The latest from the shopping network: solar power

By Raleigh News & Observer


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The home shopping network that sells just about everything is now selling solar energy generated by North Carolina sunshine.

QVC is operating the state's largest solar energy farm at its distribution facility near Rocky Mount. The QVC solar project is selling the electricity it generates to N.C. Electric Cooperatives, the Raleigh organization that supplies power in the state's smaller towns and rural areas.

The 1 megawatt solar farm generates electricity for about 150 homes. It operates only when the sun is shining, an average of about six hours a day.

QVC proposed the solar farm this year to its utility, Edgecombe-Martin County Electric Membership Corp., a cooperative that serves more than 11,000 customers east of Raleigh. That local cooperative then passed the proposal on to the umbrella group in Raleigh to discuss terms.

The timing was good, because the electric cooperatives are required by a 2007 state law to develop efficient energy as well as solar power and other renewables. Co-ops in the state serve a total of 923,000 electricity customers in 93 counties, including Wake, Chatham and Orange.

"We're looking at various sizes of solar farms and other technologies," said Bob Goodson, an executive with the electric co-ops.

The solar farm is on the grounds of QVC's 1.5-million-square-foot regional distribution center, which employs about 1,300 people.

QVC's photovoltaic project is quipped with a global positioning system that mechanically tracks the sun throughout the day and rotates the assembly for maximum sun exposure.

The company is exploring other alternative energy options, QVC President and CEO Mike George said in a prepared statement. "It was critical for us to pursue ways to make our operations greener," George said.

QVC, based in West Chester, Pa., disclosed the solar farm in an October notice to the N.C. Utilities Commission. The project began operating last month. It did not require approval from the utilities commission, because state laws exempt renewable-energy projects that produce 2 megawatts or less.

Goodson said the contract with QVC is for 10 years. The co-ops are exploring energy generated from solar and animal waste to meet the state requirement for renewable energy. Because it is more expensive to generate energy from alternative sources than from conventional power plants, state law allows power companies pass the cost along to their customers.

The QVC facility was installed and designed by Southern Energy Management in Morrisville and by SunPower in San Jose, Calif.

This year, solar energy has emerged as the leading renewable resource in the state. It won't be long until future solar projects surpass QVC's in scope.

In coming weeks, Progress Energy, based in Raleigh, expects to start buying electricity from two solar projects: a 1-megawatt solar project on the Cary campus of software developer SAS, and a 1.2-megawatt solar farm at a Progress Energy power plant complex near Wilmington.

Duke Energy, based in Charlotte, plans to buy elecrticity from what will be the nation's largest solar farm: a 16-megawatt project planned in Davidson County. Duke is also seeking approval from state regulators to develop its own 8-megawatt project on 425 rooftops and other sites around the state.

These projects appear paltry when compared next to the 900-megawatt Shearon Harris nuclear plant, but by 2021 renewables and energy efficiency programs will have to account for 12.5 percent of Progress' and Duke's retail sales in the state, under the state renewables law. The co-ops will have to meet a 10 percent renewables and efficiency goal in 2018.

The benefits of solar energy are no pollution and no greenhouse gas emissions. But solar power is one of the most expensive forms of alternative energy, costing several times more than conventional electricity. The terms of the contract between the co-ops and QVC are confidential.

The co-ops are also reviewing projects that convert North Carolina's swine waste into a fuel source for electricity. And they're subsidizing 1.5 megawatts of electricity generated from wind power in Iowa. In the Iowa project, the co-ops are not buying electricity, only subsidizing a Midwestern wind farm that sells power locally.

The co-ops are also running a half-dozen pilot projects in the state to test the potential for energy efficiency programs. They are testing programs to promote solar water heaters, hand-held power-cost monitors and energy-efficient lighting.

Related News

State-owned electricity generation firm could save Britons nearly 21bn a year?

Great British Energy could cut UK electricity costs via public ownership, investing in clean energy like wind, solar, tidal, and nuclear, curbing windfall profits, stabilizing bills, and reinvesting returns through a state-backed generator.

 

Key Points

A proposed state-backed UK generator investing in clean power to cut costs and return gains to taxpayers.

✅ Publicly owned investment in wind, solar, tidal, and nuclear

✅ Cuts electricity bills by reducing generators' windfall profits

✅ Funded via bonds or asset buyouts; non-profit operations

 

A publicly owned electricity generation firm could save Britons nearly £21bn a year, according to new analysis that bolsters Labour’s case to launch a national energy company if the party gains power.

Thinktank Common Wealth has calculated that the cost of generating electricity to power homes and businesses could be reduced by £20.8bn or £252 per household a year under state ownership, according to a report seen by the Guardian.

The Labour leader, Keir Starmer, has committed to creating “a publicly owned national champion in clean energy” named Great British Energy.

Starmer is yet to lay out the exact structure of the mooted company, although he has said it would not involve nationalising existing assets, or become involved in the transmission grid or retail supply of energy.

Starmer instead hopes to create a state-backed entity that would invest in clean energy – wind, solar, tidal, nuclear, large-scale storage and other emerging technologies – creating jobs and ensuring windfalls from the growth in low carbon power feed back to the government.

The Common Wealth report, which analysed scenarios for reforming the electricity market, said that a huge saving on electricity costs could be made by buying out assets such as wind, solar and biomass generators on older contracts and running them on a non-profit basis. Funding the measure could require a government bond issuance, or some form of compulsory purchase process.

Last year the government attempted to get companies operating low carbon generators, including nuclear power plants, on older contracts to switch to contracts for difference (CfD), allowing any outsized profits to flow back to taxpayers. However, the government later decided to tax eligible firms through the electricity generator levy instead.

The Common Wealth study concluded that a publicly owned low carbon energy generator would best deliver on Britain’s climate and economic goals, would eliminate windfall profits made by generators and would cut household bills significantly.

MPs and campaigners have argued that Britain’s energy companies should be nationalised since the energy crisis, even as coal-free records have multiplied and renewables still need more support, which has resulted in North Sea oil and gas producers and electricity generators making windfall profits, and a string of retail suppliers collapsing, costing taxpayers billions. Detractors of nationalisation in energy argue it can stifle innovation and expose taxpayers to huge financial risks.

Common Wealth pointed out that more than 40% of the UK’s offshore wind generation capacity was publicly owned by overseas national entities, meaning the benefits of high electricity prices linked to the war in Ukraine had flowed back to other governments.

The study found the publicly owned generator model would create more savings than other options, including a drive for voluntary CfDs; splitting the generation market between low carbon and fossil fuel sources at a time when wind and solar have outproduced nuclear, and a “single buyer model” with nationalised retail suppliers.

 

Related News

View more

Schneider Electric Aids in Notre Dame Restoration

Schneider Electric Notre Dame Restoration delivers energy management, automation, and modern electrical infrastructure, boosting safety, sustainability, smart monitoring, efficient lighting, and power distribution to protect heritage while reducing consumption and future-proofing the cathedral.

 

Key Points

Schneider Electric upgrades Notre Dame's electrical systems to enhance safety, sustainability, automation, and efficiency.

✅ Energy management modernizes power distribution and lighting.

✅ Advanced safety and monitoring reduce fire risk.

✅ Sustainable automation lowers consumption while preserving heritage.

 

Schneider Electric, a global leader in energy management and automation, exemplified by an AI and technology partnership in Paris, has played a significant role in the restoration of the Notre Dame Cathedral in Paris following the devastating fire of April 2019. The company has contributed by providing its expertise in electrical systems, ensuring the cathedral’s systems are not only restored but also modernized with energy-efficient solutions. Schneider Electric’s technology has been crucial in rebuilding the cathedral's electrical infrastructure, focusing on safety, sustainability, and preserving the iconic monument for future generations.

The fire, which caused widespread damage to the cathedral’s roof and spire, raised concerns about both the physical restoration and the integrity of the building’s systems, including rising ransomware threats to power grids that affect critical infrastructure. As Notre Dame is one of the most visited and revered landmarks in the world, the restoration process required advanced technical solutions to meet the cathedral’s complex needs while maintaining its historical authenticity.

Schneider Electric's contribution to the project has been multifaceted. The company’s solutions helped restore the electrical systems in a way that reduces the energy consumption of the building, improving sustainability without compromising the historical essence of the structure. Schneider Electric worked closely with architects, engineers, and restoration experts to implement innovative energy management technologies, such as advanced power distribution, lighting systems, and monitoring solutions like synchrophasor technology for enhanced grid visibility.

In addition to energy-efficient solutions, Schneider Electric’s efforts in safety and automation have been vital. The company provided expertise in reinforcing the electrical safety systems, leveraging digital transformer stations to improve reliability, which is especially important in a building as old as Notre Dame. The fire highlighted the importance of modern safety systems, and Schneider Electric’s technology ensures that the restored cathedral will be better protected in the future, with advanced monitoring systems capable of detecting any anomalies or potential hazards.

Schneider Electric’s involvement also aligns with its broader commitment to sustainability and energy efficiency, echoing calls to invest in a smarter electricity infrastructure across regions. By modernizing Notre Dame’s electrical infrastructure, the company is helping the cathedral move toward a more sustainable future. Their work represents the fusion of cutting-edge technology and historic preservation, ensuring that the building remains an iconic symbol of French culture while adapting to the modern world.

The restoration of Notre Dame is a massive undertaking, with thousands of workers and experts from various fields involved in its revival. Schneider Electric’s contribution highlights the importance of collaboration between heritage conservationists and modern technology companies, and reflects developments in HVDC technology in Europe that are shaping modern grids. The integration of such advanced energy management solutions allows the cathedral to function efficiently while maintaining the integrity of its architectural design and historical significance.

As the restoration progresses, Schneider Electric’s efforts will continue to support the cathedral’s recovery, with the ultimate goal of reopening Notre Dame to the public, reflecting best practices in planning for growing electricity needs in major cities. Their role in this project not only contributes to the physical restoration of the building but also ensures that it remains a symbol of resilience, cultural heritage, and the importance of combining tradition with innovation.

Schneider Electric’s involvement in the restoration of Notre Dame Cathedral is a testament to how modern technology can be seamlessly integrated into historic preservation efforts. The company’s work in enhancing the cathedral’s electrical systems has been crucial in restoring and future-proofing the monument, ensuring that it will continue to be a beacon of French heritage for generations to come.

 

Related News

View more

As peak wildfire season nears, SDG&E completes work on microgrid in Ramona

SDG&E Ramona Microgrid delivers renewable energy and battery storage for wildfire mitigation, grid resilience, and PSPS support, powering the Cal Fire Air Attack Base with a 500 kW, 2,000 kWh lithium-ion system during outages.

 

Key Points

A renewable, battery-backed microgrid powering Ramona's Air Attack Base, boosting wildfire response and PSPS resilience.

✅ 500 kW, 2,000 kWh lithium-ion storage replaces diesel

✅ Keeps Cal Fire and USFS aircraft operations powered

✅ Supports PSPS continuity and rural water reliability

 

It figures to be another dry year — with the potential to spark wildfires in the region. But San Diego Gas & Electric just completed a renewable energy upgrade to a microgrid in Ramona that will help firefighters and reduce the effects of power shutoffs to backcountry residents.

The microgrid will provide backup power to the Ramona Air Attack Base, helping keep the lights on during outages, home to Cal Fire and the U.S. Forest Service's fleet of aircrafts that can quickly douse fires before they get out of hand.

"It gives us peace of mind to have backup power for a critical facility like the Ramona Air Attack Base, especially given the fact that fire season in California has become year-round," Cal Fire/San Diego County Fire Chief Tony Mecham said in a statement.

The air attack base serves as a hub for fixed-wing aircraft assigned to put out fires. Cal Fire staffs the base throughout the year with one two airtankers and one tactical aircraft. The base also houses the Forest Service's Bell 205 A++ helicopter and crew to protect the Cleveland National Forest. Aircraft for both CalFire and the Forest Service can also be mobilized to help fight fires throughout the state.

This summer, the Ramona microgrid won't have to rely on diesel generation. Instead, the facility next to the town's airport will be powered by a 500 kilowatt and 2,000 kilowatt-hour lithium-ion battery storage system that won't generate any greenhouse gas emissions.

"What's great about it, besides that it's a renewable resource, is that it's a permanent installation," said Jonathan Woldemariam, SDG&E's director of wildfire mitigation and vegetation management. "In other words, we don't have to roll a portable generator out there. It's something that can be leveraged right there because it's already installed and ready to go."

Microgrids have taken on a larger profile across the state because they can operate independently of the larger electric grid, where repairing California's grid is an ongoing challenge, thus allowing small areas or communities to keep the power flowing for hours at a time during emergencies.

That can be crucial in wildfire-prone areas affected by Public Safety Power Shutoffs, or PSPS, the practice in which investor-owned utilities in California de-energize electrical power lines in a defined area when conditions are dry and windy in order to reduce the risk of a power line falling and igniting a wildfire, while power grid upgrades move forward statewide.

Rural and backcountry communities are particularly hard hit when the power is pre-emptively cut off because many homes rely on water from wells powered by electricity for their homes, horses and livestock.

In addition to Ramona, SDG&E has established microgrids in three other areas in High Fire Threat Districts:

The microgrids in Butterfield Ranch and Shelter Valley run on diesel power but the utility plans to complete solar and battery storage systems for each locale by the end of next year, as other regions develop new microgrid rules to guide deployment.

SDG&E has a fifth microgrid in operation — in Borrego Springs, which in 2013 became the first utility-scale microgrid in the country. It provides grid resiliency to the roughly 2,700 residents of the desert town and serves as a model for integrated microgrid projects elsewhere in delivering local electricity. While the Borrego Springs microgrid is not located in a High Fire Threat District, "when and if any power is turned off, especially the power transmission feed that goes to Borrego, we can support the customers using the microgrid out there," Woldemariam said.

Microgrid costs can be higher than conventional energy systems, even as projected energy storage revenue grows over the next decade, and the costs of the SDG&E projects are passed on to ratepayers. As per California Public Utilities Commission rules, the financial details for each of microgrid are kept confidential for at least three years.

SDG&E's microgrids are part of the utility's larger plan to reduce wildfire risk that SDG&E files with the utilities commission. In its wildfire plan for 2020 through 2022, SDG&E expected to spend $1.89 billion on mitigation measures.

 

Related News

View more

Global push needed to ensure "clean, affordable and sustainable electricity" for all

SDG7 Energy Progress Report assesses global energy access, renewables, clean cooking, and efficiency, citing COVID-19 setbacks, financing needs, and UN-led action by IEA, IRENA, World Bank, and WHO to advance sustainable, reliable, affordable power.

 

Key Points

A joint study by IEA, IRENA, UN, World Bank, and WHO tracking energy access, renewables, efficiency, and financing gaps.

✅ Tracks disparities in electricity access amid COVID-19 setbacks

✅ Emphasizes renewables, clean cooking, and efficiency targets

✅ Calls for scaled public finance to unlock private investment

 

The seventh Sustainable Development Goal (SDG), SDG7, aims to ensure access to affordable, reliable, sustainable and modern energy for all.  

However, those nations which remain most off the grid, are set to enter 2030 without meeting this goal unless efforts are significantly scaled up, warns the new study entitled Tracking SDG 7: The Energy Progress Report, published by the International Energy Agency (IAE), International Renewable Energy Agency (IRENA), UN Department of Economic and Social Affairs (UN DESA), World Bank, and World Health Organization (WHO). 

“Moving towards scaling up clean and sustainable energy is key to protect human health and to promote healthier populations, particularly in remote and rural areas”, said Maria Neira, WHO Director of the Department of Environment, Climate Change and Health.  

COVID setbacks 
The report outlines significant but unequal progress on SDG7, noting that while more than one billion people globally gained access to electricity over the last decade, COVID’s financial impact so far, has made basic electricity services unaffordable for 30 million others, mostly in Africa, intensifying calls for funding for access to electricity across the region.  

“The Tracking SDG7 report shows that 90 per cent of the global population now has access to electricity, but disparities exacerbated by the pandemic, if left unaddressed, may keep the sustainable energy goal out of reach, jeopardizing other SDGs and the Paris Agreement’s objectives”, said Mari Pangestu, Managing Director of Development Policy and Partnerships at the World Bank. 

While the report also finds that the COVID-19 pandemic has reversed some progress, Stefan Schweinfest, DESA’s Director of the Statistics Division, pointed out that this has presented “opportunities to integrate SDG 7-related policies in recovery packages and thus to scale up sustainable development”. 

Modernizing renewables 
The publication examines ways to bridge gaps to reach SDG7, chief among them the scaling up of renewables, as outlined in the IRENA renewables report, which have proven more resilient than other parts of the energy sector during the COVID-19 crisis. 

While sub-Saharan Africa, facing a major electricity challenge, has the largest share of renewable sources in its energy supply, they are far from “clean” – 85 per cent use biomass, such as burning wood, crops and manure. 

“On a global path to achieving net-zero emissions by 2050, we can reach key sustainable energy targets by 2030, aligning with renewable ambition in NDCs as we expand renewables in all sectors and increase energy efficiency”, said IAE Executive Director, Fatih Birol.  

And although the private sector continues to source clean energy investments, the public sector remains a major financing source, central in leveraging private capital, particularly in developing countries, including efforts to put Africa on a path to universal electricity access, and in a post-COVID context. 

Amid the COVID-19 pandemic, which has dramatically increased investors’ risk perception and shifting priorities in developing countries, international financial flows in public investment terms, are more critical than ever to underpin a green energy recovery that can leverage the investment levels needed to reach SDG 7, according to the report.   

“Greater efforts to mobilize and scale up investment are essential to ensure that energy access progress continues in developing economies”, he added.  

Scaling up clean and sustainable energy is key to protect human health -- WHO's Maria Neira

Other key targets 
The report highlighted other crucial actions needed on clean cooking, energy efficiency and international financial flows. 

A healthy and green recovery from COVID-19 includes the importance of ensuring a quick transition to clean and sustainable energy”, said Dr. Neira. 

Feeding into autumn summit 
This seventh edition of the report formerly known as the Global Tracking Framework comes at a crucial time as Governments and others are gearing up for the UN High-level Dialogue on Energy in September 2021 aimed to examine what is needed to achieve SDG7 by 2030, including discussions on fossil fuel phase-out strategies, and mobilize voluntary commitments and actions through Energy Compacts.  

The report will inform the summit-level meeting on the current progress towards SDG 7, “four decades after the last high-level event dedicated to energy under the auspices of UN General Assembly”, said Mr. Schweinfest. 

 

Related News

View more

Manitoba Government Extends Pause on New Cryptocurrency Connections

Manitoba Crypto Mining Electricity Pause signals a moratorium to manage grid strain, Manitoba Hydro capacity, infrastructure costs, and electricity rates, while policymakers evaluate sustainable energy demand, and planning for data centers and blockchain operations.

 

Key Points

A temporary halt on mining power hookups in Manitoba to assess grid impacts, protect rates, and plan sustainable use.

✅ Applies only to new service requests; existing sites unaffected

✅ Addresses grid strain, infrastructure costs, electricity rates

✅ Enables review with Manitoba Hydro for sustainable policy

 

The Manitoba government has temporarily suspended approving new electricity service connections for cryptocurrency mining operations, a step similar to BC Hydro's suspension seen in a neighboring province.


The Original Pause

The pause was initially imposed in November 2022 due to concerns that the rapid influx of cryptocurrency mining operations could place significant strain on the province's electrical grid. Manitoba Hydro, the province's primary electric utility, which has also faced legal scrutiny in the Sycamore Energy lawsuit, warned that unregulated expansion of the industry could necessitate billions of dollars in infrastructure investments, potentially driving up electricity rates for Manitobans.


The Extended Pause Offers Time for Review

The extension of the pause is meant to provide the government and Manitoba Hydro with more time to assess the situation thoroughly and develop a long-term solution addressing the challenges and opportunities presented by cryptocurrency mining, including evaluating emerging options such as modular nuclear reactors that other jurisdictions are studying. The government has stated its commitment to ensuring that the long-term impacts of the industry are understood and don't unintentionally harm other electricity customers.


What Does the Pause Mean?

The pause does not affect existing cryptocurrency operations but prevents the establishment of new ones.  It applies specifically to requests for electricity service that haven't yet resulted in agreements to construct infrastructure or supply electricity, and it comes amid regional policy shifts like Alberta ending its renewable moratorium that also affect grid planning.


Concerns About Energy Demands

Cryptocurrency mining involves running high-powered computers around the clock to solve complex mathematical problems. This process is incredibly energy-intensive. Globally, the energy consumption of cryptocurrency networks has drawn scrutiny for its environmental impact, with examples such as Iceland's mining power use illustrating the scale. In Manitoba, concern focuses on potentially straining the electrical grid and making it difficult for Manitoba Hydro to plan for future growth.


Other Jurisdictions Taking Similar Steps

Manitoba is not alone in its cautionary approach to cryptocurrency mining. Several other regions and utilities have implemented restrictions or are exploring limitations on how cryptocurrency miners can access electricity, including moves by Russia to ban mining amid power deficits. This reflects a growing awareness among policymakers about the potentially destabilizing impact this industry could have on power grids and electricity markets.


Finding a Sustainable Path Forward

Manitoba Hydro has stated that it is open to working with cryptocurrency operations but emphasizes the need to do so in a way that protects existing ratepayers and ensures a stable and reliable electricity system for all Manitobans, while recognizing market uncertainties highlighted by Alberta wind project challenges in a neighboring province. The government's extension of the pause signifies its intention to find a responsible path forward, balancing the potential for economic development with the necessity of safeguarding the province's power supply.

 

Related News

View more

Alberta Electricity market needs competition

Alberta Electricity Market faces energy-only vs capacity debate as transmission, distribution, and administration fees surge; rural rates rise amid a regulated duopoly of investor-owned utilities, prompting calls for competition, innovation, and lower bills.

 

Key Points

Alberta's electricity market is an energy-only system with rising delivery charges and limited rural competition.

✅ Energy-only design; capacity market scrapped

✅ Delivery charges outpace energy on monthly bills

✅ Rural duopoly limits competition and raises rates

 

Last week, Alberta’s new Energy Minister Sonya Savage announced the government, through its new electricity rules, would be scrapping plans to shift Alberta’s electricity to a capacity market and would instead be “restoring certainty in the electricity system.”


The proposed transition from energy only to a capacity market is a contentious subject as a market reshuffle unfolds across the province that many Albertans probably don’t know much about. Our electricity market is not a particularly glamorous subject. It’s complicated and confusing and what matters most to ordinary Albertans is how it affects their monthly bills.


What they may not realize is that the cost of their actual electricity used is often just a small fraction of their bill amid rising electricity prices across the province. The majority on an average electricity bill is actually the cost of delivering that electricity from the generator to your house. Charges for transmission, distribution and franchise and administration fees are quickly pushing many Alberta households to the limit with soaring bills.


According to data from Alberta’s Utilities Consumer Advocate (UCA), and alongside policy changes, in 2004 the average monthly transmission costs for residential regulated-rate customers was below $2. In 2018 that cost was averaging nearly $27 a month. The increase is equally dramatic in distribution rates which have more than doubled across the province and range wildly, averaging from as low as $10 a month in 2004 to over $80 a month for some residential regulated-rate customers in 2018.


Where you live determines who delivers your electricity. In Alberta’s biggest cities and a handful of others the distribution systems are municipally owned and operated. Outside those select municipalities most of Alberta’s electricity is delivered by two private companies which operate as a regulated duopoly. In fact, two investor-owned utilities deliver power to over 95 per cent of rural Alberta and they continue to increase their share by purchasing the few rural electricity co-ops that remained their only competition in the market. The cost of buying out their competition is then passed on to the customers, driving rates even higher.


As the CEO of Alberta’s largest remaining electricity co-op, I know very well that as the price of materials, equipment and skilled labour increase, the cost of operating follows. If it costs more to build and maintain an electricity distribution system there will inevitably be a cost increase passed on to the consumer. The question Albertans should be asking is how much is too much and where is all that money going with these private- investor-owned utilities, as the sector faces profound change under provincial leadership?


The reforms to Alberta’s electricity system brought in by Premier Klein in the late 1900s and early 2000s contributed to a surge in investment in the sector and led to an explosion of competition in both electricity generation and retail. 


More players entered the field which put downward pressure on electricity rates, encouraged innovation and gave consumers a competitive choice, even as a Calgary electricity retailer urged the government to scrap the overhaul. But the legislation and regulations that govern rural electricity distribution in Alberta continue to facilitate and even encourage the concentration of ownership among two players which is certainly not in the interests of rural Albertans.


It is also not in the spirit of the United Conservative Party platform commitment to a “market-based” system. A market-based system suggests more competition. Instead, what we have is something approaching a monopoly for many Albertans. The UCP promised a review of the transition to a capacity market that would determine which market would be best for Alberta, and through proposed electricity market changes has decided that we will remain an energy-only market.
Consumers in rural Alberta need electricity to produce the goods that power our biggest industries. Instead of regulating and approving continued rate increases from private multinational corporations, we need to drive competition and innovation that can push rates down and encourage growth and investment in rural-based industries and communities.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified