Crunch time for alternative-energy startups

By Globe and Mail


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Canada's nascent clean-tech sector has joined the growing list of battered industries looking for emergency government support.

With debt and equity financing increasingly tough to find, and oil prices hitting four-year lows, many companies that offer alternative energy and efficient technologies are facing a life-and-death struggle, says Vicky Sharpe, chief executive officer of Sustainable Development Technology Canada (SDTC).

"The clean-tech sector, like all the others, is facing issues over the availability of new capital," Ms. Sharpe said.

While North American venture funds are still offering early-stage and second-round investing, startup companies that need to raise capital from debt and equity markets for commercial-scale projects are running into road blocks.

"There is huge momentum in the groups of companies that SDTC has supported and (government) needs to make sure that there's investment to take these companies through to market," she said. "It would be a shame to leave them hanging there — which means some of them may not survive the wait until the price of energy goes back up."

The federal government is facing a growing clamour for support from industries mauled by the economic and financial downturn, including the auto sector, aerospace and forestry companies.

SDTC is set to announce its 13th round of financing for clean-tech startups, most of whom have energy-saving and renewable-energy technology. The fund also supports companies that have clean-air and clean-water technologies.

To date, it has allocated $342-million for 144 clean-tech projects, leveraging another $800-million in investment from the private sector or provincial funds.

But the financing only supports pre-commercial development, and Ms. Sharpe is urging the government to provide additional funding and a revamped mandate to allow SDTC to assist companies that face commercial-stage expansions but are having trouble accessing capital.

The agency already has such an expanded mandate for ethanol and other biofuels.

The Harper government allocated $500-million to the agency to support the commercial development of next-generation biofuels — ethanol and biodiesel made from agricultural, forestry and other waste streams. SDTC is now reviewing several applications for support from that fund.

Despite the pressures on it from sagging oil and gas prices, and the capital market meltdown, Ms. Sharpe insisted critics are misguided when they proclaim the death of the clean-tech sector.

Governments around the world, including the American and Canadian administrations, are embracing greenhouse gas emission targets and energy security mandates that will ensure a market for technologies that offer energy efficiency, as well as renewables like solar and wind.

And while some critics suggest the clean-tech sector is too dependent on subsidies to be viable, its supporters contend those subsidies merely reflect governments' efforts to create markets for technologies that reduce pollution and greenhouse gas emissions, in the absence of carbon taxes or other more punitive abatement measures.

Ms. Sharpe acknowledged, however, some companies — notably in the solar sector - may have been overvalued, even relative to market conditions that existed before the most recent tailspin.

She said companies that are sensitive to oil prices — especially ethanol producers and those that provide fuel-saving technologies — are being squeezed now, but should eventually see prices recover. And the higher prices will restore the economic appeal of alternative fuels and technologies aimed at improving energy efficiency.

Related News

Minnesota bill mandating 100% carbon-free electricity by 2040

Minnesota 100% Carbon-Free Electricity advances renewable energy: wind, solar, hydropower, hydrogen, biogas from landfill gas and anaerobic digestion; excludes incineration in environmental justice areas; uses renewable energy credits and streamlined permitting.

 

Key Points

Minnesota's mandate requires utilities to deliver 100% carbon-free power by 2040 with targets and EJ safeguards.

✅ Utilities must hit 90% carbon-free by 2035; 100% by 2040.

✅ Incineration in EJ areas excluded; biogas, wind, solar allowed.

✅ Compliance via renewable credits; streamlined permitting.

 

Minnesota Gov. Tim Walz, D, is expected to soon sign a bill establishing a clean electricity standard requiring utilities in the state to provide electricity from 100% carbon-free sources by 2040. The bill also calls for utilities to generate at least 55% of their electricity from renewable energy sources by 2035, a trajectory similar to New Mexico's clean electricity push underway this decade.

Electricity generated from landfill gas and anaerobic digestion are named as approved renewable energy technologies, but electricity generated from incinerators operating in “environmental justice areas”, reflecting concerns about renewable facilities violating pollution rules in some states, will not be counted toward the goal. Wind, solar, and certain hydropower and hydrogen energy sources are also considered renewable in the bill. 

The bill defines EJ areas as places where at least 40% of residents are not white, 35% of households have an income that’s below 200% of the federal poverty line, and 40% or more of residents over age 5 have “limited” English proficiency. Areas the U.S. state defines as “Indian country” are also considered EJ areas.

Some of the state’s largest electric utilities, like Xcel Energy and Minnesota Power, have already pledged to move to carbon-free energy, and utilities such as Alliant Energy have outlined carbon-neutral plans in the region, but this bill speeds up that goal by 10 years, Minnesota Public Radio reported. The bill calls for public utilities operating in the state to be 80% carbon-free and other electric utilities to be 60% carbon-free by 2030. All utilities must be 90% carbon-free by 2035 before ultimately hitting the 100% mark in 2040, according to the bill.  

The bill gives utilities some leniency if they demonstrate to state regulators that they can’t offer affordable power while working toward the benchmarks, acknowledging reliability challenges seen in places like California's grid during the clean energy transition. It also allows utilities to buy renewable energy credits to meet the standard instead of generating the energy themselves. 

Patrick Serfass, executive director of the American Biogas Council, said the bill will incentivize more biogas-related electricity projects, “which means the recycling of more organic material and more renewable electricity in the state. Those are all good things,” he said. ABC sees significant potential for biogas production in Minnesota, though the federal climate law has delivered mixed results for accelerating clean power deployment.

The bill also aims to streamline the permitting process for new energy projects in the state, even as some states consider limits on clean energy that would constrain utility use, and calls for higher minimum wage requirements for workers.

 

Related News

View more

Why Canada's Energy Security Hinges on Renewables

Renewable Energy Security strengthens affordability and grid reliability through electrification, wind, and solar, reducing fossil fuel volatility exposed by the Ukraine crisis, aligning with IEA guidance and the Paris Agreement to deliver resilient, low-cost power.

 

Key Points

Renewable energy security is reliable, affordable power from electrification, wind and solar, cutting fossil fuel risk.

✅ Wind and solar now outcompete gas for new power capacity.

✅ Diversifies supply and reduces fossil price volatility.

✅ Requires grid flexibility, storage, and demand response.

 

Oil, gas, and coal have been the central pillar of the global energy system throughout the 20th century. And for decades, these fossil fuels have been closely associated with energy security.  

The perception of energy security, however, is rapidly changing. Renewables form an increasing share of energy sectors worldwide as countries look to deliver on the Paris Agreement and mitigate the effects of climate change, with IEA clean energy investment now significantly outpacing fossil fuels. Moreover, Russia’s invasion of Ukraine has demonstrated how relying on fossil fuels for power, heating, and transport has left many countries vulnerable or energy insecure.  

The International Energy Agency (IEA) defines energy security as “the uninterrupted availability of energy sources at an affordable price” (IEA, 2019a). This definition hardly describes today’s global energy situation, with the cancellation of natural gas deliveries and skyrocketing prices for oil and gas products, and with supply chain challenges in clean energy that also require attention. These circumstances have cascading effects on electricity prices in countries like the United Kingdom that rely heavily on natural gas to produce electricity. In Europe, energy insecurity has been even further amplified since the Russian corporation Gazprom recently cut off gas supplies to several countries.  

As a result, energy security has gained new urgency in Canada and worldwide, creating opportunities in the global electricity market for Canada. Recent events provide a stark reminder of the volatility and potential vulnerability of global fossil fuel markets and supply chains. Even in Canada, as one of the largest producers of oil and gas in the world, the price of fuels depends on global and regional market forces rather than government policy or market design. Thus, the average monthly price for gasoline in Canada hit a record high of CAD 2.07 per litre in May 2022 (Figure 1), and natural gas prices surged to a record CAD 7.54 per MMBtu in May 2022 (Figure 2).  

Energy price increases of this magnitude are more than enough to strain Canadian household budgets. But on top of that, oil and gas prices have accelerated inflation more broadly as it has become more expensive to produce, transport, and store goods, including food and other basic commodities (Global News, 2022).  

 

Renewable Energy Is More Affordable 

In contrast to oil and gas, renewable energy can reliably deliver affordable energy, as shown by falling wholesale electricity prices in markets with growing clean power. This is a unique and positive aspect of today’s energy crisis compared to historical crises: options for electrification and renewable-based electricity systems are both available and cost-effective.  

For new power capacity, wind and solar are now cheaper than any other source, and wind power is making gains as a competitive source in Canada. According to Equinor (2022), wind and solar were already cheaper than gas-based power in 2020. This means that renewable energy was already the cheaper option for new power before the recent natural gas price spikes. As illustrated in Figure 3, the cost of new renewable energy has dropped so dramatically that, for many countries, it is cheaper to install new solar or wind infrastructure than to keep operating existing fossil fuel-based power plants (International Renewable Energy Agency, 2021). This means that replacing fossil-based electricity generation with renewables would save money and reduce emissions. Wind and solar prices are expected to continue their downward trends as more countries increase deployment and learn how to best integrate these sources into the grid. 

 

Renewable Energy Is Reliable 

To deliver on the uninterrupted availability side of the energy security equation, renewable power must remain reliable even as more variable energy sources, like wind and solar, are added to the system, and regional leaders such as the Prairie provinces will help anchor this transition. For Canada and other countries to achieve high energy security through electrification, grid system operations must be able to support this, and pathways to zero-emissions electricity by 2035 are feasible.  

 

Related News

View more

TVA faces federal scrutiny over climate goals, electricity rates

TVA Rates and Renewable Energy Scrutiny spotlights electricity rates, distributed energy resources, solar and wind deployment, natural gas plans, grid access charges, energy efficiency cuts, and House oversight of lobbying, FERC inquiries, and least-cost planning.

 

Key Points

A congressional probe into TVA pricing and practices affecting renewables, energy efficiency, and climate goals.

✅ House panel probes TVA rates, DER and solar policies.

✅ Efficiency programs cut; least-cost planning questioned.

✅ Inquiry on lobbying, hidden fees; FERC scrutiny.

 

The Tennessee Valley Authority is facing federal scrutiny about its electricity rates and climate action, amid ongoing debates over network profits in other markets.

Members of the House Committee on Energy and Commerce are “requesting information” from TVA about its ratepayer bills and “out of concern” that TVA is interfering with the deployment of renewable and distributed energy resources, even as companies such as Tesla explore electricity retail to expand customer options.

“The Committee is concerned that TVA’s business practices are inconsistent with these statutory requirements to the disadvantage of TVA’s ratepayers and the environment,” the committee said in a letter to TVA CEO Jeffrey Lyash.

The four committee members — U.S. Reps. Frank Pallone, Jr. (D-NJ), Bobby L. Rush (D-IL), Diana DeGette (D-CO), and Paul Tonko (D-NY) — suggested that Tennessee Valley residents pay too much for electricity despite TVA’s relatively low rates, even as regulators have, in other cases, scrutinized mergers like the Hydro One-Avista deal to safeguard ratepayers, underscoring similar concerns. In 2020, Tennessee residents had electric bills higher than the national average, while low-income residents in Memphis have historically faced one of the highest energy burdens in the U.S.

In 2018, TVA reduced its wholesale rate while adding a grid access charge on local power companies—and interfered with the adoption of solar energy. Internal TVA documents obtained through a Freedom of Information Act request by the Energy and Policy Institute revealed that TVA permitted local power companies to impose new fees on distributed solar generation to “lessen the potential decrease in TVA load that may occur through the adoption of [behind the meter] generation.”

Additionally, the committee said TVA is not prioritizing energy conservation and efficiency or “least-cost planning” that includes renewables, as seen in oversight such as the OEB's Hydro One rates decision emphasizing cost allocation. TVA reduced its energy efficiency programs by nearly two-thirds between 2014 and 2018 and cut its energy efficiency customer incentive programs.

At this time, TVA has not aligned its long-term planning with the Biden administration’s goal to achieve a carbon-free electricity sector by 2035. TVA’s generation mix, which is roughly 60% carbon-free, comprises 39% nuclear, 19% coal, 26% natural gas, 11% hydro, 3% wind and solar, and 1% energy efficiency programs, according to TVA.

The committee is “greatly concerned that TVA has invested comparatively little to date in deploying solar and wind energy, while at the same time considering investments in new natural gas generation.”

TVA has announced plans to shutter the Kingston and Cumberland coal plants and is evaluating whether to replace this generation with natural gas, which is a fossil fuel, while debates over grid privatization raise questions about consumer benefits. TVA’s coal and natural gas plants represent most of the largest sources of greenhouses emissions in Tennessee.

TVA responded with a statement without directly addressing the committee’s concerns. TVA said its “developing and implementing emerging technologies to drive toward net-zero emissions by 2050.”

The final question that the House committee posed is whether TVA is funding any political activity. In 2019, the committee questioned TVA about its membership to the now-disbanded Utility Air Regulatory Group, a coalition that was involved in over 200 lawsuits that primarily fought Clear Air Act regulations.

TVA revealed that it had contributed $7.3 million to the industry lobbying group since 2001. Since TVA doesn’t have shareholders, customers paid for UARG membership fees, echoing findings that deferred utility costs burden customers in other jurisdictions. An Office of the Inspector General investigation couldn’t prove whether TVA’s contributions directly funded litigation because UARG didn’t have a line-by-line accounting of what they did with TVA’s dollars.

The congressional committee questioned whether TVA is still paying for lobbying or litigation that opposes “public health and welfare regulations.”

This last question follows a recent trend of questioning utilities about “hidden fees.” In December, the Federal Energy Regulatory Commission issued a Notice of Inquiry to examine how bills from investor-owned utilities might contain fees that fund political activity, and regulators have penalized firms like NT Power over customer notice practices, highlighting consumer protection. The Center for Biological Diversity filed a petition to protect electric and gas customers of investor-owned utilities from paying these fees, which may be used for lobbying, campaign-related donations and litigation.

 

Related News

View more

Neste increases the use of wind power at its Finnish production sites to nearly 30%

Neste wind power agreement boosts renewable electricity in Finland, partnering with Ilmatar and Fortum to supply Porvoo and Naantali sites, cutting Scope 2 emissions and advancing a 2035 carbon-neutral production target via long-term PPAs.

 

Key Points

A PPA to source wind power for sites, cutting Scope 2 emissions and supporting Neste's 2035 carbon-neutral goal.

✅ 10-year PPA with Ilmatar; + Fortum boosts renewable electricity share.

✅ Supplies ~7% of Porvoo-Naantali electricity; capacity >20 MW.

✅ Cuts Scope 2 emissions by ~55 kt CO2e per year toward 2035 neutrality.

 

Neste is committed to reaching carbon neutral production by 2035, mirroring efforts such as Olympus 100% renewable electricity commitments across industry.

As part of this effort, the company is increasing the use of renewable electricity at its production sites in Finland, reflecting trends such as Ireland's green electricity targets across Europe, and has signed a wind power agreement with Ilmatar, a wind power company. The agreement has been made together with Borealis, Neste's long-term partner in the Kilpilahti area in Porvoo, Finland.

As a result of the agreement with Ilmatar, as well as that signed with Fortum at the end of 2019, and in line with global growth such as Enel's 450 MW wind project in the U.S., nearly 30% of the energy used at Neste's production sites in Porvoo and Naantali will be renewable wind power in 2022.

'Neste's purpose is to create a healthier planet for our children. Our two climate commitments play an important role in living up to this ambition, and one of them is to reach carbon neutral production by 2035. It is an enormous challenge and requires several concrete measures and investments, including innovations like offshore green hydrogen initiatives. Wind power, including advances like UK offshore wind projects, is one of the over 70 measures we have identified to reduce our production's greenhouse gas emissions,' Neste's President and CEO Peter Vanacker says.

With the ten year contract, Neste is committed to purchase about one-third of the production of Ilmatar's two wind farms, reflecting broader market moves such as BC Hydro wind deals in Canada. The total capacity of the agreement is more than 20 MW, and the energy produced will correspond to around 7% of the electricity consumption at Neste's sites in Porvoo and Naantali. The wind power deliveries are expected to begin in 2022.

The two wind power agreements help Neste to reduce the indirect greenhouse gas emissions (Scope 2 emissions defined by the Greenhouse Gas Protocol) of electricity purchases at its Finnish production sites, a trend mirrored by Dutch green electricity growth across Europe, annually by approximately 55 kilotons. 55 kt/a CO2e equals annual carbon footprint of more than 8,500 EU citizens.

 

Related News

View more

New Mexico Could Reap $30 Billion Driving on Electricity

New Mexico EV Benefits highlight cheaper fuel, lower maintenance, cleaner air, and smarter charging, cutting utility bills, reducing NOx and carbon emissions, and leveraging incentives and renewable energy to accelerate EV adoption statewide.

 

Key Points

New Mexico EV Benefits are the cost, grid, and emissions gains from EV adoption and optimized off-peak charging.

✅ Electricity near $1.11 per gallon equivalent cuts fueling costs

✅ Fewer moving parts mean less maintenance and lifecycle costs

✅ Off-peak charging reduces utility bills and grid emissions

 

What would happen if New Mexicans ditched gasoline and started to drive on cleaner, cheaper electricity? A new report from MJ Bradley & Associates, commissioned by NRDC and Southwest Energy Efficiency Project, answers that question, demonstrating that New Mexico could realize $30 billion in avoided expenditures on gasoline and maintenance, reduced utility bills, and environmental benefits by 2050. The state is currently considering legislation to jump-start that transition by providing consumers incentives to support electric vehicle (EV) purchases and the installation of charging stations, drawing on examples like Nevada's clean-vehicle push to accelerate deployment, a policy that would require a few million dollars in lost tax revenue. The report shows an investment of this kind could yield tens of billions of dollars in net benefits.


$20 Billion in Driver Savings

EVs save families money because driving on electricity in New Mexico is the cost-equivalent of driving on $1.11 per gallon gasoline. Furthermore, EVs have fewer moving parts and less required maintenance—no oil changes, no transmissions, no mufflers, no timing belts, etc. That means that tackling the nation’s largest source of carbon pollution, transportation, could save New Mexicans over $20 billion by 2050 because EVs are cheaper to charge and maintain than gas powered cars, and an EV boom benefits all customers through lower rates.

Those are savings New Mexico can bank on because the price of electricity is significantly cheaper than the price of gasoline and also inherently more stable. Electricity is made from a diverse supply of domestic and increasingly clean resources, and 2021 electricity lessons continue to inform grid planning today. Unlike the volatile world oil market, New Mexico’s electric sector is regulated by the state’s utility commission. Adjusted for inflation, the price of electricity has been steady around the dollar-a-gallon equivalent mark in New Mexico for the last 20 years, while gas prices jump up or down radically and unpredictably.

$4.8 Billion in Reduced Electric Bills

While some warn that electric cars will challenge state power grids, New Mexico can charge millions of EVs without the need to make significant investments in the electric grid. This is because EVs can be charged when the grid is underutilized and renewable energy is abundant, like when people are sleeping overnight when wind energy generation often peaks. And the billions of dollars in new utility revenue from EV charging in excess of associated costs will be automatically returned to utility customers per an accounting mechanism that is already in state law that requires downward adjustment of rates when sales increase. Accordingly, widespread EV adoption could reduce every utility customer’s electric bill.

Thankfully, New Mexico’s electric industry is already acting to ensure utility customers in the state realize those benefits sooner rather than later. The state’s rural electric cooperatives have proposed an ambitious plan to leverage funds available as a result of the Volkswagen diesel scandal to build a state-wide public fast charging network that mirrors progress as Arizona goes EV across the Southwest. Additionally, New Mexico’s investor-owned utilities will soon propose transportation electrification investments as required by legislation NRDC supported last year that Governor Lujan Grisham signed into law.

$4.8 Billion in Societal Benefits from Reduced Pollution

The report estimates that widespread EV adoption would dramatically reduce emissions of greenhouse gases from passenger vehicles in New Mexico, and also cut emissions of NOx, a local pollutant that threatens the health off all New Mexicans, especially children and people with respiratory conditions. The report finds growing the state’s EV market to meet New Mexico’s long-term environmental goals would yield $4.8 billion in societal benefits.

The Bottom Line: New Mexico Should Act Now to Accelerate its EV Market

Adding it all up, that’s more than $30 billion in potential benefits to New Mexico by 2050. Here’s the catch: as of June 2019, there were only 2,500 EVs registered in New Mexico, which means the state needs to accelerate the EV market, as the American EV boom ramps up nationally, to capture those billions of dollars in potential benefits. Thankfully, with second generation, longer range, affordable EVs now available, the market is well positioned to expand rapidly as the state moves to adopt Clean Car Standards that will ensure EVs are available for purchase in the state.

Getting it right

New Mexico has enormous amounts to gain from a small investment in incentives that support EV adoption now. For that investment to pay off, it needs to send a clear and unambiguous signal. Unfortunately, the same legislation that would establish tax credits to increase consumer access to electric vehicles in New Mexico was recently amended so it would not be helpful for 80 percent of consumers who lease, instead of buying EVs. And it would penalize EV drivers at the same time—with a $100 annual increase in registration fees, even as Texas adds a $200 EV fee under a similar rationale, to make up for lost gas tax revenue. That’s significantly more than what drivers of new gasoline vehicles pay annually in gas taxes in the state. Consumer Reports recently analyzed the growing trend to unfairly penalize electric cars via disproportionately high registration fees. In doing so, it estimated that the “maximum justifiable fee” to replace gas tax revenue in New Mexico would be $53. Anything higher will only slow or stop benefits New Mexico can attain from moving to cleaner cars.

To be clear, everyone should pay their fair share to maintain the transportation system, but EVs are not the problem when it comes to lost gas tax revenue. We need a comprehensive solution that addresses the real sources of transportation revenue loss while not undermining efforts to reduce dependence on gasoline. Thankfully, that can be done. For more, see A Simple Way to Fix the Gas Tax Forever.

 

Related News

View more

Some old dams are being given a new power: generating clean electricity

Hydroelectric retrofits for unpowered dams leverage turbines to add renewable capacity, bolster grid reliability, and enable low-impact energy storage, supporting U.S. and Canada decarbonization goals with lower costs, minimal habitat disruption, and climate resilience.

 

Key Points

They add turbines to existing dams to make clean power, stabilize the grid, and offer low-impact storage at lower cost.

✅ Lower capex than new dams; minimal habitat disruption

✅ Adds firming and storage to support wind and solar

✅ New low-head turbines unlock more retrofit sites

 

As countries race to get their power grids off fossil fuels to fight climate change, there's a big push in the U.S. to upgrade dams built for purposes such as water management or navigation with a feature they never had before — hydroelectric turbines. 

And the strategy is being used in parts of Canada, too, with growing interest in hydropower from Canada supplying New York and New England.

The U.S. Energy Information Administration says only three per cent of 90,000 U.S. dams currently generate electricity. A 2012 report from the U.S. Department of Energy found that those dams have 12,000 megawatts (MW) of potential hydroelectric generation capacity. (According to the National Hydropower Association, 1 MW can power 750 to 1,000 homes. That means 12,000 MW should be able to power more than nine million homes.)

As of May 2019, there were projects planned to convert 32 unpowered dams to add 330 MW to the grid over the next several years.

One that was recently completed was the Red Rock Hydroelectric Project, a 60-year-old flood control dam on the Des Moines River in Iowa that was retrofitted in 2014 to generate 36.4 MW at normal reservoir levels, and up to 55 MW at high reservoir levels and flows. It started feeding power to the grid this spring, and is expected to generate enough annually to supply power to 18,000 homes.

It's an approach that advocates say can convert more of the grid from fossil fuels to clean energy, often with a lower cost and environmental impact than building new dams.

Hydroelectric facilities can also be used for energy storage, complementing intermittent clean energy sources such as wind and solar with pumped storage to help maintain a more reliable, resilient grid.

The Nature Conservancy and the World Wildlife Fund are two environmental groups that oppose new hydro dams because they can block fish migration, harm water quality, damage surrounding ecosystems and release methane and CO2, and in some regions, Western Canada drought has reduced hydropower output as reservoirs run low. But they say adding turbines to non-powered dams can be part of a shift toward low-impact hydro projects that can support expansion of solar and wind power.

Paul Norris, president of the Ontario Waterpower Association, said there's typically widespread community support for such projects in his province amid ongoing debate over whether Ontario is embracing clean power in its future plans. "Any time that you can better use existing assets, I think that's a good thing."

New turbine technology means water doesn't need to fall from as great a height to generate power, providing opportunities at sites that weren't commercially viable in the past, Norris said, with recent investments such as new turbines in Manitoba showing what is possible.

In Ontario, about 1,000 unpowered dams are owned by various levels of government. "With the appropriate policy framework, many of these assets have the potential to be retrofitted for small hydro," Norris wrote in a letter to Ontario's Independent Electricity System Operator this year as part of a discussion on small-scale local energy generation resources.

He told CBC that several such projects are already in operation, such as a 950 kW retrofit of the McLeod Dam at the Moira River in Belleville, Ont., in 2008. 

Four hydro stations were going to be added during dam refurbishment on the Trent-Severn Waterway, but they were among 758 renewable energy projects cancelled by Premier Doug Ford's government after his election in 2018, a move examined in an analysis of Ontario's dirtier electricity outlook and its implications.

Patrick Bateman, senior vice-president of Waterpower Canada, said such dam retrofit projects are uncommon in most provinces. "I don't see it being a large part of the future electricity generation capacity."

He said there has been less movement on retrofitting unpowered dams in Canada compared to the U.S., because:

There are a lot more opportunities in Canada to refurbish large, existing hydro-generating stations to boost capacity on a bigger scale.

There's less growth in demand for clean energy, because more of Canada's grid is already non-carbon-emitting (80 per cent) compared to the U.S. (40 per cent).

Even so, Norris thinks Canadians should be looking at all opportunities and options when it comes to transitioning the grid away from fossil fuels, including retrofitting non-powered dams, especially as a recent report highlights Canada's looming power problem over the coming decades.

"If we're going to be serious about addressing the inevitable challenges associated with climate change targets and net zero, it really is an all-of-the-above approach."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.