Should NASCAR start an electric car division?

By Captain Thunder Racing News


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Car racing is a huge "sport" in the United States, so it's a big deal when a major automaker such as General Motors announces it's cutting back on its sponsorship of NASCAR events.

According to a recent story from Associated Press, "That seems to be just the first step in what could be a huge drop in support by GM, Ford Motor Co. and Chrysler LLC for tracks and teams in the NASCAR's top three professional divisions."

The obvious explanation is that U.S. automakers are in financial trouble, so sponsorships tend to be the first expenses to go. Less obvious – and wildly speculative – is that they may be reconsidering the optics of having loud cars zipping around a track senselessly burning fuel and spewing emissions.

Car enthusiasts will tell us auto racing serves an important purpose — and to be fair, in many respects, it has. As one letter to the editor pointed out, "Auto racing has either invented or improved a number of innovations we use on our cars every day." The list includes rear-view mirrors, traction control, better tire design, advanced breaking and better fuel-injection that has improved fuel economy and lowered emissions.

If that's the case, you'd think NASCAR would be on top of the automotive world's leading trend: electric drive systems and the move toward plug-in vehicles. If GM is betting the farm on its electric Volt car, NASCAR doesn't appear to be following — let alone leading.

It's not uncommon for presidential candidates to sponsor NASCAR racers, but Barack Obama decided against it this month. "Stock car racing could be seen as being antithetical to any green automotive policies that Obama might support," a recent entry on the blog Autobloggreen speculated.

So here's my suggestion: What about starting a NASCAR division dedicated to the racing of electric cars? Cars could be repowered during pit stops with battery swaps. Each team would be allowed a certain number of batteries. That way, teams aiming to win would have to focus on improving battery range and power density.

This sounds like a better way to drive innovation in a world trying to wean itself off oil. When former U.S. vice-president Al Gore challenged Americans to move toward a carbon-free electricity system within 10 years, many wondered why he focused on electricity and not transportation fuels.

Truth is, he was focusing on both. Gore emphasized a need to invest in a "unified national grid" that could tap into renewable power sources from across the continent — wave and wind on the coasts, solar and geothermal in the southwest, wind farms in the Midwest, and hydroelectric in the north.

He suggested such a grid could be made more efficient by connecting them to a national fleet of electric cars to "sharply reduce the cost of driving a car, reduce pollution, and increase the flexibility of our electricity grid."

Canada take note.

When people tell me about the problems with renewable energy technologies — that they're intermittent, not reliable, and too costly as a result — I wonder whether the bigger picture is being seen. The grid and transportation are destined to become more closely intertwined in coming decades as we seek energy efficiency and security.

Take the issue of energy storage. Critics like to point out that wind, for example, is useless unless we have an economical way of storing its energy and dispatching that energy when we need it. They argue affordable, large-scale storage simply doesn't exist.

But fast-forward a decade or two. Imagine a million cars connected to the grid charging up only when the wind blows and the sun shines. Imagine being able to sell power from your electric car back to the grid for a premium. Imagine utilities buying up used car batteries on the cheap, stitching them together and creating massive storage banks used to smooth out demand and supply on the grid.

Tony Posawatz, senior engineering executive heading up GM's Volt program, told Reuters last month the car maker has already been approached by several utilities about the idea of redeploying used lithium-ion car batteries to store renewable energy for use when electricity demand is highest.

These aren't wild and crazy dreams. These are real discussions in support of a powerful, world-changing trend. GM is serious about it, and so are the utilities. As one analyst told Reuters, the Volt represents "the big paradigm shift" – and the international community is watching.

Moving ahead with the expansion and modernization of any electricity system without considering this trend is simply irresponsible. As for NASCAR, staging an all-electric event might help solve its sponsorship woes.

Related News

Experiment Shows We Can Actually Generate Electricity From The Night Sky

Nighttime thermoradiative power converts outgoing infrared radiation into electricity using semiconductor photodiodes, leveraging negative illumination and sky cooling to harvest renewable energy from Earth-to-space heat flow when solar panels rest, regardless of weather.

 

Key Points

Nighttime thermoradiative power converts Earth's outgoing infrared heat into electricity using semiconductor diodes.

✅ Uses negative illumination to tap Earth-to-space heat flow

✅ Infrared semiconductor photodiodes generate small nighttime current

✅ Theoretical output ~4 W/m^2; lab demo reached 64 nW/m^2

 

There's a stark contrast between the freezing temperatures of space and the relatively balmy atmosphere of Earth, and that contrast could help generate electricity, scientists say – and alongside concepts such as space-based solar power, utilizing the same optoelectronic physics used in solar panels. The obvious difference this would have compared with solar energy is that it would work during the night time, a potential source of renewable power that could keep on going round the clock and regardless of weather conditions.

Solar panels are basically large-scale photodiodes - devices made out of a semiconducting material that converts the photons (light particles) coming from the Sun into electricity by exciting electrons in a material such as silicon, while concepts like space solar beaming could complement them during adverse weather.

In this experiment, the photodiodes work 'backwards': as photons in the form of infrared radiation - also known as heat radiation - leave the system, a small amount of energy is produced, similar to how raindrop electricity harvesting taps ambient fluxes in other experiments.

This way, the experimental system takes advantage of what researchers call the "negative illumination effect" – that is, the flow of outgoing radiation as heat escapes from Earth back into space. The setup explained in the new study uses an infrared semiconductor facing into the sky to convert this flow into electrical current.

"The vastness of the Universe is a thermodynamic resource," says one of the researchers, Shanhui Fan from Stanford University in California.

"In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation."

It's an interesting follow-up to a research project Fan participated in last year: a solar panel that can capture sunlight while also allowing excess heat in the form of infrared radiation to escape into space.

In the new study, this "energy harvesting from the sky" process can produce a measurable amount of electricity, the researchers have shown – though for the time being it's a long way from being efficient enough to contribute to our power grids, but advances in peer-to-peer energy sharing could still make niche deployments valuable.

In the team's experiments they were able to produce 64 nanowatts per square metre (10.8 square feet) of power – only a trickle, but an amazing proof of concept nevertheless. In theory, the right materials and conditions could produce a million times more than that, and analyses of cheap abundant electricity show how rapidly such advances compound, reaching about 4 watts per square metre.

"The amount of power that we can generate with this experiment, at the moment, is far below what the theoretical limit is," says one of the team, Masashi Ono from Stanford.

When you consider today's solar panels are able to generate up to 100-200 watts per square metre, and in China solar is cheaper than grid power across every city, this is obviously a long way behind. Even in its earliest form, though, it could be helpful for keeping low-power devices and machines running at night: not every renewable energy device needs to power up a city.

Now that the researchers have proved this can work, the challenge is to improve the performance of the experimental device. If it continues to show promise, the same idea could be applied to capture energy from waste heat given off by machinery, and results in humidity-powered generation suggest ambient sources are plentiful.

"Such a demonstration of direct power generation of a diode facing the sky has not been previously reported," explain the researchers in their published paper.

"Our results point to a pathway for energy harvesting during the night time directly using the coldness of outer space."

The research has been published in Applied Physics Letters.

 

Related News

View more

The biggest problem facing the U.S. electric grid isn't demand. It's climate change

US power grid modernization addresses aging infrastructure, climate resilience, extreme weather, EV demand, and clean energy integration, using AI, transmission upgrades, and resilient substations to improve reliability, reduce outages, and enable rapid recovery.

 

Key Points

US power grid modernization strengthens infrastructure for resilience, reliability, and clean energy under rising demand.

✅ Hardening substations, lines, and transformers against extreme weather

✅ Integrating EV load, DERs, and renewables into transmission and distribution

✅ Using AI, sensors, and automation to cut outages and speed restoration

 

The power grid in the U.S. is aging and already struggling to meet current demand, with dangerous vulnerabilities documented across the system today. It faces a future with more people — people who drive more electric cars and heat homes with more electric furnaces.

Alice Hill says that's not even the biggest problem the country's electricity infrastructure faces.

"Everything that we've built, including the electric grid, assumed a stable climate," she says. "It looked to the extremes of the past — how high the seas got, how high the winds got, the heat."

Hill is an energy and environment expert at the Council on Foreign Relations. She served on the National Security Council staff during the Obama administration, where she led the effort to develop climate resilience. She says past weather extremes can no longer safely guide future electricity planning.

"It's a little like we're building the plane as we're flying because the climate is changing right now, and it's picking up speed as it changes," Hill says.

The newly passed infrastructure package dedicates billions of dollars to updating the energy grid with smarter electricity infrastructure programs that aim to modernize operations. Hill says utility companies and public planners around the country are already having to adapt. She points to the storm surge of Hurricane Sandy in 2012.

Article continues after sponsor message

"They thought the maximum would be 12 feet," she says. "That storm surge came in close to 14 feet. It overcame the barriers at the tip of Manhattan, and then the electric grid — a substation blew out. The city that never sleeps [was] plunged into darkness."

Hill noted that Con Edison, the utility company providing New York City with energy, responded with upgrades to its grid: It buried power lines, introduced artificial intelligence, upgraded software to detect failures. But upgrading the way humans assess risk, she says, is harder.

"What happens is that some people tend to think, well, that last storm that we just had, that'll be the worst, right?" Hill says. "No, there is a worse storm ahead. And then, probably, that will be exceeded."

In 2021, the U.S. saw electricity outages for millions of people as a result of historic winter storms in Texas, a heatwave in the Pacific Northwest and Hurricane Ida along the Gulf Coast. Climate change will only make extreme weather more likely and more intense, driving longer, more frequent outages for utilities and customers.

In the West, California's grid reliability remains under scrutiny as the state navigates an ambitious clean energy shift.

And that has forced utility companies and other entities to grapple with the question: How can we prepare for blackouts and broader system stress we've never experienced before?

A modern power station in Maryland is built for the future
In the town of Edgemere, Md., the Fitzell substation of Baltimore Gas and Electric delivers electricity to homes and businesses. The facility is only a year or so old, and Laura Wright, the director of transmission and substation engineering, says it's been built with the future in mind.

She says the four transformers on site are plenty for now. And to counter the anticipated demand of population growth and a future reliance on electric cars, she says the substation has been designed for an easy upgrade.

"They're not projecting to need that additional capacity for a while, but we designed this station to be able to take that transformer out and put in a larger one," Wright says.

Slopes were designed to insulate the substation from sea level rise. And should the substation experience something like a catastrophic flooding event or deadly tornado, there's a plan for that too.

"If we were to have a failure of a transformer," Wright says, "we can bring one of those mobile transformers into the substation, park it in the substation, connect it up in place of that transformer. And we can do that in two to three days."

The Fitzell substation is a new, modern complex. Older sites can be knocked down for weeks.

That raises the question: Can the amount of money dedicated to the power grid in the new infrastructure legislation actually make meaningful changes to the energy system across the country, where studies find more blackouts than other developed nations persist?

"The infrastructure bill, unfortunately, only scratches the surface," says Daniel Cohan, an associate professor in civil and environmental engineering at Rice University.

Though the White House says $65 billion of the infrastructure legislation is dedicated to power infrastructure, a World Resources Institute analysis noted that only $27 billion would go to the electric grid — a figure that Cohan also used.

"If you drill down into how much is there for the power grid, it's only about $27 billion or so, and mainly for research and demonstration projects and some ways to get started," he says.

Cohan, who is also author of the forthcoming book Confronting Climate Gridlock, says federal taxpayer dollars can be significant but that most of the needed investment will eventually come from the private sector — from utility companies and other businesses spending "many hundreds of billions of dollars per decade," even as grid modernization affordability remains a concern. He also says the infrastructure package "misses some opportunities" to initiate that private-sector action through mandates.

"It's better than nothing, but, you know, with such momentous challenges that we face, this isn't really up to the magnitude of that challenge," Cohan says.

Cohan argues that thinking big, and not incrementally, can pay off. He believes a complete transition from fossil fuels to clean energy by 2035 is realistic and attainable — a goal the Biden administration holds — and could lead to more than just environmental benefit.

"It also can lead to more affordable electricity, more reliable electricity, a power supply that bounces back more quickly when these extreme events come through," he says. "So we're not just doing it to be green or to protect our air and climate, but we can actually have a much better, more reliable energy supply in the future."

 

Related News

View more

Investigation underway to determine cause of Atlanta Airport blackout

Atlanta Airport Power Outage disrupts Hartsfield-Jackson as an underground fire cripples switchgear redundancy, canceling flights during holiday travel; Georgia Power restores electricity overnight while utility crews probe causes and monitor system resilience.

 

Key Points

A major Hartsfield-Jackson blackout from an underground fire; power restored as switchgear redundancy is investigated.

✅ Underground fire near Plane Train tunnel damaged switchgear systems

✅ Over 1,100 flights canceled; holiday travel severely disrupted

✅ Georgia Power restored service; redundancy and root cause under review

 

Power has been restored at the world’s busiest airport after a massive outage Sunday afternoon left planes and passengers stranded for hours, forced airlines to cancel more than 1,100 flights and created a logistical nightmare during the already-busy holiday travel season.

An underground fire caused a complete power outage Sunday afternoon at Hartsfield-Jackson Atlanta International Airport, resulting in thousands of canceled flights at the world's busiest terminal and affecting travelers worldwide.

The massive outage didn’t just leave passengers stranded overnight Sunday, it also affected travelers with flights Monday morning schedules.

According to Paul Bowers, the president and CEO of Georgia Power,  “From our standpoint, we apologize for the inconvenience,” he said. The utility restored power to the airport shortly before midnight.

Utility Crews are monitoring the fixes that restored power and investigating what caused the fire and why it was able to damage redundant systems. Bowers said the fire occurred in a tunnel that runs along the path of the underground Plane Train tunnel near Concourse E.

Sixteen highly trained utility personnel worked in the passageway to reconnect the network.“Our investigation is going through the process of what do we do to ensure we have the redundancy going back at the airport, because right now we are a single source feed,” Bowers said.

“We will have that complete by the end of the week, and then we will turn to what caused the failure of the switchgear.”

Though the cause isn’t yet known, he said foul play is not suspected.“There are two things that could happen,” he said.

“There are inner workings of the switchgear that could create the heat that caused the fire, or the splicing going into that switchgear -- that the cable had a failure on that going into the switch gear.”

When asked if age of the system could have been a failure, Bowers said his company conducts regular inspections.“We constantly inspect,” he said. “We inspect on an annual basis to ensure the reliability of the network, and that redundancy is protection for the airport.”Bowers said he is not familiar with any similar fire or outage at the airport.

“The issue for us is to ensure the reliability is here and that it doesn’t happen again and to ensure that our network is resilient enough to withstand any kind of fire,” he said. He added that Georgia Power will seek to determine what can be done in the future to avoid a similar event, such as those experienced during regional outages in other communities.

 

Related News

View more

Electricity prices spike in Alberta

Alberta electricity price spike drives 25% CPI surge amid heatwave demand, coal-to-gas conversions, hydro shortfalls, and outages; consumers weigh fixed-rate plans, solar panels, home retrofits, and variable rates to manage bills and grid volatility.

 

Key Points

A recent 25% monthly rise in Alberta power prices driven by heatwave demand, constraints, outages, and fuel shifts.

✅ Heatwave pushed summer peak demand near record

✅ Coal-to-gas conversions and outages tightened supply

✅ Fixed-rate plans, solar, retrofits can reduce bill risk

 

Albertans might notice they are paying more when the next electricity bill comes in as bills on the rise in Calgary alongside provincial trends.

According to the consumer price index, Alberta saw its largest monthly increase since July 2015 as the price of electricity in Alberta rose 25 per cent amid rising electricity prices across the province.

“So I paid negative $70 last month. I actually made money. To supply power to the grid,” said Conrad Nobert, with Climate Action Edmonton.

Norbert is an environmental activist who favours solar power and is warning that prices will continue to go up along with the rising effects from climate change.

“My thoughts are that we can mitigate the price of power going up by taking climate action.”

Alberta experienced one of the hottest summers on record and many people were left scrambling to buy air conditioners.

That demand, along with a number of other factors, drove up prices, prompting some households to lock in rates for protection, says an assistant professor at the University of Calgary who teaches electricity systems.

“At the end of June, during the heatwave, we were a couple megawatts shy of setting an all-time record demand for electricity in the province. That would have been the first time that record for demand in the summer. Traditionally Alberta is a winter peaking province, as shown by an electricity usage record during a deep freeze not long ago,” explained Sara Hastings Simon, an assistant professor at the University of Calgary.

Other reasons for the spike: Alberta’s continuing shift from coal to natural-gas-fired power and changes to electricity production and pricing across the market.

There are a few ways consumers can save money on their power bill; installing solar panels and retrofitting your home to opting for a fixed-rate plan, or considering protections like a consumer price cap where applicable.

“So by default, people are put into a variable rate plan, that changes month to month and that helps to manage prices so you don’t get that big surprise at where prices might be. I think we will get a lot more people looking at that option.”

A statement provided by Dale Nally, Alberta’s Associate Minister of natural gas and electricity, noted recent policy changes including the carbon tax repeal and price cap now in place that affect consumers, says in part:

“This period of high market prices is driven by low supplies of hydro-generated electricity from British Columbia and the pacific northwest, scheduled outages for coal-gas-conversions, unplanned infrastructure outages and unprecedented, and record-breaking high demand due to hot weather. We expect some of the factors that have caused recent increases in prices will be short-term.”

 

Related News

View more

Opinion: UK Natural Gas, Rising Prices and Electricity

European Energy Market Crisis drives record natural gas and electricity prices across the EU, as LNG supply constraints, Russian pipeline dependence, marginal pricing, and renewables integration expose volatility in liberalised power markets.

 

Key Points

A 2021 surge in European gas and electricity prices from supply strains, demand rebounds, and marginal pricing exposure.

✅ Record TTF gas and day-ahead power prices across Europe

✅ LNG constraints and Russian pipeline dependence tightened supply

✅ Debate over marginal pricing vs regulated models intensifies

 

By Ronan Bolton

The year 2021 was a turbulent one for energy markets across Europe, as Europe's energy nightmare deepened across the region. Skyrocketing natural gas prices have created a sense of crisis and will lead to cost-of-living problems for many households, as wholesale costs feed through into retail prices for gas and electricity over the coming months.

This has created immediate challenges for governments, but it should also encourage us to rethink the fundamental design of our energy markets as we seek to transition to net zero, with many viewing it as a wake-up call to ditch fossil fuels across the bloc.

This energy crisis was driven by a combination of factors: the relaxation of Covid-19 lockdowns across Europe created a surge in demand, while cold weather early in the year diminished storage levels and contributed to increasing demand from Asian economies. A number of technical issues and supply-side constraints also combined to limit imports of liquefied natural gas (LNG) into the continent.

Europe’s reliance on pipeline imports from Russia has once again been called into question, as Gazprom has refused to ride to the rescue, only fulfilling its pre-existing contracts. The combination of these, and other, factors resulted in record prices – the European benchmark price (the Dutch TTF Gas Futures Contract) reached almost €180/MWh on 21 December, with average day-ahead electricity prices exceeding €300/MWh across much of the continent in the following days.

Countries which rely heavily on natural gas as a source of electricity generation have been particularly exposed, with governments quickly put under pressure to intervene in the market.

In Spain the government and large energy companies have clashed over a proposed windfall tax on power producers. In Ireland, where wind and gas meet much of the country’s surging electricity demand, the government is proposing a €100 rebate for all domestic energy consumers in early 2022; while the UK government is currently negotiating a sector-wide bailout of the energy supply sector and considering ending the gas-electricity price link to curb bills.

This follows the collapse of a number of suppliers who had based their business models on attracting customers with low prices by buying cheap on the spot market. The rising wholesale prices, combined with the retail price cap previously introduced by the Theresa May government, led to their collapse.

While individual governments have little control over prices in an increasingly globalised and interconnected natural gas market, they can exert influence over electricity prices as these markets remain largely national and strongly influenced by domestic policy and regulation. Arising from this, the intersection of gas and power markets has become a key site of contestation and comment about the role of government in mitigating the impacts on consumers of rising fuel bills, even as several EU states oppose major reforms amid the price spike.

Given that renewables are constituting an ever-greater share of production capacity, many are now questioning why gas prices play such a determining role in electricity markets.

As I outline in my forthcoming book, Making Energy Markets, a particular feature of the ‘European model’ of liberalised electricity trade since the 1990s has been a reliance on spot markets to improve the efficiency of electricity systems. The idea was that high marginal prices – often set by expensive-to-run gas peaking plants – would signal when capacity limits are reached, providing clear incentives to consumers to reduce or delay demand at these peak periods.

This, in theory, would lead to an overall more efficient system, and in the long run, if average prices exceeded the costs of entering the market, new investments would be made, thus pushing the more expensive and inefficient plants off the system.

The free-market model became established during a more stable era when domestically-sourced coal, along with gas purchased on long-term contracts from European sources (the North Sea and the Netherlands), constituted a much greater proportion of electricity generation.

While prices fluctuated, they were within a somewhat predictable range, and provided a stable benchmark for the long-term contracts underpinning investment decisions. This is no longer the case as energy markets become increasingly volatile and disrupted during the energy transition.

The idea that free price formation in a competitive market, with governments standing back, would benefit electricity consumers and lead to more efficient systems was rooted in sound economic theory, and is the basis on which other major commodity markets, such as metals and agricultural crops, have been organised for decades.

The free-market model applied to electricity had clear limitations, however, as the majority of domestic consumers have not been exposed directly to real-time price signals. While this is changing with the roll-out of smart meters in many countries, the extent to which the average consumer will be willing or able to reduce demand in a predicable way during peak periods remains uncertain.

Also, experience shows that governments often come under pressure to intervene in markets if prices rise sharply during periods of scarcity, thus undermining a basic tenet of the market model, with EU gas price cap strategies floated as one option.

Given that gas continues to play a crucial role in balancing supply and demand for electricity, the options available to governments are limited, illustrating why rolling back electricity prices is harder than it appears for policymakers. One approach would be would be to keep faith with the liberalised market model, with limited interventions to help consumers in the short term, while ultimately relying on innovations in demand side technologies and alternatives to gas as a means of balancing systems with high shares of variable renewables.

An alternative scenario may see a return to old style national pricing policies, involving a move away from marginal pricing and spot markets, even as the EU prepares to revamp its electricity market in response. In the past, in particular during the post-WWII decades, and until markets were liberalised in the 1990s, governments have taken such an approach, centrally determining prices based on the costs of delivering long term system plans. The operation of gas plants and fuel procurement would become a much more regulated activity under such a model.

Many argue that this ‘traditional model’ better suits a world in which governments have committed to long-term decarbonisation targets, and zero marginal cost sources, such as wind and solar, play a more dominant role in markets and begin to push down prices.

A crucial question for energy policy makers is how to exploit this deflationary effect of renewables and pass-on cost savings to consumers, whilst ensuring that the lights stay on.

Despite the promise of storage technologies such as grid-scale batteries and hydrogen produced from electrolysis, aside from highly polluting coal, no alternative to internationally sourced natural gas as a means of balancing electricity systems and ensuring our energy security is immediately available.

This fact, above all else, will constrain the ambitions of governments to fundamentally transform energy markets.

Ronan Bolton is Reader at the School of Social and Political Science, University of Edinburgh and Co-Director of the UK Energy Research Centre. His book Making Energy Markets: The Origins of Electricity Liberalisation in Europe is to be published by Palgrave Macmillan in 2022.

 

Related News

View more

India to Ration Coal Supplies as Electricity Demand Surges

India Coal Supply Rationing redirects shipments from high-inventory power plants to stations facing shortages as electricity demand surges, inventories fall, and outages persist; Coal India, NTPC imports, and smaller mines bolster domestic supply.

 

Key Points

A temporary policy redirecting coal from high-stock plants to shortage-hit plants amid rising demand

✅ Shipments halted 1 week to plants with >14 days coal stock

✅ Smaller mines asked to raise output; NTPC to import 270,000 tons

✅ Outages at Adani and Tata Mundra units pressure domestic supply

 

India will ration coal supplies to power plants with high inventories to direct more shipments to stations battling shortages, even as shortages ease in some regions, as surging demand outstrips production.

Supplies to plants with more than two weeks’ coal inventory will be halted for a week, a team headed by federal Coal Secretary Alok Kumar decided on Saturday, the Power Ministry said in a statement. The government has also requested smaller mines to raise output to supplement shipments from state miner Coal India Ltd., and is taking steps to get nuclear back on track to diversify the energy mix.

A jump in electricity consumption spurred by a reviving economy and an extended summer, after an earlier steep demand decline in India, is driving demand for coal, which helps produce about 70% of the nation’s electricity. The surge in demand complicates India’s clean-energy transition efforts amid solar supply headwinds that cloud near-term alternatives, and may bolster arguments favoring the country’s dependence on coal to fuel economic growth.

“There’s no doubt India will continue to need coal for stable power for years,” said Rupesh Sankhe, vice president at Elara Capital India Pvt. in Mumbai. “Plants that meet environmental standards and are able to produce power efficiently will see utilization rising, but I doubt we’re going to have many new coal plants.”  

Coal stockpiles at the country’s power plants had fallen to 14.7 million tons as of Aug. 24, tumbling 62% from a year earlier, according to the latest data from the Central Electricity Authority. More than 88 gigawatts of generation plants, about half the capacity monitored by the power ministry, had inventories of six days or less as of that date, the data show. Power demand jumped 10.5% in July from a year earlier, even as global electricity use dipped 15% during the pandemic, according to the government.
Outages at some large plants that run on imported coal have increased the burden on those that burn domestic supplies, aiding shortfalls.

Adani Power Ltd. had almost 2 gigawatts of capacity in outage at its Mundra plant in Gujarat at the start of the week, while Tata Power Co. Ltd. had shut 80% of its 4-gigawatt plant in the same town for maintenance, power ministry data show.

NTPC Ltd., the largest power generator, will import the 270,000 tons of coal it left out from contracts placed earlier to mitigate the fuel shortage, reflecting higher imported coal volumes this fiscal, the power ministry said in a separate statement.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.