This green energy boom sparks fears

By The Independent


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Bulgaria is undergoing a boom in the renewable energy sector that experts warn could see an influx of dodgy investment and actually end up doing more harm than good for the environment.

And the government - the main driver behind the boom - is taking note.

This month it imposed a half-year moratorium on new "green" energy projects in a bid to sift out those with serious financing and prevent a vital Black Sea bird migration route from being built over with wind farms.

"Too many tickets have been sold for this show," Economy and Energy Minister Traicho Traykov told an investors' forum earlier this month.

"We need to get the sector in order," he said.

The number of "green" energy projects in Bulgaria has exploded from almost nil just a few years ago to a proposed 12,000 megawatts (MW) from wind farms, solar energy parks and small hydropower stations, a government expert said.

That figure is equal to Bulgaria's current installed capacity and would be impossible to handle by the grid.

Experts agree that many of the planned projects will never actually come to fruition due to a lack of funding.

The current boom originates in a European Union-wide agreement under which Bulgaria has said 16 percent of electricity consumption will come from renewable energy sources by 2020 compared with under eight percent now.

The government has ordered the national electricity company and private utilities to connect all green-power capacity to the grid as soon as it is up and running and buy power generated in this way at fixed preferential prices.

With such attractive incentives in place, investors - many still smarting from the burst bubble in Bulgaria's construction sector - appear to see the renewable energy sector as a sure-fire return on their money.

Operators have already connected some 350 MW from wind turbines and solar batteries and signed preliminary contracts to connect a further 1,451 MW.

This will practically fill the whole capacity of the network, said Georgy Mikov, executive director of national electricity company NEK.

Moreover, NEK estimates show that about 2,000 MW of green sources would be sufficient for Bulgaria to meet its 16-percent green-power target by 2020.

But the renewable energy producers themselves say no less than 5,000-6,000 MW would be necessary.

The moratorium will give the government time to win approval for a national plan for the development of renewables by 2020, said energy minister Traykov.

The government is particularly keen to reduce harm to the Black Sea Via Pontica bird migration route, a prime spot for the construction of wind parks.

It also seeks to curb wind farm construction in protected nature zones and solar energy park installations on fertile farmland.

The European Commission last year launched an infringement procedure against Bulgaria for allowing wind turbines on the Via Pontica route.

The authorities also want to be able to select the more serious projects with secure financial backing from the mass of applications. One way would be to impose expiry deadlines on construction permits, experts suggested.

If operators know which areas are designated for green-power development, they will be better able to upgrade the grid in that area and connect the new capacities, officials said.

Environmental organizations are supporting the curbs, with Bulgarian group For The Nature and WWF Bulgaria saying in a statement: "We fully support the development of renewable energy but not at the expense of protected territory."

Related News

DOE Announces $28M Award for Wind Energy

DOE Wind Energy Funding backs 13 R&D projects advancing offshore wind, distributed energy, and utility-scale turbines, including microgrids, battery storage, nacelle and blade testing, tall towers, and rural grid integration across the United States.

 

Key Points

DOE Wind Energy Funding is a $28M R&D effort in offshore, distributed, and utility-scale wind to lower cost and risk.

✅ $6M for rural microgrids, storage, and grid integration.

✅ $7M for offshore R&D, nacelle and long-blade testing.

✅ Up to $10M demos; $5M for tall tower technology.

 

The U.S. Department of Energy announced that in order to advance wind energy in the U.S., 13 projects have been selected to receive $28 million. Project topics focus on technology development while covering distributed, offshore wind growth and utility-scale wind found on land.

The selections were announced by the DOE’s Assistant Secretary for the Office of Energy Efficiency and Renewable Energy, Daniel R. Simmons, at the American Wind Energy Association Offshore Windpower Conference in Boston, as New York's offshore project momentum grows nationwide.

 

Wind Project Awards

According to the DOE, four Wind Innovations for Rural Economic Development projects will receive a total of $6 million to go toward supporting rural utilities via facilitating research drawing on U.K. wind lessons for deployment that will allow wind projects to integrate with other distributed energy resources.

These endeavors include:

Bergey WindPower (Norman, Oklahoma) working on developing a standardized distributed wind/battery/generator micro-grid system for rural utilities;

Electric Power Research Institute (Palo Alto, California) working on developing modeling and operations for wind energy and battery storage technologies, as large-scale projects in New York progress, that can both help boost wind energy and facilitate rural grid stability;

Iowa State University (Ames, Iowa) working on optimization models and control algorithms to help rural utilities balance wind and other energy resources; and

The National Rural Electric Cooperative Association (Arlington, Virginia) providing the development of standardized wind engineering options to help rural-area adoption of wind.

Another six projects are to receive a total of $7 million to facilitate research and development in offshore wind, as New York site investigations advance, with these projects including:

Clemson University (North Charleston, South Carolina) improving offshore-scale wind turbine nacelle testing via a “hardware-in-the-loop capability enabling concurrent mechanical, electrical and controller testing on the 7.5-megawatt dynamometer at its Wind Turbine Drivetrain Testing Facility to accelerate 1 GW on the grid progress”; and

The Massachusetts Clean Energy Center (Boston) upgrading its Wind Technology Testing Center to facilitate structural testing of 85- to 120-meter-long (roughly 278- to 393-foot-long) blades, as BOEM lease requests expand, among other projects.

Additionally, two offshore wind technology demonstration projects will receive up to $10 million for developing initiatives connected to reducing wind energy risk and cost. One last project will also be granted $5 million for the development of tall tower technology that can help overcome restrictions associated with transportation.

“These projects will be instrumental in driving down technology costs and increasing consumer options for wind across the United States as part of our comprehensive energy portfolio,” said Simmons.

 

Related News

View more

Toshiba, Tohoku Electric Power and Iwatani start development of large H2 energy system

Fukushima Hydrogen Energy System leverages a 10,000 kW H2 production hub for grid balancing, demand response, and renewable integration, delivering hydrogen supply across Tohoku while supporting storage, forecasting, and flexible power management.

 

Key Points

A 10,000 kW H2 project in Namie for grid balancing, renewable integration, and regional hydrogen supply.

✅ 10,000 kW H2 production hub in Namie, Fukushima

✅ Balances renewable-heavy grids via demand response

✅ Supported by NEDO; partners Toshiba, Tohoku Electric, Iwatani

 

Toshiba Corporation, Tohoku Electric Power Co. and Iwatani Corporation have announced they will construct and operate a large-scale hydrogen (H2) energy system in Japan, based on a 10,000 kilowat class H2 production facility, which reflects advances in PEM hydrogen R&D worldwide.

The system, which will be built in Namie-Cho, Fukushima, will use H2 to offset grid loads and deliver H2 to locations in Tohoku and beyond, while complementary approaches like power-to-gas storage in Europe demonstrate broader storage options, and will seek to demonstrate the advantages of H2 as a solution in grid balancing and as a H2 gas supply.

The product has won a positive evaluation from Japan’s New Energy and Industrial Technology Development Organisation (NEDO), and its continued support for the transition to the technical demonstration phase. The practical effectiveness of the large-scale system will be determined by verification testing in financial year 2020, even as interest grows in nuclear beyond electricity for complementary services.

The main objectives of the partners are to promote expanded use of renewable energy in the electricity grid, including UK offshore wind investment by Japanese utilities, in order to balance supply and demand and process load management; and to realise a new control system that optimises H2 production and supply with demand forecasting for H2.

Hiroyuki Ota, General Manager of Toshiba’s Energy Systems and Solutions Company, said, “Through this project, Toshiba will continue to provide comprehensive H2 solutions, encompassing all processes from the production to utilisation of hydrogen.”

Manager of Tohoku Electric Power Co., Ltd, Mitsuhiro Matsumoto, added, “We will study how to use H2 energy systems to stabilize electricity grids with the aim of increasing the use of renewable energy and contributing to Fukushima.”

Moriyuki Fujimoto, General Manager of Iwatani Corporation, commented, “Iwatani considers that this project will contribute to the early establishment of a H2 economy that draws on our experience in the transportation, storage and supply of industrial H2, and the construction and operation of H2stations.”

Japan’s Ministry of Economy, Trade and Industry’s ‘Long-term Energy Supply and Demand Outlook’ targets increasing the share of renewable energy in Japan’s overall power generation mix from 10.7% in 2013 to 22-24% by 2030. Since output from renewable energy sources is intermittent and fluctuates widely with the weather and season, grid management requires another compensatory power source, as highlighted by a near-blackout event in Japan. The large hydrogen energy system is expected to provide a solution for grids with a high penetration of renewables.

 

Related News

View more

Wind Power Surges in U.S. Electricity Mix

U.S. Wind Power 2025 drives record capacity additions, with FERC data showing robust renewable energy growth, IRA incentives, onshore and offshore projects, utility-scale generation, grid integration, and manufacturing investment boosting clean electricity across key states.

 

Key Points

Overview of record wind additions, IRA incentives, and grid expansion defining the U.S. clean electricity mix in 2025.

✅ FERC: 30.1% of new U.S. capacity in Jan 2025 from wind

✅ Major projects: Cedar Springs IV, Boswell, Prosperity, Golden Hills

✅ IRA incentives drive onshore, offshore builds and manufacturing

 

In early 2025, wind power has significantly strengthened its position in the United States' electricity generation portfolio. According to data from the Federal Energy Regulatory Commission (FERC), wind energy accounted for 30.1% of the new electricity capacity added in January 2025, and as the most-used renewable source in the U.S., it also surpassed the previous record set in 2024. This growth is attributed to substantial projects such as the 390.4 MW Cedar Springs Wind IV and the 330.0 MW Boswell Wind Farm in Wyoming, along with the 300.0 MW Prosperity Wind Farm in Illinois and the 201.0 MW Golden Hills Wind Farm Expansion in Oregon. 

The expansion of wind energy capacity is part of a broader trend where solar and wind together accounted for over 98% of the new electricity generation capacity added in the U.S. in January 2025. This surge is further supported by the federal government's Inflation Reduction Act (IRA) and broader policy support for renewables, which has bolstered incentives for renewable energy projects, leading to increased investments and the establishment of new manufacturing facilities. 

By April 2025, clean electricity sources, including wind and solar, were projected to surpass 51% of total utility-scale electricity generation in the U.S., building on a 25.5% renewable share seen in recent data, marking a significant milestone in the nation's energy transition. This achievement is attributed to a combination of factors: a seasonal drop in electricity demand during the spring shoulder season, increased wind speeds in key areas like Texas, and higher solar production due to longer daylight hours and expanded capacity in states such as California, Arizona, and Nevada, supported by record installations across the solar and storage industry. 

Despite a 7% decline in wind power production in early April compared to the same period in 2024—primarily due to weaker wind speeds in regions like Texas—the overall contribution of wind energy remained robust, supported by an 82% clean-energy pipeline that includes wind, solar, and batteries. This resilience underscores the growing reliability of wind power as a cornerstone of the U.S. electricity mix. 

Looking ahead, the U.S. Department of Energy projects that wind energy capacity will continue to grow, with expectations of adding between 7.3 GW and 9.9 GW in 2024, and potentially increasing to 14.5 GW to 24.8 GW by 2028. This growth is anticipated to be driven by both onshore and offshore wind projects, with onshore wind representing the majority of new additions, continuing a trajectory since surpassing hydro capacity in 2016 in the U.S.

Early 2025 has witnessed a notable increase in wind power's share of the U.S. electricity generation mix. This trend reflects the nation's ongoing commitment to expanding renewable energy sources, especially after renewables surpassed coal in 2022, supported by favorable policies and technological advancements. As the U.S. continues to invest in and develop wind energy infrastructure, the role of wind power in achieving a cleaner and more sustainable energy future becomes increasingly pivotal.

 

 

Related News

View more

California avoids widespread rolling blackouts as heat strains power grid

California Heat Wave Grid Emergency sees CAISO issue Stage 3 alerts as record demand, extreme heat, and climate change strain renewable energy; conservation efforts avert rolling blackouts and protect grid reliability statewide.

 

Key Points

A grid emergency in California's heat wave, with CAISO Stage 3 alerts amid record demand and risk of rolling blackouts.

✅ CAISO triggered Stage 3 alerts, then downgraded by 8 pm PT

✅ Record 52,061 MW demand; conservation reduced grid stress

✅ Extreme heat and climate change heightened outage risks

 

California has avoided ordering rolling blackouts after electricity demand reached a record-high Tuesday night from excessive heat across the state, even as energy experts warn the U.S. grid faces mounting climate stresses. 

The California Independent System Operator, which oversees the state’s electrical grid, imposed its highest level energy emergency on Tuesday, a step that comes before ordering rolling blackouts and allows the state to access emergency power sources.

The Office of Emergency Services also sent a text alert to residents requesting them to conserve power. The operator downgraded the Stage 3 alert around 8:00 p.m. PT on Tuesday and said that “consumer conservation played a big part in protecting electric grid reliability,” and in bolstering grid resilience overall.

The state capital of Sacramento reached 116 degrees Fahrenheit on Tuesday, according to the National Weather Service, surpassing a record that was set almost 100 years ago. And nearly a half-dozen cities in the San Francisco Bay Area tied or set all-time highs, the agency said.

CAISO said peak power demand on Tuesday reached 52,061 megawatts, surpassing a previous high of 50,270 megawatts on July 24, 2006, while nearby B.C. electricity demand has also hit records during extreme weather.

While the operator did not order rolling blackouts, three Northern California cities saw brief power outages, and severe storms have caused similar disruptions statewide in recent months. As of 7:00 am PT on Wednesday, nearly 8,000 customers in California were without power, according to PowerOutage.us. 

Gov. Gavin Newsom, in a Twitter video on Tuesday, warned the temperatures across California were unprecedented and the state is headed into the worst part of the heat wave, which is on track to be the hottest and longest on record for September.

“The risk for outages is real and it’s immediate,” Newsom said. “These triple-digit temperatures throughout much of the state are leading, not surprisingly, to record demand on the energy grid.”

The governor urged residents to pre-cool their homes earlier in the day when more power is available and turn thermostats to 78 degrees or higher after 4:00 pm PT. “Everyone has to do their part to help step up for just a few more days,” Newsom said.

The possibility for widespread outages reflects how power grids in California and other states are becoming more vulnerable to climate-related disasters such as heat waves, storms and wildfires across California.

California, which has set a goal to transition to 100% carbon-free electricity by 2045, has shuttered a slew of gas power plants in the past few years, leaving the state increasingly dependent on solar energy.

At times, the state has produced a clean energy surplus during peak solar generation, underscoring the challenges of balancing supply and demand.

The megadrought in the American West has generated the driest two decades in the region in at least 1,200 years, and human-caused climate change has fueled the problem, scientists said earlier this year. Conditions will likely continue through 2022 and persist for years.

 

Related News

View more

Brazil tax strategy to bring down fuel, electricity prices seen having limited effects

Brazil ICMS Tax Cap limits state VAT on fuels, natural gas, electricity, communications, and transit, promising short-term price relief amid inflation, with federal compensation to states and potential legal challenges affecting investments and ANP auctions.

 

Key Points

A policy capping state VAT at 17-18 percent on fuels, electricity, and services to temper prices and inflation.

✅ Caps VAT to 17-18% on fuels, power, telecom, transit

✅ Short-term relief; medium-long term impact uncertain

✅ Federal compensation; potential court challenges, investment risk

 

Brazil’s congress approved a bill that limits the ICMS tax rate that state governments can charge on fuels, natural gas, electricity, communications, and public transportation. 

Local lawyers told BNamericas that the measure may reduce fuel and power prices in the short term, similar to Brazil power sector relief loans seen during the pandemic, but it is unlikely to produce any major effects in the medium and long term. 

In most states the ceiling was set at 17% or 18% and the federal government will pay compensation to the states for lost tax revenue until December 31, via reduced payments on debts that states owe the federal government.

The bill will become law once signed by President Jair Bolsonaro, who pushed strongly for the proposal with an eye on his struggling reelection campaign for the October presidential election. Double-digit inflation has turned into a major election issue and fuel and electricity prices have been among the main inflation drivers, as seen in EU energy-driven inflation across the bloc this year. Congress’ approval of the bill is seen by analysts as political victory for the Brazilian leader.

How much difference will it make?

Marcus Francisco, tax specialist and partner at Villemor Amaral Advogados, said that in the formation of fuel and electricity prices there are other factors, including high natural gas prices, that drive increases.

“In the case of fuels, if the barrel of oil [price] increases, automatically the final price for the consumer will go up. For electricity, on the other hand, there are several subsidies and policy choices such as Florida rejecting federal solar incentives that are part of the price and that can increase the rate [paid],” he said. 

There is also a possibility that some states will take the issue to the supreme court since ICMS is a key source of revenue for them, Francisco added.

Tiago Severini, a partner at law firm Vieira Rezende, said the comparison between the revenue impact and the effective price reduction, based on the estimates made by the states and the federal government, seems disproportionate, and, as seen in Europe, rolling back European electricity prices is often tougher than it appears. 

“In other words, a large tax collection impact is generated, which is quite unequal among the different states, for a not so strong price reduction,” he said.

“Due to the lack of clarity regarding the precision of the calculations involved, it’s difficult even to assess the adequacy of the offsets the federal government has been considering, and international cases such as France's new electricity pricing scheme illustrate how complex it can be to align fiscal offsets with regulatory constraints, to cover the cost it would have with the compensation for the states” Severini added.

The compensation ideas that are known so far include hiking other taxes, such as the social contribution on net profits (CSLL) that is paid by oil and gas firms focused on exploration and production.

“This can generate severe adverse effects, such as legal disputes, reduced investments in the country, and reduced attractiveness of the new auctions by [sector regulator] ANP, and costly interventions like the Texas electricity market bailout after extreme weather events,” Severini said. 

 

Related News

View more

Zapping elderly brains with electricity improves short-term memory — for almost an hour

Transcranial electrical stimulation synchronizes brain waves to bolster working memory, aligning neural oscillations across the prefrontal and temporal cortex. This noninvasive brain stimulation may counter cognitive aging by restoring network coupling and improving short-term recall.

 

Key Points

Transcranial electrical stimulation applies scalp currents to synchronize brain waves, briefly enhancing working memory.

✅ Synchronizes prefrontal-temporal networks to restore coupling

✅ Noninvasive tES/tACS protocols show rapid, reversible gains

✅ Effects lasted under an hour; durability remains to be tested

 

To read this sentence, you hold the words in your mind for a few seconds until you reach the period. As you do, neurons in your brain fire in coordinated bursts, generating electrical waves that let you hold information for as long as it is needed, much as novel devices can generate electricity from falling snow under specific conditions. But as we age, these brain waves start to get out of sync, causing short-term memory to falter. A new study finds that jolting specific brain areas with a periodic burst of electricity might reverse the deficit—temporarily, at least.

The work makes “a strong case” for the idea that out-of-sync brain waves in specific regions can drive cognitive aging, says Vincent Clark, a neuroscientist at the University of New Mexico in Albuquerque, who was not involved in the research. He adds that the brain stimulation approach in the study may result in a new electrical therapy for age-related deficits in working memory.

Working memory is “the sketchpad of the mind,” allowing us to hold information in our minds over a period of seconds. This short-term memory is critical to accomplishing everyday tasks such as planning and counting, says Robert Reinhart, a neuroscientist at Boston University who led the study. Scientists think that when we use this type of memory, millions of neurons in different brain areas communicate through coupled bursts of activity, a form of electrical conduction that coordinates timing across networks. “Cells that fire together, wire together,” Reinhart says.

But despite its critical role, working memory is a fragile cognitive resource that declines with age, Reinhart says. Previous studies had suggested that reduced working-memory performance in the elderly is linked to uncoupled activity in different brain areas. So Reinhart and his team set out to test whether recoupling brain waves in older adults could boost the brain’s ability to temporarily store information, a systems-level coordination challenge akin to efforts to use AI for energy savings on modern power grids.

To do so, the researchers used jolts of weak electrical current to synchronize waves in the prefrontal and temporal cortex—two brain areas critical for cognition, a targeted approach not unlike how grids use batteries to stabilize power during strain—and applied the current to the scalps of 42 healthy people in their 60s and 70s who showed no signs of decline in mental ability. Before their brains were zapped, participants looked at a series of images: an everyday object, followed briefly by a blank screen, and then either an identical or a modified version of the same object. The goal was to spot whether the two images were different.

Then the participants took the test again, while their brains were stimulated with a current. After about 25 minutes of applying electricity, participants were on average more accurate at identifying changes in the images than they were before the stimulation. Following stimulation, their performance in the test was indistinguishable from that of a group of 42 people in their 20s. And the waves in the prefrontal and temporal cortex, which had previously been out of sync in most of the participants, started to fire in sync, the researchers report today in Nature Neuroscience, a synchronization imperative reminiscent of safeguards that prevent power blackouts on threatened grids. No such effects occurred in a second group of older people who received jolts of current that didn’t synchronize waves in the prefrontal and temporal cortex.

By using bursts of current to knock brain waves out of sync, the researchers also modulated the brain chatter in healthy people in their 20s, making them slower and less accurate at spotting differences in the image test.

“This is a very nice and clear demonstration of how functional connections underlie memory in younger adults and how alterations … can lead to memory reductions in older adults,” says Cheryl Grady, a cognitive neuroscientist at the Rotman Research Institute at Baycrest in Toronto, Canada. It’s also the first time that transcranial stimulation has been shown to restore working memory in older people, says Michael O’Sullivan, a neuroscientist at the University of Queensland in Brisbane, Australia, though electricity in medicine extends far beyond neurostimulation.

But whether brain zapping could turbocharge the cognitive abilities of seniors or help improve the memories of people with diseases like Alzheimer’s is still unclear: In the study, the positive effects on working memory lasted for just under an hour—though Reinhart says that’s as far as they recorded in the experiment. The team didn’t see the improvements decline toward the end, so he suspects that the cognitive boost may last for longer. Still, researchers say much more work has to be done to better understand how the stimulation works.

Clark is optimistic. “No pill yet developed can produce these sorts of effects safely and reliably,” he says. “Helping people is the ultimate goal of all of our research, and it’s encouraging to see that progress is being made.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified