the second instance in three years where they failed to adhere to their disconnection-related obligations as outlined in the code, and sector governance debates, including the Manitoba Hydro board debate, underscore how oversight remains a national focus.

In a statement to NewmarketToday, NT Power acknowledged a similar issue three years ago when they were alerted to problems with their disconnection process. They promptly made adjustments to align their in-house procedures with the requirements of the Ontario Energy Board. Unfortunately, they neglected to implement a secondary check, leading to disconnect notices being dated a few days too early.

Alex Braletic, NT Power's Vice President of Engineering and Operation, clarified that no customers were actually disconnected prematurely, and debates over paying for electricity in India illustrate how enforcement challenges differ globally, but the issued letters contained inaccuracies. He added that NT Power has since instituted additional verification procedures to prevent such errors from occurring again.

The Ontario Energy Board emphasized that NT Power has assured them that corrective measures have been taken to ensure that their staff involved in the disconnection process receive proper training and management oversight, and recent market reactions such as Hydro One shares falling after leadership changes underscore the importance of strong governance to guarantee compliance with regulatory requirements.

Brian Hewson, Vice President of Consumer Protection and Industry Performance at the Ontario Energy Board, stated, referencing earlier Ontario rate reductions for businesses that complemented consumer protections, "As a result of the actions we have taken and NT Power’s assurance that it is aware of its obligations and has taken steps to improve its processes, consumers will be better protected."

Braletic encouraged NT Power's customers who are facing difficulties paying their electricity bills to reach out to their customer service department or visit their website. He emphasized that various programs and services are available to provide relief for bills, and amid ongoing Toronto Hydro impersonation scams customers should contact NT Power directly. NT Power is committed to collaborating with customers proactively and connecting them with assistance to avoid serving them with disconnection notices.

Furthermore, NT Power plans to send a letter to the ten affected customers and provide each of them with a $100 bill credit as a goodwill gesture.

 

Related News

View more

FERC needs to review capacity market performance, GAO recommends

FERC Capacity Markets face scrutiny as GAO flags inconsistent data on resource adequacy and costs, urging performance goals, risk assessment, and better metrics across PJM, ISO-NE, NYISO, and MISO amid cost-recovery proposals.

 

Key Points

FERC capacity markets aim for resource adequacy, but GAO finds weak data and urges goals and performance reviews.

✅ GAO cites inconsistent data on resource adequacy and costs

✅ Calls for performance goals, metrics, and risk assessment

✅ Applies to PJM, ISO-NE, NYISO; MISO market is voluntary

 

Capacity markets may or may not be functioning properly, but FERC can't adequately make that determination, according to the GAO report.

"Available information on the level of resource adequacy ... and related costs in regions with and without capacity markets is not comprehensive or consistent," the report found. "Moreover, consistent data on historical trends in resource adequacy and related costs are not available for regions without capacity markets."

The review concluded that FERC collects some useful information in regions with and without capacity markets, but GAO said it "identified problems with data quality, such as inconsistent data."

GAO included three recommendations, including calling for FERC to take steps to improve the quality of data collected, and regularly assess the overall performance of capacity markets by developing goals for those assessments.

"FERC should develop and document an approach to regularly identify, assess, and respond to risks that capacity markets face," the report also recommended. The commission "has not established performance goals for capacity markets, measured progress against those goals, or used performance information to make changes to capacity markets as needed."

The recommendation comes as the agency is grappling with a controversial proposal to assure cost-recovery for struggling coal and nuclear plants in the power markets. So far, the proposal would only apply to power markets with capacity markets, including PJM Interconnection, the New England ISO, the New York ISO and possibly MISO. However MISO only has a voluntary capacity market, making it unclear how the proposed rule would be applied there. 

 

Related News

View more

Next Offshore Wind in U.S. Can Compete With Gas, Developer Says

Offshore Wind Cost Competitiveness is rising as larger turbines boost megawatt output, cut LCOE, and trim maintenance and installation time, enabling projects in New England to rival natural gas pricing while scaling reliably.

 

Key Points

It describes how larger offshore turbines lower LCOE and O&M, making U.S. projects price competitive with natural gas.

✅ Larger turbines boost MW output and reduce LCOE.

✅ Lower O&M and faster installation cut lifecycle costs.

✅ Competes with gas in New England bids, per BNEF.

 

Massive offshore wind turbines keep getting bigger, as projects like the biggest UK offshore wind farm come online, and that’s helping make the power cheaper — to the point where developers say new projects in U.S. waters can compete with natural gas.

The price “is going to be a real eye-opener,” said Bryan Martin, chairman of Deepwater Wind LLC, which won an auction in May to build a 400-megawatt wind farm southeast of Rhode Island.

Deepwater built the only U.S. offshore wind farm, a 30-megawatt project that was completed south of Block Island in 2016. The company’s bid was selected by Rhode Island the same day that Massachusetts picked Vineyard Wind to build an 800-megawatt wind farm in the same area, while international investors such as Japanese utilities in UK projects signal growing confidence.

#google#

Bigger turbines that make more electricity have cut the cost per megawatt by about half, a trend aided by higher-than-expected wind potential in many markets, said Tom Harries, a wind analyst at Bloomberg New Energy Finance. That also reduces maintenance expenses and installation time. All of this is helping offshore wind vie with conventional power plants.

“You could not build a thermal gas plant in New England for the price of the wind bids in Massachusetts and Rhode Island,” Martin said Friday at the U.S. Offshore Wind Conference in Boston. “It’s very cost-effective for consumers.”

The Massachusetts project could be about $100 to $120 a megawatt hour, according to a February estimate from Harries, though recent UK price spikes during low wind highlight volatility. The actual prices there and in Rhode Island weren’t disclosed.

For comparison, a new U.S. combine-cycle gas turbine ranges from $40 to $60 a megawatt-hour, and a new coal plant is $67 to $113, according to BNEF data.

 

A new power plant in land-constrained New England would probably be higher than that, and during winter peaks the region has seen record oil-fired generation in New England that underscores reliability concerns. More importantly, gas plants get a significant portion of their revenue from being able to guarantee that power is always available, something wind farms can’t do, said William Nelson, a New York-based analyst with BNEF. Looking only at the price at which offshore turbines can deliver electricity is a “narrow mindset,” he said.

 

Related News

View more

Trump's Pledge to Scrap Offshore Wind Projects

Trump Offshore Wind Pledge signals a push for deregulation over renewable energy, challenging climate policy, green jobs, and coastal development while citing marine ecosystems, navigation, and energy independence amid state-federal permitting and legal hurdles.

 

Key Points

Trump's vow to cancel offshore wind projects favors deregulation and fossil fuels, impacting climate policy and jobs.

✅ Day-one plan to scrap offshore wind leases and permits

✅ Risks to renewable targets, grid mix, and coastal supply chains

✅ Likely court fights and state-federal regulatory conflicts

 

During his tenure as President of the United States, Donald Trump made numerous promises and policy proposals, many of which sparked controversy and debate. One such pledge was his vow to scrap offshore wind projects on "day one" of his presidency. This bold statement, while appealing to certain interests, raised concerns about its potential impact on U.S. offshore wind growth and environmental conservation efforts.

Trump's opposition to offshore wind projects stemmed from various factors, including his skepticism towards renewable energy, even as forecasts point to a $1 trillion offshore wind market in coming years, concerns about aesthetics and property values, and his focus on promoting traditional energy sources like coal and oil. Throughout his presidency, Trump prioritized deregulation and sought to roll back environmental policies introduced by previous administrations, arguing that they stifled economic growth and hindered American energy independence.

The prospect of scrapping offshore wind projects drew mixed reactions from different stakeholders. Supporters of Trump's proposal pointed to potential benefits such as preserving scenic coastal landscapes, protecting marine ecosystems, and addressing concerns about navigational safety and national security. Critics, however, raised valid concerns about the implications of such a decision on the renewable energy sector, including progress toward getting 1 GW on the grid nationwide, climate change mitigation efforts, and job creation in the burgeoning green economy.

Offshore wind energy has emerged as a promising source of clean, renewable power with the potential to reduce greenhouse gas emissions and diversify the energy mix. Countries like Denmark, the United Kingdom, and Germany have made significant investments in offshore wind in Europe, demonstrating its viability as a sustainable energy solution. In the United States, offshore wind projects have gained traction in states like Massachusetts, New York, and New Jersey, where coastal conditions are conducive to wind energy generation.

Trump's pledge to scrap offshore wind projects on "day one" of his presidency raised questions about the feasibility and legality of such a move. While the president has authority over certain aspects of energy policy and regulatory oversight, the development of offshore wind projects often involves multiple stakeholders, including state governments, local communities, private developers, and federal agencies, and actions such as Interior's move on Vineyard Wind illustrate federal leverage in permitting. Any attempt to halt or reverse ongoing projects would likely face legal challenges and regulatory hurdles, potentially delaying or derailing implementation.

Moreover, Trump's stance on offshore wind projects reflected broader debates about the future of energy policy, environmental protection, and economic development. While some argued for prioritizing fossil fuel extraction and traditional energy infrastructure, others advocated for a transition towards clean, renewable energy sources, drawing on lessons from the U.K. about wind deployment, to mitigate climate change and promote sustainable development. The Biden administration, which succeeded the Trump presidency, has signaled a shift towards a more climate-conscious agenda, including support for renewable energy initiatives and commitments to rejoin international agreements like the Paris Climate Accord.

In hindsight, Trump's pledge to scrap offshore wind projects on "day one" of his presidency underscores the complexities of energy policy and the importance of balancing competing interests and priorities. While concerns about aesthetics, property values, and environmental impact are valid, addressing the urgent challenge of climate change requires bold action and innovation in the energy sector. Offshore wind energy presents an opportunity, as seen in the country's biggest offshore wind farm approved in New York, to harness the power of nature in a way that is both environmentally responsible and economically beneficial. As the United States navigates its energy future, finding common ground and forging partnerships will be essential to ensure a sustainable and prosperous tomorrow.

 

Related News

View more

Carbon capture: How can we remove CO2 from the atmosphere?

CO2 Removal Technologies address climate change via negative emissions, including carbon capture, reforestation, soil carbon, biochar, BECCS, DAC, and mineralization, helping meet Paris Agreement targets while managing costs, land use, and infrastructure demands.

 

Key Points

Methods to extract or sequester atmospheric CO2, combining natural and engineered approaches to limit warming.

✅ Includes reforestation, soil carbon, biochar, BECCS, DAC, mineralization

✅ Balances climate goals with costs, land, energy, and infrastructure

✅ Key to Paris Agreement targets under 1.5-2.0 °C warming

 

The world is, on average, 1.1 degrees Celsius warmer today than it was in 1850. If this trend continues, our planet will be 2 – 3 degrees hotter by the end of this century, according to the Intergovernmental Panel on Climate Change (IPCC).

The main reason for this temperature rise is higher levels of atmospheric carbon dioxide, which cause the atmosphere to trap heat radiating from the Earth into space. Since 1850, the proportion of CO2 in the air has increased, with record greenhouse gas concentrations documented, from 0.029% to 0.041% (288 ppm to 414 ppm).

This is directly related to the burning of coal, oil and gas, which were created from forests, plankton and plants over millions of years. Back then, they stored CO2 and kept it out of the atmosphere, but as fossil fuels are burned, that CO2 is released. Other contributing factors include industrialized agriculture and slash-and-burn land clearing techniques, and emissions from SF6 in electrical equipment are also concerning today.

Over the past 50 years, more than 1200 billion tons of CO2 have been emitted into the planet's atmosphere — 36.6 billion tons in 2018 alone, though global emissions flatlined in 2019 before rising again. As a result, the global average temperature has risen by 0.8 degrees in just half a century.


Atmospheric CO2 should remain at a minimum
In 2015, the world came together to sign the Paris Climate Agreement which set the goal of limiting global temperature rise to well below 2 degrees — 1.5 degrees, if possible.

The agreement limits the amount of CO2 that can be released into the atmosphere, providing a benchmark for the global energy transition now underway. According to the IPCC, if a maximum of around 300 billion tons were emitted, there would be a 50% chance of limiting global temperature rise to 1.5 degrees. If CO2 emissions remain the same, however, the CO2 'budget' would be used up in just seven years.

According to the IPCC's report on the 1.5 degree target, negative emissions are also necessary to achieve the climate targets.


Using reforestation to remove CO2
One planned measure to stop too much CO2 from being released into the atmosphere is reforestation. According to studies, 3.6 billion tons of CO2 — around 10% of current CO2 emissions — could be saved every year during the growth phase. However, a study by researchers at the Swiss Federal Institute of Technology, ETH Zurich, stresses that achieving this would require the use of land areas equivalent in size to the entire US.

Young trees at a reforestation project in Africa (picture-alliance/OKAPIA KG, Germany)
Reforestation has potential to tackle the climate crisis by capturing CO2. But it would require a large amount of space


More humus in the soil
Humus in the soil stores a lot of carbon. But this is being released through the industrialization of agriculture. The amount of humus in the soil can be increased by using catch crops and plants with deep roots as well as by working harvest remnants back into the ground and avoiding deep plowing. According to a study by the German Institute for International and Security Affairs (SWP) on using targeted CO2 extraction as a part of EU climate policy, between two and five billion tons of CO2 could be saved with a global build-up of humus reserves.


Biochar shows promise
Some scientists see biochar as a promising technology for keeping CO2 out of the atmosphere. Biochar is created when organic material is heated and pressurized in a zero or very low-oxygen environment. In powdered form, the biochar is then spread on arable land where it acts as a fertilizer. This also increases the amount of carbon content in the soil. According to the same study from the SWP, global application of this technology could save between 0.5 and two billion tons of CO2 every year.


Storing CO2 in the ground
Storing CO2 deep in the Earth is already well-known and practiced on Norway's oil fields, for example. However, the process is still controversial, as storing CO2 underground can lead to earthquakes and leakage in the long-term. A different method is currently being practiced in Iceland, in which CO2 is sequestered into porous basalt rock to be mineralized into stone. Both methods still require more research, however, with new DOE funding supporting carbon capture, utilization, and storage.

Capturing CO2 to be held underground is done by using chemical processes which effectively extract the gas from the ambient air, and some researchers are exploring CO2-to-electricity concepts for utilization. This method is known as direct air capture (DAC) and is already practiced in other parts of Europe.  As there is no limit to the amount of CO2 that can be captured, it is considered to have great potential. However, the main disadvantage is the cost — currently around €550 ($650) per ton. Some scientists believe that mass production of DAC systems could bring prices down to €50 per ton by 2050. It is already considered a key technology for future climate protection.

The inside of a carbon capture facility in the Netherlands (RWE AG)
Carbon capture facilities are still very expensive and take up a huge amount of space

Another way of extracting CO2 from the air is via biomass. Plants grow and are burned in a power plant to produce electricity. CO2 is then extracted from the exhaust gas of the power plant and stored deep in the Earth, with new U.S. power plant rules poised to test such carbon capture approaches.

The big problem with this technology, known as bio-energy carbon capture and storage (BECCS) is the huge amount of space required. According to Felix Creutzig from the Mercator Institute on Global Commons and Climate Change (MCC) in Berlin, it will therefore only play "a minor role" in CO2 removal technologies.


CO2 bound by rock minerals
In this process, carbonate and silicate rocks are mined, ground and scattered on agricultural land or on the surface water of the ocean, where they collect CO2 over a period of years. According to researchers, by the middle of this century it would be possible to capture two to four billion tons of CO2 every year using this technique. The main challenges are primarily the quantities of stone required, and building the necessary infrastructure. Concrete plans have not yet been researched.


Not an option: Fertilizing the sea with iron
The idea is use iron to fertilize the ocean, thereby increasing its nuturient content, which would allow plankton to grow stronger and capture more CO2. However, both the process and possible side effects are very controversial. "This is rarely treated as a serious option in research," concludes SWP study authors Oliver Geden and Felix Schenuit.

 

Related News

View more

Ireland: We are the global leaders in taking renewables onto the grid

Ireland 65% Renewable Grid Capability showcases world leading integration of intermittent wind and solar, smart grid flexibility, EU-SysFlex learnings, and the Celtic Interconnector to enhance stability, exports, and energy security across the European grid.

 

Key Points

Ireland can run its isolated power system with 65% variable wind and solar, informing EU grid integration and scaling.

✅ 65% system non-synchronous penetration on an isolated grid

✅ EU-SysFlex roadmap supports large-scale renewables integration

✅ Celtic Interconnector adds 700MW capacity and stability

 

Ireland is now able to cope with 65% of its electricity coming from intermittent electricity sources like wind and solar, as highlighted by Ireland's green electricity outlook today – an expertise Energy Minister Denish Naugthen believes can be replicated on a larger scale as Europe moves towards 50% renewable power by 2030.

Denis Naughten is an Irish politician who serves as Minister for Communications, Climate Action and Environment since May 2016.

Naughten spoke to editor Frédéric Simon on the sidelines of a EURACTIV event in the European  Parliament to mark the launch of EU-SysFlex, an EU-funded project, which aims to create a long-term roadmap for the large-scale integration of renewable energy on electricity grids.

What is the reason for your presence in Brussels today and the main message that you came to deliver?

The reason that I’m here today is that we’re going to share the knowledge what we have developed in Ireland, right across Europe. We are now the global leaders in taking variable renewable electricity like wind and solar onto our grid.

We can take a 65% loading on to the grid today – there is no other isolated grid in the world that can do that. We’re going to get up to 75% by 2020. This is a huge technical challenge for any electricity grid and it’s going to be a problem that is going to grow and grow across Europe, even as Europe's electricity demand rises in the coming years, as we move to 50% renewables onto our grid by 2030.

And our knowledge and understanding can be used to help solve the problems right across Europe. And the sharing of technology can mean that we can make our own grid in Ireland far more robust.

What is the contribution of Ireland when it comes to the debate which is currently taking place in Europe about raising the ambition on renewable energy and make the grid fit for that? What are the main milestones that you see looking ahead for Europe and Ireland?

It is a challenge for Europe to do this, but we’ve done it Ireland. We have been able to take a 65% loading of wind power on our grid, with Irish wind generation hitting records recently, so we can replicate that across Europe.

Yes it is about a much larger scale and yes, we need to work collaboratively together, reflecting common goals for electricity networks worldwide – not just in dealing with the technical solutions that we have in Ireland at the fore of this technology, but also replicating them on a larger scale across Europe.

And I believe we can do that, I believe we can use the learnings that we have developed in Ireland and amplify those to deal with far bigger challenges that we have on the European electricity grid.

Trialogue talks have started at European level about the reform of the electricity market. There is talk about decentralised energy generation coming from small-scale producers. Do you see support from all the member states in doing that? And how do you see the challenges ahead on a political level to get everyone on board on such a vision?

I don’t believe there is a political problem here in relation to this. I think there is unanimity across Europe that we need to support consumers in producing electricity for self-consumption and to be able to either store or put that back into the grid.

The issues here are more technical in nature. And how you support a grid to do that. And who actually pays for that. Ireland is very much a microcosm of the pan-European grid and how we can deal with those challenges.

What we’re doing at the moment in Ireland is looking at a pilot scheme to support consumers to generate their own electricity to meet their own needs and to be able to store that on site.

I think in the years to come a lot of that will be actually done with more battery storage in the form of electric vehicles and people would be able to transport that energy from one location to another as and when it’s needed. In the short term, we’re looking at some novel solutions to support consumers producing their own electricity and meeting their own needs.

So I think this is complex from a technical point of view at the moment, I don’t think there is an unwillingness from a political perspective to do it, and I think working with this particular initiative and other initiatives across Europe, we can crack those technical challenges.

To conclude, last year, the European Commission allocated €4 million to a project to link up the Irish electricity grid to France. How is that going to benefit Ireland? And is that related to worries that you may have over Brexit?

The plan, which is called the Celtic Interconnector, is to link France with the Irish electricity grid. It’s going to have a capacity of about 700MW. It allows us to provide additional stability on our grid and enables us to take more renewables onto the grid. It also allows us to export renewable electricity onto the main European grid as well, and provide stability to the French network.

So it’s a benefit to both individual networks as well as allowing far more renewables onto the grid. We’ve been working quite closely with RTE in France and with both regulators. We’re hoping to get the support of the European Commission to move it now from the design stage onto the construction stage. And I understand discussions are ongoing with the Commission at present with regard to that.

And that is going to diversify potential sources of electricity coming in for Ireland in a situation which is pretty uncertain because of Brexit, correct?

Well, I don’t think there is uncertainty because of Brexit in that we have agreements with the United Kingdom, we’re still going to be part of the broader energy family in relation to back-and-forth supply across the Irish Sea, with grid reinforcements in Scotland underscoring reliability needs.  But I think it is important in terms of meeting the 15% interconnectivity that the EU has set in relation to electricity.

And also in relation of providing us with an alternative support in relation to electricity supply outside of Britain. Because Britain is now leaving the European Union and I think this is important from a political point of view, and from a broader energy security point of view. But we don’t see it in the short term as causing threats in relation to security of supply.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified