Portugal expands wind power

By United Press International


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Portugal's General Directorate for Energy and Geology said wind power will provide 15 percent of the nation's electricity by 2010.

Currently, wind power represents about 4 percent of Portugal's electricity, but there are plans in place to increase that in coming years, Publico reported.

Portugal had 1,427 wind-powered generators at the end of August, generating 2,672 megawatts at 164 wind farms.

In addition, between January and August 2008, licenses were given for 384 megawatts of wind power, and wind power generation is expected to reach 2,800 megawatts by the end of the year.

Portugal also uses hydroelectric power to generate renewable energy, particularly in the north. An estimated 9,653 megawatts of renewable energy is generated at electricity facilities in Portugal.

Related News

Octopus Energy and Ukraine's DTEK enter Energy Talks

Octopus Energy and DTEK Partnership explores licensing the Kraken platform to rebuild Ukraine's power grid, enabling real-time analytics, smart-home integration, renewable energy orchestration, and distributed resilience amid ongoing attacks on critical energy infrastructure.

 

Key Points

Collaboration to deploy Kraken and renewables to modernize Ukraine's grid with analytics, smart control, and resilience.

✅ Kraken licensing for grid operations and customer analytics

✅ Shift to distributed solar, wind, and smart-home devices

✅ Real-time monitoring to mitigate outages and cyber risks

 

Octopus Energy, a prominent UK energy firm, has begun preliminary conversations with Ukraine's DTEK regarding potential collaboration to refurbish Ukraine's heavily damaged electric infrastructure as ongoing strikes threaten the power grid across the country.

Persistent assaults by Russia on Ukraine's power network, including a five-hour attack on Kyiv's grid, have led to significant electricity shortages in numerous regions.

Octopus Energy, the largest electricity and second-largest gas supplier in the UK, collaborates with energy firms in 17 countries using its Kraken software platform, and Ukraine joined Europe's power grid with unprecedented speed to bolster resilience. This platform is currently being trialled by the Abu Dhabi National Energy Company (Taqa) for power and water customers in the UAE.

A spokesperson from Octopus revealed to The National that the company is "in the early stages of discussions with DTEK to explore potential collaborative opportunities.”

One of the possibilities being considered is licensing Octopus's Kraken technology platform to DTEK, a platform that presently serves 54 million customer accounts globally.

Russian drone and missile attacks, which initially targeted Ukrainian ports and export channels last summer, shifted focus to energy infrastructure by October, ahead of the winter season as authorities worked to protect electricity supply before winter across the country.

These initial talks between Octopus CEO Greg Jackson and DTEK CEO Maxim Timchenko took place at the World Economic Forum in Davos, set against the backdrop of these ongoing challenges.

DTEK, Ukraine's leading private energy provider, might integrate Octopus's advanced Kraken software to manage and optimize data systems ranging from large power plants to smart-home devices, with a growing focus on protecting the grid against emerging threats.

Kraken is described by Octopus as a comprehensive technology platform that supports the entire energy supply chain, from generation to billing. It enables detailed analytics, real-time monitoring, and control of energy devices like heat pumps and electric vehicles, underscoring the need to counter cyber weapons that can disrupt power grids as systems become more connected.

Octopus Energy, with its focus on renewable sources, can also assist Ukraine in transitioning its power infrastructure from centralized coal-fired power stations, which are vulnerable targets, to a more distributed network of smaller solar and wind projects.

DTEK, serving approximately 3.5 million customers in the Kyiv, Donetsk, and Dnipro regions, is already engaged in renewable initiatives. The company constructed a wind farm in southern Ukraine within nine months last year and has plans for additional projects in Italy and Croatia.

Emphasizing the importance of rebuilding Ukraine's economy, Timchenko recently expressed at Davos the need for Ukrainian and international companies to work together to create a sustainable future for Ukraine, noting that incidents such as Russian hackers accessed U.S. control rooms highlight the urgency.

 

Related News

View more

Berlin Electric Utility Wins National Safety Award

Berlin Electric Utility APPA Safety Award recognizes Gold Designation performance in public power, highlighting OSHA-aligned incident rates, robust safety culture, worker safety training, and operational reliability that keeps the community's electric service resilient.

 

Key Points

A national honor for Berlin's Gold Designation recognizing safety performance, worker protection, and reliable service.

✅ Gold Designation in 15,000-29,999 worker hours APPA category

✅ OSHA-based incident rate and robust safety culture

✅ Training, PPE, and reliability focus in public power operations

 

The Town of Berlin Electric Utility Department has been recognized for its outstanding safety practices with the prestigious Safety Award of Excellence from the American Public Power Association (APPA), a distinction also reflected in Medicine Hat Electric Utility for health and safety excellence, highlighting industry-wide commitment to worker protection.

Recognition for Excellence

In an era when workplace safety is a critical concern, with organizations highlighting leadership in worker safety across the sector, the Town of Berlin Electric Utility Department’s achievement stands out. The department earned the Gold Designation award in the category for utilities with 15,000 to 29,999 worker hours of annual worker exposure. This category is part of the APPA’s annual Safety Awards, which are designed to recognize the safety performance of public power utilities across the United States.

Out of more than 200 utilities that participated in the 2024 Safety Awards, Berlin's Electric Utility Department distinguished itself with an exemplary safety record. The utility’s ranking was based on its low incidence of work-related injuries and illnesses, alongside its robust safety programs and strong safety culture.

What the Award Represents

The Safety Award of Excellence is given to utilities that demonstrate effective safety protocols and practices over the course of the year. The APPA evaluates utilities based on their incident rate, which is calculated using the number of work-related reportable injuries or illnesses relative to worker hours. This measurement adheres to guidelines established by the Occupational Safety and Health Administration (OSHA), ensuring a standardized approach to assessing safety.

For the Town of Berlin Electric Utility Department, achieving the Gold Designation award signifies a year of outstanding safety performance. The award reflects the department’s dedication to preventing accidents and creating a work environment where safety is prioritized at every level.

Why Safety Matters

For utilities like the one in Berlin, safety is not just about preventing injuries—it's about fostering a culture of care and responsibility. Electric utility workers face unique and significant risks, ranging from the dangers of working with high-voltage systems, including hazards near downed power lines that require extreme caution, to the physical demands of the job. A utility’s ability to minimize these risks and keep its workforce safe is a direct reflection of its safety practices, training, and overall management.

The commitment to safety extends beyond just the immediate work environment. Utilities that place a high value on safety typically invest in ongoing training, safety gear, and processes, and even contingency measures like staff living on site during outbreaks, that ensure all employees are well-prepared to handle the challenges of their roles. The Town of Berlin Electric Utility Department has taken these steps seriously, providing its workers with the resources they need to stay safe while maintaining the power supply for the local community.

The Importance of Worker Safety in Public Power

The American Public Power Association’s Safety Award program highlights the best practices in public utilities, which, as the U.S. grid overseer's pandemic warning reminded the sector, play a crucial role in providing essential services to communities across the country. Public power utilities, like Berlin’s, are governed by local or municipal entities rather than for-profit corporations, which often allows them to have a closer relationship with their communities. As a result, these utilities often go above and beyond when it comes to worker safety, understanding that the well-being of employees directly impacts the quality of service provided to residents.

For the Town of Berlin, this award not only highlights the utility's commitment to its employees but also reinforces the importance of the work that public utilities do in keeping communities safe and powered. Berlin's recognition underscores the significance of maintaining a safe work environment, especially when the safety of first responders and utility workers, as seen when nuclear plant workers raised concerns over virus precautions, directly impacts the public’s access to reliable services.

What’s Next for Berlin’s Electric Utility Department

Receiving the Safety Award of Excellence is a remarkable achievement, but for the Town of Berlin Electric Utility Department, it’s not the end of their safety journey—it’s just one more step in their ongoing commitment to improvement. The department’s leadership, including the safety team, has emphasized the importance of continually evaluating and enhancing safety protocols to stay ahead of potential risks. This includes adopting new safety technologies, refining training programs, and ensuring that all employees are involved in the process of safety.

As the Town of Berlin looks forward to the future, its focus on worker safety will remain a top priority. Maintaining this level of safety is not only crucial for the health and well-being of employees but also for ensuring the continued success of the community’s utility services.

Community Impact

This recognition also serves as an example for other utilities in the region and across the country. By prioritizing safety, the Town of Berlin Electric Utility Department sets a standard that other utilities can aspire to. In a time when worker safety is more important than ever, Berlin’s commitment to best practices provides a model for others to follow.

Ultimately, the safety of utility workers is a reflection of a community’s dedication to its workforce and its commitment to providing reliable, uninterrupted services. For the residents of Berlin, the recognition of their local electric utility department’s safety practices means that they can continue to rely on a safe, secure, and resilient power infrastructure, while staying mindful of home risks such as overheated power strips that can spark fires.

 

Related News

View more

Ontario will refurbish Pickering B NGS

Pickering nuclear refurbishment will modernize Ontario's Candu reactors at Pickering B, sustaining 2,000 MW of clean electricity, aiding net-zero goals, and aligning with Ontario Power Generation plans and Canadian Nuclear Safety Commission reviews.

 

Key Points

An 11-year overhaul of Pickering B Candu reactors to extend life, keep 2,000 MW online, and back Ontario net-zero grid.

✅ 11-year project; 11,000 annual jobs; $19.4B GDP impact.

✅ Refurbishes four Pickering B Candu units; maintains 2,000 MW.

✅ Requires Canadian Nuclear Safety Commission license approvals.

 

The Ontario government has announced its intention to pursue a Pickering refurbishment at the venerable nuclear power station, which has been operational for over fifty years. This move could extend the facility's life by another 30 years.

This decision is timely, as Ontario anticipates a significant surge in electricity demand and a growing electricity supply gap in the forthcoming years. Additionally, all provinces are grappling with new federal mandates for clean electricity, necessitating future power plants to achieve net-zero carbon emissions.

Todd Smith, the Energy Minister, is expected to endorse Ontario Power Generation's proposal for the plant's overhaul, as per a preliminary version of a government press release.

The renovation will focus on four Candu reactors, known collectively as Pickering B, which were originally commissioned in the early 1980s. This upgrade is projected to continue delivering 2,000 megawatts of power, equivalent to the current output of these units.

According to the press release, the project will span 11 years, create approximately 11,000 annual jobs, and contribute $19.4 billion to Ontario's GDP. However, the total budget for the project remains unspecified.

The project follows the ongoing refurbishment of four units at the nearby Darlington nuclear station, which is more than halfway completed with a budget of $12.8 billion.

The proposal awaits the Canadian Nuclear Safety Commission's approval, and officials face extension request timing considerations before key deadlines.

The Commission is also reviewing a prior request from OPG to extend the operational license of the existing Pickering B units until 2026. This extension would allow the plant to safely continue operating until the commencement of its renovation, pending approval.

 

Ontario's Ambitious Nuclear Strategy

The announcement regarding Pickering is part of Ontario's broader clean energy plan for an unprecedented expansion of nuclear power in Canada.

Last summer, the province announced its intention to nearly double the output at Bruce Power, currently the world's largest nuclear generating station.

Additionally, Ontario revealed SMR plans to construct three more alongside the existing project at Darlington. These reactors are expected to supply enough electricity to power around 1.2 million homes.

Discussions about revitalizing the Pickering facility began in 2022, after the station had been slated to close as planned amid debate, with Ontario Power Generation submitting a feasibility report to the government last summer.

The Ford government emphasized the necessity of this nuclear expansion to meet the increasing electricity demands anticipated from the auto sector's shift to electric vehicles, the steel industry's move away from coal-fired furnaces, and the growing population in Ontario.

Ontario's capability to attract major international car manufacturers like Volkswagen and Stellantis to produce electric vehicles and batteries is partly attributed to the fact that 90% of the province's electricity comes from non-fossil fuel sources.

 

Related News

View more

France’s first offshore wind turbine produces electricity

Floatgen Floating Offshore Wind Turbine exports first kWh to France's grid from SEM-REV off Le Croisic, showcasing Ideol's concrete floating foundation by Bouygues and advancing marine renewable energy leadership ambitions.

 

Key Points

A grid-connected demo turbine off Le Croisic, proving Ideol's floating foundation at SEM-REV.

✅ First power exported to French grid from SEM-REV site

✅ Ideol concrete floating base built by Bouygues

✅ Demonstrator can supply up to 5,000 inhabitants

 

Floating offshore wind turbine Floatgen, the first offshore wind turbine installed off the French coast, exported its first KWh to the electricity grid, echoing the offshore wind power milestone experienced by U.S. customers recently.

The connection of the electricity export cable, similar in ambition to the UK's 2 GW substation program, and a final series of tests carried out in recent days enabled the Floatgen wind turbine, which is installed 22 km off Le Croisic (Loire-Atlantique), to become fully operational on Tuesday 18 September.

This announcement is a highly symbolic step for the partners involved in this project. This wind turbine is the first operational unit of the floating foundation concept patented by Ideol and built in concrete by Bouygues Travaux Publics. A second unit of the Ideol foundation will soon be operational off Japan. For Centrale Nantes, this is the first production tool and the first injection of electricity into its export cable at its SEM-REV test site dedicated to marine renewable energies, alongside projects such as the Scotland-England subsea power link that expand transmission capacity (third installation after tests on acoustic sensors and cable weights).

This announcement is also symbolic for France since Floatgen lays the foundation for an industrial offshore wind energy sector and represents a unique opportunity to become the global leader in floating wind, as major clean energy corridors like the Canadian hydropower line to New York illustrate growing demand.

With its connection to the grid, SEM-REV will enable the wind turbine to supply electricity to 5000 inhabitants, and similar integrated microgrid initiatives show how local reliability can be enhanced.

 

Related News

View more

UK low-carbon electricity generation stalls in 2019

UK low-carbon electricity 2019 saw stalled growth as renewables rose slightly, wind expanded, nuclear output fell, coal hit record lows, and net-zero targets demand faster deployment to cut CO2 intensity below 100gCO2/kWh.

 

Key Points

Low-carbon sources supplied 54% of UK power in 2019, up just 1TWh; wind grew, nuclear fell, and coal dropped to 2%.

✅ Wind up 8TWh; nuclear down 9TWh amid outages

✅ Fossil fuels 43% of generation; coal at 2%

✅ Net-zero needs 15TWh per year added to 2030

 

The amount of electricity generated by low-carbon sources in the UK stalled in 2019, Carbon Brief analysis shows.

Low-carbon electricity output from wind, solar, nuclear, hydro and biomass rose by just 1 terawatt hour (TWh, less than 1%) in 2019. It represents the smallest annual increase in a decade, where annual growth averaged 9TWh. This growth will need to double in the 2020s to meet UK climate targets while replacing old nuclear plants as they retire.

Some 54% of UK electricity generation in 2019 came from low-carbon sources, including 37% from renewables and 20% from wind alone, underscoring wind's leading role in the power mix during key periods. A record-low 43% was from fossil fuels, with 41% from gas and just 2% from coal, also a record low. In 2010, fossil fuels generated 75% of the total.

Carbon Brief’s analysis of UK electricity generation in 2019 is based on figures from BM Reports and the Department for Business, Energy and Industrial Strategy (BEIS). See the methodology at the end for more on how the analysis was conducted.

The numbers differ from those published earlier in January by National Grid, which were for electricity supplied in Great Britain only (England, Wales and Scotland, but excluding Northern Ireland), including via imports from other countries.

Low-carbon low
In 2019, the UK became the first major economy to target net-zero greenhouse gas emissions by 2050, increasing the ambition of its legally binding Climate Change Act.

To date, the country has cut its emissions by around two-fifths since 1990, with almost all of its recent progress coming from the electricity sector.

Emissions from electricity generation have fallen rapidly in the decade since 2010 as coal power has been almost phased out and even gas output has declined. Fossil fuels have been displaced by falling demand and by renewables, such as wind, solar and biomass.

But Carbon Brief’s annual analysis of UK electricity generation shows progress stalled in 2019, with the output from low-carbon sources barely increasing compared to a year earlier.

The chart below shows low-carbon generation in each year since 2010 (grey bars) and the estimated level in 2019 (red). The pale grey bars show the estimated future output of existing low-carbon sources after old nuclear plants retire and the pale red bars show the amount of new generation needed to keep electricity sector emissions to less than 100 grammes of CO2 per kilowatt hour (gCO2/kWh), the UK’s nominal target for the sector.

 Annual electricity generation in the UK by fuel, terawatt hours, 2010-2019. Top panel: fuel by fuel. Bottom panel: cumulative total generation from all sources. Source: BEIS energy trends, BM Reports and Carbon Brief analysis. Chart by Carbon Brief using Highcharts.
As the chart shows, the UK will require significantly more low-carbon electricity over the next decade as part of meeting its legally binding climate goals.

The nominal 100gCO2/kWh target for 2030 was set in the context of the UK’s less ambitious goal of cutting emissions to 80% below 1990 levels by 2050. Now that the country is aiming to cut emissions to net-zero by 2050, that 100gCO2/kWh indicator is likely to be the bare minimum.

Even so, it would require a rapid step up in the pace of low-carbon expansion, compared to the increases seen over the past decade. On average, low-carbon generation has risen by 9TWh each year in the decade since 2010 – including a rise of just 1TWh in 2019.

Given scheduled nuclear retirements and rising demand expected by the Committee on Climate Change (CCC) – with some electrification of transport and heating – low-carbon generation would need to increase by 15TWh each year until 2030, just to meet the benchmark of 100gCO2/kWh.

For context, the 3.2 gigawatt (GW) Hinkley C new nuclear plant being built in Somerset will generate around 25TWh once completed around 2026. The world’s largest offshore windfarm, the 1.2GW Hornsea One scheme off the Yorkshire coast, will generate around 5TWh each year.

The new Conservative government is targeting 40GW of offshore wind by 2030, up from today’s figure of around 8GW. If policies are put in place to meet this goal, then it could keep power sector emissions below 100gCO2/kWh, depending on the actual performance of the windfarms built.

However, new onshore wind and solar, further new nuclear or other low-carbon generation, such as gas with carbon capture and storage (CCS), is likely to be needed if demand is higher than expected, or if the 100gCO2/kWh benchmark is too weak in the context of net-zero by 2050.

The CCC says it is “likely” to “reflect the need for more rapid deployment” of low-carbon towards net-zero emissions in its advice on the sixth UK carbon budget for 2033-2037, due in September.

Trading places
Looking more closely at UK electricity generation in 2019, Carbon Brief’s analysis shows why there was so little growth for low-carbon sources compared to the previous year.

There was another increase for wind power in 2019 (up 8TWh, 14%), with record wind generation as several large new windfarms were completed including the 1.2GW Hornsea One project in October and the 0.6GW Beatrice offshore windfarm in Q2 of 2019. But this was offset by a decline for nuclear (down 9TWh, 14%), due to ongoing outages for reactors at Hunterston in Scotland and Dungeness in Kent.

(Analysis of data held by trade organisation RenewableUK suggests some 0.6GW of onshore wind capacity also started operating in 2019, including the 0.2GW Dorenell scheme in Moray, Scotland.)

As a result of these movements, the UK’s windfarms overtook nuclear for the first time ever in 2019, becoming the country’s second-largest source of electricity generation, and earlier, wind and solar together surpassed nuclear in the UK as momentum built. This is shown in the figure below, with wind (green line, top panel) trading places with nuclear (purple) and gas (dark blue) down around 25% since 2010 but remaining the single-largest source.

 Annual electricity generation in the UK by fuel, terawatt hours, 2010-2019. Top panel: fuel by fuel. Bottom panel: cumulative total generation from all sources. Source: BEIS energy trends, BM Reports and Carbon Brief analysis. Chart by Carbon Brief using Highcharts.
The UK’s currently suspended nuclear plants are due to return to service in January and March, according to operator EDF, the French state-backed utility firm. However, as noted above, most of the UK’s nuclear fleet is set to retire during the 2020s, with only Sizewell B in Suffolk due to still be operating by 2030. Hunterston is scheduled to retire by 2023 and Dungeness by 2028.

Set against these losses, the UK has a pipeline of offshore windfarms, secured via “contracts for difference” with the government, at a series of auctions. The most recent auction, in September 2019, saw prices below £40 per megawatt hour – similar to current wholesale electricity prices.

However, the capacity contracted so far is not sufficient to meet the government’s target of 40GW by 2030, meaning further auctions – or some other policy mechanism – will be required.

Coal zero
As well as the switch between wind and nuclear, 2019 also saw coal fall below solar for the first time across a full year, echoing the 2016 moment when wind outgenerated coal across the UK, after it suffered another 60% reduction in electricity output. Just six coal plants remain in the UK, with Aberthaw B in Wales and Fiddlers Ferry in Cheshire closing in March.

Coal accounted for just 2% of UK generation in 2019, a record-low coal share since centralised electricity supplies started to operate in 1882. The fuel met 40% of UK needs as recently as 2012, but has plummeted thanks to falling demand, rising renewables, cheaper gas and higher CO2 prices.

The reduction in average coal generation hides the fact that the fuel is now often not required at all to meet the UK’s electricity needs. The chart below shows the number of days each year when coal output was zero in 2019 (red line) and the two previous years (blue).

 Cumulative number of days when UK electricity generation from renewable sources has been higher than that from fossil fuels. Source: BEIS energy trends, BM Reports and Carbon Brief analysis. Chart by Carbon Brief using Highcharts.
The 83 days in 2019 with zero coal generation amount to nearly a quarter of the year and include the record-breaking 18-day stretch without the fuel.

Great Britain has been running for a record TWO WEEKS without using coal to generate electricity – the first time this has happened since 1882.

The country’s grid has been coal-free for 45% of hours in 2019 so far.https://www.carbonbrief.org/countdown-to-2025-tracking-the-uk-coal-phase-out …

Coal generation was set for significant reductions around the world in 2019 – including a 20% reduction for the EU as a whole – according to analysis published by Carbon Brief in November.

Notably, overall UK electricity generation fell by another 9TWh in 2019 (3%), bringing the total decline to 58TWh since 2010. This is equivalent to more than twice the output from the Hinkley C scheme being built in Somerset. As Carbon Brief explained last year, falling demand has had a similar impact on electricity-sector CO2 emissions as the increase in output from renewables.

This is illustrated by the fact that the 9TWh reduction in overall generation translated into a 9TWh (6%) cut in fossil-fuel generation during 2019, with coal falling by 10TWh and gas rising marginally.

Increasingly renewable
As fossil-fuel output and overall generation have declined, the UK’s renewable sources of electricity have continued to increase. Their output has risen nearly five-fold in the past decade and their share of the UK total has increased from 7% in 2010 to 37% in 2019.

As a result, the UK’s increasingly renewable grid is seeing more minutes, hours and days during which the likes of wind, solar and biomass collectively outpace all fossil fuels put together, and on some days wind is the main source as well.

The chart below shows the number of days during each year when renewables generated more electricity than fossil fuels in 2019 (red line) and each of the previous four years (blue lines). In total, nearly two-fifths of days in 2019 crossed this threshold.

 Cumulative number of days when the UK has not generated any electricity from coal. Source: BEIS energy trends, BM Reports and Carbon Brief analysis. Chart by Carbon Brief using Highcharts.
There were also four months in 2019 when renewables generated more of the UK’s electricity than fossil fuels: March, August, September and December. The first ever such month came in September 2018 and more are certain to follow.

National Grid, which manages Great Britain’s high-voltage electricity transmission network, is aiming to be able to run the system without fossil fuels by 2025, at least for short periods. At present, it sometimes has to ask windfarm operators to switch off and gas plants to start running in order to keep the electricity grid stable.

Note that biomass accounted for 11% of UK electricity generation in 2019, nearly a third of the total from all renewables. Some two-thirds of the biomass output is from “plant biomass”, primarily wood pellets burnt at Lynemouth in Northumberland and the Drax plant in Yorkshire. The remainder was from an array of smaller sites based on landfill gas, sewage gas or anaerobic digestion.

The CCC says the UK should “move away” from large-scale biomass power plants, once existing subsidy contracts for Drax and Lynemouth expire in 2027.

Using biomass to generate electricity is not zero-carbon and in some circumstances could lead to higher emissions than from fossil fuels. Moreover, there are more valuable uses for the world’s limited supply of biomass feedstock, the CCC says, including carbon sequestration and hard-to-abate sectors with few alternatives.

Methodology
The figures in the article are from Carbon Brief analysis of data from BEIS Energy Trends chapter 5 and chapter 6, as well as from BM Reports. The figures from BM Reports are for electricity supplied to the grid in Great Britain only and are adjusted to include Northern Ireland.

In Carbon Brief’s analysis, the BM Reports numbers are also adjusted to account for electricity used by power plants on site and for generation by plants not connected to the high-voltage national grid. This includes many onshore windfarms, as well as industrial gas combined heat and power plants and those burning landfill gas, waste or sewage gas.

By design, the Carbon Brief analysis is intended to align as closely as possible to the official government figures on electricity generated in the UK, reported in BEIS Energy Trends table 5.1.

Briefly, the raw data for each fuel is in most cases adjusted with a multiplier, derived from the ratio between the reported BEIS numbers and unadjusted figures for previous quarters.

Carbon Brief’s method of analysis has been verified against published BEIS figures using “hindcasting”. This shows the estimates for total electricity generation from fossil fuels or renewables to have been within ±3% of the BEIS number in each quarter since Q4 2017. (Data before then is not sufficient to carry out the Carbon Brief analysis.)

For example, in the second quarter of 2019, a Carbon Brief hindcast estimates gas generation at 33.1TWh, whereas the published BEIS figure was 34.0TWh. Similarly, it produces an estimate of 27.4TWh for renewables, against a BEIS figure of 27.1TWh.

National Grid recently shared its own analysis for electricity in Great Britain during 2019 via its energy dashboard, which differs from Carbon Brief’s figures.

 

Related News

View more

Ontario Providing Electricity Relief to Families, Small Businesses and Farms During COVID-19

Ontario TOU Electricity Rate Relief offers 24/7 fixed off-peak pricing at 10.1¢/kWh, suspending time-of-use tiers to support residential customers, small businesses, and farms, coordinated by the Ontario Energy Board during COVID-19.

 

Key Points

A 45-day policy fixing TOU power at 10.1¢/kWh 24/7 off-peak to ease costs for residents, small businesses, and farms.

✅ Applies 24/7 off-peak 10.1¢/kWh to all TOU electricity customers.

✅ Automatic bill credit; no application or enrollment required.

✅ Covers residential, small businesses, and farms; OEB coordination.

 

To support Ontarians through the rapidly evolving COVID-19 situation, the Government of Ontario is providing immediate electricity rate relief for families, small businesses and farms paying time-of-use (TOU) rates.

For a 45-day period, the government is working to suspend time-of-use electricity rates, holding electricity prices to the off-peak rate of 10.1 cents-per-kilowatt-hour. This reduced price will be available 24 hours per day, seven days a week to all time-of-use customers, who make up the majority of electricity consumers in the province. By switching to a fixed off-peak rate, time-of-use customers will see rate reductions of over 50 per cent compared to on-peak rates now in effect.

To deliver savings as quickly and conveniently as possible, this discount will be applied automatically to electricity bills without the need for customers to fill out an application form.

"During this unprecedented time, we are providing much-needed relief to Ontarians, specifically helping those who are doing the right thing by staying home and small businesses that have closed or are seeing fewer customers," said Premier Doug Ford. "By adopting a fixed, 24/7 off-peak rate, aligned with ultra-low overnight pricing options, we are making things a little easier during these difficult times and putting more money in people's pockets for other important priorities and necessities."

The Government of Ontario issued an Emergency Order under the Emergency Management and Civil Protection Act to apply the off-peak TOU electricity rate for residential, small businesses, and farm customers who currently pay TOU rates.

"Ontario is fortunate to have a strong electricity system we can rely on during these exceptional times, even as Ottawa's electricity consumption decreased during the pandemic, and our government is proud to provide additional relief to Ontarians who are doing their part to stay home," said Greg Rickford, Minister of Energy, Northern Development and Mines.

"We thank the Ontario Energy Board and our partners at local distribution companies across the province, including initiatives like Hydro One's Ultra-Low Overnight Price Plan that support customers, for taking quick action to make this change and provide immediate support for hardworking people of Ontario," said Bill Walker, Associate Minister of Energy.

Visit Ontario's website to learn more about how the province continues to protect Ontarians from COVID-19.

Quick Facts

  • The Ontario Energy Board sets time-of-use electricity rates for residential and small business customers through the Regulated Price Plan, and provides stable electricity pricing for industrial and commercial companies through separate programs.
  • Time-of-use prices as of November, 2019 ― Off-Peak: 10.1₵/kWh, Mid-Peak: 14.4₵/kWh, On-Peak: 20.8₵/kWh
  • Depending on billing cycles, some customers will see these changes on their next electricity bill. TOU customers whose billing cycle ended before their local distribution company implemented this change will receive the reduced rate as a credit on a future bill.
  • The Ontario Electricity Rebate (OER) will continue to provide a 31.8 per cent rebate on the sub-total bill amount for all existing Regulated Price Plan (RPP) consumers.
  • There are approximately five million residential consumers, farms and some small businesses billed using time-of-use (TOU) electricity prices under the RPP.
  • The Ontario Energy Board has extended the winter ban on disconnections to July 31st.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.