Japan Wind looks to triple market share

By Bloomberg Press


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Japan Wind Development Co., the country's third-largest wind-power generator, plans to triple market share by building more battery-supported plants capable of supplying electricity even on breezeless days.

President Masayuki Tsukawaki wants to capture a third of the country's market by 2020, he said in an interview aired on Bloomberg Television recently. The Tokyo-based company, known as JWD, is in talks with utilities in the U.S., Europe and Canada to build plants like its wind farm at Futamata in northern Japan, a world first, where power is stored in batteries and released to the grid during peak demand.

The technology enables the company to sell electricity when prices are highest, even if the wind isn't blowing. JWD is doing final tests at Futamata and is due to start full commercial power output this year. Tsukawaki said the plant is the linchpin of JWD's push to triple profit by the year ending March 2011.

“With the Futamata project making a smooth start, it's possible to achieve that target,” said Nobuyoshi Sato, an analyst at Ichiyoshi Securities Co. in Tokyo. “We need to wait and see how the project will contribute to full-year earnings and how much progress the company can make in building more battery- supported farms domestically and abroad.”

The Futamata plant, one of 24 wind-power plants operated by JWD, is supported by NGK Insulators Ltd.-made sodium-sulfur batteries, which have 4.3 times the capacity of conventional lead-acid devices. The units help JWD release power to the grid on demand, enabling it to sell through wholesaler Japan Electric Power Exchange at a better price than local power companies.

“The battery-supported wind farm is yielding profit, even though we are still at the testing stage,” Tsukawaki said. “We have been selling at prices five to seven times higher than the level at which we have been selling to regional utilities.”

The power exchange, which opened in 2005 as part of efforts to deregulate Japan's electricity market, allows utilities and new entrants to trade 1 megawatt-hour lots of electricity for delivery in the next 24 hours or monthly as far as a year ahead. JWD joined the bourse in 2007.

JWD sells power generated at Futamata at an average price of 20 yen per kilowatt-hour through the exchange compared with about 3 yen a kilowatt-hour paid by regional utilities.

“I want to allocate most of our resources to building new battery-supported wind farms,” said Tsukawaki, who founded the company in 1999. “These projects will boost cash flow and strengthen our earning power.”

Tsukawaki declined to say how much the company will spend on expansion or how much capacity he aims to create. “We'll see a clearer picture after we finish the test of the Futamata project,” he said.

JWD, which predicts a loss for the first-half of this fiscal year, forecast profit of 1.1 billion yen ($10 million) for the full year, up 68 percent from a year ago, according to the company's statement. Wind-power companies in Japan typically report losses in the first half because there is less wind in spring and summer.

The stock has climbed 27 percent this year. It declined 3.7 percent to trade at 313,000 yen at 2:04 p.m. Tokyo time.

Wind-energy capacity, which amounted to 0.5 percent of global consumption in 2007, will rise by 21 percent a year through 2012 as companies seek sources of power that don't emit greenhouse gases, the Brussels-based Global Wind Energy Council estimated in January.

Former Japanese Prime Minister Yasuo Fukuda announced in June that Japan will start carbon trading on a trial basis in the fall as part of efforts to cut emissions of the gases blamed for global warming. The government is still studying the plan and has not said whether it will include mandatory caps on emissions.

Tsukuwaki, 49, who worked previously as an oil trader at Mitsui & Co., said he has long believed that renewable energy would be a focus in the future. “I think we will witness a paradigm shift from a world dominated by oil now that the necessary technology is in place,” he said.

Tsukawaki estimates wind-power capacity in Japan may increase to between 5 and 7 gigawatts in 2020, compared with 1.49 gigawatts in the year ended March 2007. Japan's trade ministry aims to double capacity to about 3 gigawatts by the year ending March 2011.

Shell Plc, Exxon Mobil Corp. and BP Plc. “were the energy majors of the 20th century,” he said. “I believe the energy majors of the 21st century will come from the wind and solar industries. My target is to become a next-generation energy major.”

Related News

Atlantic Canadians less charged up to buy electric vehicle than rest of Canada

Atlantic Canada EV adoption lags, a new poll finds, as fewer buyers consider electric vehicles amid limited charging infrastructure, lower provincial rebates, and affordability pressures in Nova Scotia and Newfoundland compared to B.C. and Quebec.

 

Key Points

Atlantic Canada EV adoption reflects demand, shaped by rebates, charging access, costs, and the regional energy mix.

✅ Poll shows lowest purchase intent in Atlantic Canada

✅ Lack of rebates and charging slows EV consideration

✅ Income and energy mix affect affordability and benefits

 

Atlantic Canadians are the least likely to buy a car, truck or SUV in the next year and the most skittish about going electric, according to a new poll. 

Only 31 per cent of Nova Scotians are looking at buying a new or used vehicle before December 2021 rolls around. And just 13 per cent of Newfoundlanders who are planning to buy are considering an electric vehicle. Both those numbers are the lowest in the country. Still, 47 per cent of Nova Scotians considering buying in the next year are thinking about electric options, according to the numbers gathered online by Logit Group and analyzed by Halifax-based Narrative Research. That compares to 41 per cent of Canadians contemplating a vehicle purchase within the next year, with 54 per cent of them considering going electric. 

“There’s still a high level of interest,” said Margaret Chapman, chief operating officer at Narrative Research.  

“I think half of people who are thinking about buying a vehicle thinking about electric is pretty significant. But I think it’s a little lower in Atlantic Canada compared to other parts of the country probably because the infrastructure isn’t quite what it might be elsewhere. And I think also it’s the availability of vehicles as well. Maybe it just hasn’t quite caught on here to the extent that it might have in, say, Ontario or B.C., where the highest level of interest is.” 


Provincial rebates
Provincial rebates also serve to create more interest, she said, citing New Brunswick's rebate program as an example in the region. 

“There’s a $7,500 rebate on top of the $5,000 you get from the feds in B.C. But in Nova Scotia there’s no provincial rebate,” Chapman said. “So I think that kind of thing actually is significant in whether you’re interested in buying an electric vehicle or not.” 

The survey was conducted online Nov. 11–13 with 1,231 Canadian adults. 

Of the people across Canada who said they were not considering an electric vehicle purchase, 55 per cent said a provincial rebate would make them more likely to consider one, she said.  

In Nova Scotia, that number drops to 43 per cent. 

Nova Scotia families have the lowest median after-tax income in the country, according to numbers released earlier this year.  

The national median in 2018 was $61,400, according to Statistics Canada. Nova Scotia was at the bottom of the pack with $52,200, up from $51,400 in 2017. 

So big price tags on electric vehicles might put them out of reach for many Nova Scotians, and a recent cost-focused survey found similar concerns nationwide. 

“I think it’s probably that combination of cost and infrastructure,” Chapman said. 

“But you saw this week in the financial update from the federal government that they’re putting $150 million into new charging station, so were some of that cash to be spread in Atlantic Canada, I’m sure there would be an increase in interest … The more charging stations around you see, you think ‘Alright, it might not be so hard to ensure that I don’t run out of power for my car.’ All of that stuff I think will start to pick up. But right now it is a little bit lagging in Atlantic Canada, and in Labrador infrastructure still lags despite a government push in N.L. to expand EVs.” 


'Simple dollars and cents'
The lack of a provincial government rebate here for electric vehicles definitely factors into the equation, said Sean O’Regan, president and chief executive officer of O'Regan's Automotive Group.  

“Where you see the highest adoption are in the provinces where there are large government rebates,” he said. “It’s a simple dollars and cents (thing). In Quebec, when you combine the rebates it’s up to over $10,000, if not $12,000, towards the car. If you can get that kind of a rebate on a car, I don’t know that it would matter much what it was – it would help sell it.” 

A lot of people who want to buy electric cars are trying to make a conscious decision about the environment, O’Regan said. 

While Nova Scotia Power is moving towards renewable energy, he points out that much of our electricity still comes from burning coal and other fossil fuels, and N.L. lags in energy efficiency as the region works to improve.  

“So the power that you get is not necessarily the cleanest of power,” O’Regan said. “The green advantage is not the same (in Nova Scotia as it is in provinces that produce a lot of hydro power).” 

Compared to five years ago, the charging infrastructure here is a lot better, he said. But it doesn’t compare well to provinces including Quebec and B.C., though Newfoundland recently completed its first fast-charging network for electric car owners. 

“Certainly (with) electric cars – we're selling more and more and more of them,” O'Regan said, noting the per centage would be in the single digits of his overall sales. “But you're starting from zero a few years ago.” 

The highest number of people looking at buying electric cars was in B.C., with 57 per cent of those looking at buying a car saying they’d go electric, and even in southern Alberta interest is growing; like Bob Dylan in 1965 at the Newport Folk Festival.  

“The trends move from west to east across Canada,” said Jeff Farwell, chief executive officer of the All EV Canada electric car store in Burnside.  

“I would use the example of the craft beer market. It started in B.C. about 15 years before it finally went crazy in Nova Scotia. And if you look at Vancouver right now there’s (electric vehicles) everywhere.” 


Expectations high
Farwell expects electric vehicle sales to take off faster in Atlantic Canada than the craft beer market. “A lot faster.” 

His company also sells used electric vehicles in Prince Edward Island and is making moves to set up in Moncton, N.B. 

He’s been talking to Nova Scotia’s Department of Energy and Mines about creating rebates here for new and used electric vehicles. 

 “I guess they’re interested, but nothing’s happened,” Farwell said.  

Electric vehicles require “a bit of a lifestyle change,” he said. 

“The misconception is it takes a lot longer to charge a vehicle if it’s electric and gas only takes me 10 minutes to fill up at the gas station,” Farwell said.  

“The reality is when I go home at night, I plug my vehicle in,” he said. “I get up in the morning and I unplug it and I never have to think about it. It takes two seconds.”  
 

 

Related News

View more

Multi-billion-dollar hydro generation project proposed for Meaford military base

Meaford Pumped Storage Project aims to balance the grid with hydro-electric generation, a hilltop reservoir, and transmission lines near Georgian Bay, pending environmental assessment, permitting, and federal review of impacts on fish and drinking water.

 

Key Points

TC Energy proposal to pump water uphill off-peak and generate 1,000 MW at peak, pending studies and approvals.

✅ Balances grid by storing off-peak energy and generating at peak.

✅ Requires reservoir, break wall, transmission lines, generating station.

✅ Environmental studies and federal review underway before approvals.

 

Plans for a $3.3 billion hydro-electric project in Meaford are still in the early study stages, but some residents have concerns about what it might mean for the environment, as past Site C stability issues have illustrated for large hydro projects.

A one-year permit was granted for TC Energy Corporation (TC Energy) to begin studies on the proposed location back in May, and cross-border projects like the New England Clean Power Link require federal permits as well to proceed. Local municipalities were informed of the project in June.

TC Energy is proposing to have a pumped storage project at the 4th Canadian Division Training (4CDTC) Meaford property, which is on federal lands.

A letter sent to local municipalities explains that the plan is to balance supply and demand on the electrical grid by pumping water uphill during off-peak hours. It would then release the water back into Georgian Bay during peak periods, generating up to 1,000 megawatts of electricity.

The project is expected to create 800 jobs over four years of construction, in addition to long-term operational positions.


 

According to the company's website, the proposed pump station would require a large reservoir on the military base, a generating station, transmission lines infrastructure, and a break wall 850 metres from shore.

Some residents fear the project will threaten the bay and the fish, echoing Site C dam concerns shared with northerners, and the region's drinking water.

Meaford's mayor says the town has no jurisdiction on federal lands, but that a list of concerns has been forwarded to the company, while Ontario First Nations have urged government action on urgent transmission needs elsewhere.

TC Energy will tackle preliminary engineering and environmental studies to determine the feasibility of the proposed location, which could take up to two years.

Once the assessments are done, they need to be presented to the government for further review and approval, as seen when Ottawa's Site C stance left work paused pending a treaty rights challenge.

TC Energy's website states that the company anticipates construction to begin in 2022 if it gets all the go-ahead, with the plant to begin operations four years later.

Input from residents is being collected until April 2020, similar to when the National Energy Board heard oral traditional evidence on the Manitoba-Minnesota transmission line.

 

Related News

View more

Iran, Iraq Discuss Further Cooperation in Energy Sector

Iran-Iraq Electricity Cooperation advances with power grid synchronization, cross-border energy trade, 400-kV transmission lines, and education partnerships, boosting grid reliability, infrastructure investment, and electricity exports between Tehran and Baghdad for improved supply and stability.

 

Key Points

A bilateral initiative to synchronize grids, expand networks, and sustain electricity exports, improving reliability.

✅ 400-kV Amarah-Karkheh line enables synchronized operations.

✅ Extends electricity export contracts to meet Iraq demand.

✅ Enhances grid reliability, training, and infrastructure investment.

 

Aradakanian has focused his one-day visit to Iraq on discussions pertaining to promoting bilateral collaboration between the two neighboring nations in the field of electricity, grid development deals and synchronizing power grid between Tehran and Baghdad, cooperating in education, and expansion of power networks.

He is also scheduled to meet with Iraqi top officials in a bid to boost cooperation in the relevant fields.

Back in December 2019, Ardakanian announced that Iran will continue exports of electricity to Iraq by renewing earlier contract as it is supplying about 40% of Iraq's power today.

"Iran has signed a 3-year-long cooperation agreement with Iraq to help the country's power industry in different aspects. The documents states at its end that we will export electricity to Iraq as far as they need," Ardakanian told FNA on December 9, 2019.

The contract to "export Iran's electricity" to Iraq will be extended, he added.

Ardakanian also said that Iran and Iraq's power grids have become synchronized in a move that supports Iran's regional power hub plans since a month ago.

In 2004 Iran started selling electricity to Iraq. Iran electricity exports to the western neighbor are at its highest level of 1,361 megawatts per day now, as the country weighs summer power sufficiency ahead of peak demand.

The new Amarah-Karkheh 400-KV transmission line stretching over 73 kilometers, is now synchronized to provide electricity to both countries, reflecting regional power export trends as well. It also paves the way for increasing export to power-hungry Iraq in the near future.

With synchronization of the two grids, the quality of electricity in Iraq will improve as the country explores nuclear power options to tackle shortages.

According to official data, 82% of Iraq's electricity is generated by thermal power plants that use gas as feedstock, while Iran is converting thermal plants to combined cycle to save energy. This is expected to reach 84% by 2027.

 

Related News

View more

USA: 3 Ways Fossil Energy Ensures U.S. Energy Security

DOE Office of Fossil Energy safeguards energy security via the Strategic Petroleum Reserve, domestic critical minerals from coal byproducts, and carbon capture to curb CO2, strengthening resiliency amid shocks and supporting U.S. manufacturing and defense.

 

Key Points

A DOE program advancing energy security through SPR stewardship, critical minerals R&D, and carbon capture.

✅ Manages the Strategic Petroleum Reserve for emergency crude supply

✅ Develops domestic critical minerals from coal and mining byproducts

✅ Deploys carbon capture, utilization, and storage to cut CO2

 

The global economy has just experienced a period of unique transformation because of COVID-19. The fact that remains constant in this new economic landscape is that our society relies on energy; it’s an integral part of our day-to-day lives, even as U.S. energy use has evolved over time. According to the U.S. Energy Information Administration, approximately 80 percent of energy consumption in the United States comes from fossil fuels, so having access to a secure and reliable supply of those energy resources is more important than ever for national energy security considerations today. Below are three examples that highlight how our work at the U.S. Department of Energy’s Office of Fossil Energy (FE) helps ensure the Nation’s energy security and resiliency.

(1) Open crude oil reserves to respond to crises

FE has overall program responsibility for carrying out the mission of the Strategic Petroleum Reserve (SPR), the world’s largest supply of emergency crude oil. These federally-owned stocks are stored in massive underground salt caverns along the coastline of the Gulf of Mexico. The SPR is a powerful tool U.S. leaders use to respond to a wide range of crises, including energy crisis impacts on electricity and fuels, involving crude oil disruption or demand loss.  When the COVID-19 pandemic hit, the oil markets crashed and crude oil demand dropped drastically across the world. U.S. oil producers turned to the SPR to store their oil while broader energy dominance constraints were becoming evident in practice. This helped alleviate the pressure on producers to shut in oil production and proved to be a critical asset for American energy and national security.

(2) Use the Nation’s abundant coal reserves to produce valuable materials

Critical materials, including rare earth elements, are a group of chemical elements and materials with unique properties that support manufacturing of most modern technologies. They are essential components for critical defense and homeland security applications, green energy technologies, hybrid and electric vehicles, and high-value electronics. While these materials are not rare, they are hard to separate and expensive to extract. The United States relies heavily on imports from China. To reduce U.S. dependence on foreign sources, FE has a research and development program aimed at producing a domestic supply of critical materials from the Nation’s abundant coal resources and associated byproducts from legacy and current mining operations. Many of the technologies being developed can also be used to separate critical minerals from other mining materials and byproducts. Tapping into these resources has the potential to create new industries and revitalize coal communities and the workforce in coal-producing regions.

(3) Decrease carbon emissions for a cleaner energy future

FE is committed to balancing the Nation’s energy use with the need to protect the environment, and has a comprehensive portfolio of technological solutions that help keep carbon dioxide (CO2) emissions out of the atmosphere. For example, amid high natural gas prices that reinforce the case for clean electricity, the Department has been investing in carbon capture, utilization, and storage technologies for over a decade. These technologies capture CO2 emissions from various sources, including coal-fired power plants and manufacturing plants, before they enter the atmosphere. Several of these cutting-edge technologies have been deployed at major demonstration sites, supported by clean energy funding that aims to benefit millions. Three of these projects—Petra Nova, Archer Daniels Midland, and Air Products & Chemicals—have captured and injected over 10.8 million metric tons of CO2. The success of these projects is paving the way toward a cleaner and more sustainable American energy future.

 

Related News

View more

Energy Vault Secures $28M for California Green Hydrogen Microgrid

Calistoga Resiliency Centre Microgrid delivers grid resilience via green hydrogen and BESS, providing island-mode backup during PSPS events, wildfire risk, and outages, with black-start and grid-forming capabilities for reliable community power.

 

Key Points

A hybrid green hydrogen and BESS facility ensuring resilient, islanded power for Calistoga during PSPS and outages.

✅ 293 MWh capacity with 8.5 MW peak for critical backup

✅ Hybrid lithium-ion BESS plus green hydrogen fuel cells

✅ Island mode with black-start and grid-forming support

 

Energy Vault, a prominent energy storage and technology company known for its gravity storage, recently secured US$28 million in project financing for its innovative Calistoga Resiliency Centre (CRC) in California. This funding will enable the development of a microgrid powered by a unique combination of green hydrogen and battery energy storage systems (BESS), marking a significant step forward in enhancing grid resilience in the face of natural disasters such as wildfires.

Located in California's fire-prone regions, the CRC is designed to provide critical backup power during Public Safety Power Shutoff (PSPS) events—periods when utility companies proactively cut power to prevent wildfires. These events can leave communities without electricity for extended periods, making the need for reliable, independent power sources more urgent as many utilities see benefits in energy storage today. The CRC, with a capacity of 293 MWh and a peak output of 8.5 MW, will ensure that the Calistoga community maintains power even when the grid is disconnected.

The CRC features an integrated hybrid system that combines lithium-ion batteries and green hydrogen fuel cells, even as some grid-scale projects adopt vanadium flow batteries for long-duration needs. During a PSPS event or other grid outages, the system will operate in "island mode," using hydrogen to generate electricity. This setup not only guarantees power supply but also contributes to grid stability by supporting black-start and grid-forming functions. Energy Vault's proprietary B-VAULT DC battery technology complements the hydrogen fuel cells, enhancing the overall performance and resilience of the microgrid.

One of the key aspects of the CRC project is the utilization of green hydrogen. Unlike traditional hydrogen, which is often produced using fossil fuels, green hydrogen is generated through renewable energy sources like solar or wind power, with large-scale initiatives such as British Columbia hydrogen project accelerating supply, making it a cleaner and more sustainable alternative. This aligns with California’s ambitious clean energy goals and is expected to reduce the carbon footprint of the region’s energy infrastructure.

The CRC project also sets a precedent for future hybrid microgrid deployments across California and other wildfire-prone areas, with utilities like SDG&E Emerald Storage highlighting growing adoption. Energy Vault has positioned the CRC as a model for scalable, utility-scale microgrids that can be adapted to various locations facing similar challenges. Following the success of this project, Energy Vault is expanding its portfolio with additional projects in Texas, where it anticipates securing up to US$25 million in financing.

The funding for the CRC also includes the sale of an investment tax credit (ITC), a key component of the financing structure that helps make such ambitious projects financially viable. This structure is crucial as it allows companies to leverage government incentives to offset development costs, including CEC long-duration storage funding, thus encouraging further investment in green energy infrastructure.

Despite some skepticism regarding the transportation of hydrogen rather than producing it onsite, the project has garnered strong support. California’s Public Utilities Commission (CPUC) acknowledged the potential risks of transporting green hydrogen but emphasized that it is still preferable to using more harmful fuel sources. This recognition is important as it validates Energy Vault’s approach to using hydrogen as part of a broader strategy to transition to clean, reliable energy solutions.

Energy Vault's shift from its traditional gravity-based energy storage systems to battery energy storage systems, such as BESS in New York, reflects the company's adaptation to the growing demand for versatile, efficient energy solutions. The hybrid approach of combining BESS with green hydrogen represents an innovative way to address the challenges of energy storage, especially in regions vulnerable to natural disasters and power outages.

As the CRC nears mechanical completion and aims for full commercial operations by Q2 2025, it is poised to become a critical part of California’s grid resilience strategy. The microgrid's ability to function autonomously during emergencies will provide invaluable benefits not only to Calistoga but also to other communities that may face similar grid disruptions in the future.

Energy Vault’s US$28 million financing for the Calistoga Resiliency Centre marks a significant milestone in the development of hybrid microgrids that combine the power of green hydrogen and battery energy storage. This project exemplifies the future of energy resilience, showcasing a forward-thinking approach to mitigating the impact of natural disasters and ensuring a reliable, sustainable energy future for communities at risk. With its innovative use of renewable energy sources and cutting-edge technology, the CRC sets a strong example for future energy storage projects worldwide.

 

Related News

View more

Ambitious clean energy target will mean lower electricity prices, modelling says

Australia Clean Energy Target drives renewables in the National Electricity Market, with RepuTex modelling and the Finkel Review showing lower wholesale prices and emissions as gas generators set prices less often under ambitious targets.

 

Key Points

Policy boosting low emissions generation to cut electricity emissions and lower wholesale prices across Australia.

✅ Ambitious targets lower wholesale prices through added generation

✅ RepuTex modelling shows renewables displace costly gas peakers

✅ Finkel Review suggests CET cuts emissions and boosts reliability

 

The more ambitious a clean energy target is, the lower Australian wholesale electricity prices will be, according to new modelling by energy analysis firm RepuTex.

The Finkel review, released last month recommended the government introduce a clean energy target (CET), which it found would cut emissions from the national electricity market and put downward pressure on both wholesale and retail prices, aligning with calls to favor consumers over generators in market design.

The Finkel review only modelled a CET that would cut emissions from the electricity sector by 28% below 2005 levels by 2030. But all available analysis has demonstrated that such a cut would not be enough to meet Australia’s overall emissions reductions made as part of the Paris agreement, which themselves were too weak to help meet the central aim of that agreement – to keep global warming to “well below 2C”.

RepuTex modelled the effect of a CET that cut emissions from the electricity sector by 28% – like that modelled in the Finkel Review – as well as one it said was consistent with 2C of global warming, which would cut emissions from electricity by 45% below 2005 levels by 2030.

It found both scenarios caused wholesale prices to drop significantly compared to doing nothing, despite IEA warnings on falling energy investment that could lead to shortages, with the more ambitious scenario resulting in lower wholesale prices between 2025 and 2030.

In the “business as usual scenario”, RepuTex found wholesale prices would hover roughly around the current price of $100 per MWh.

Under a CET that reduced electricity emissions by 28%, prices would drop to under $40 around 2023, and then rise to nearly $60 by 2030.

The more ambitious CET had a broadly similar effect on wholesale prices. But RepuTex found it would drive prices down a little slower, but then keep them down for longer, stabilising at about $40 to $50 for most of the 2020s.

It found a CET would drive prices down by incentivising more generation into the market. The more ambitious CET would further suppress prices by introducing more renewable energy, resulting in expensive gas generators less often being able to set the price of electricity in the wholesale market, a dynamic seen with UK natural gas price pressures recently.

The downward pressure of a CET on wholesale prices was more dramatic in the RepuTex report than in Finkel’s own modelling. But that was largely because, as Alan Finkel himself acknowledged, the estimates of the costs of renewable energy in the Finkel review modelling were conservative.

Speaking at the National Press Club, Finkel said: “We were conservative in our estimates of wind and large-scale solar generator prices. Indeed, in recent months the prices for wind generation have already come in lower than what we modelled.”

The RepuTex modelling also found the economics of the national electricity market no longer supported traditional baseload generation – such as coal power plants that were unable to respond flexibly to demand, with debates over power market overhauls in Alberta underscoring similar tensions – and so they would not be built without the government distorting the market.

“With a premium placed on flexible generation that can ramp up or down, baseload only generation – irrespective of how clean or dirty it is – is likely to be too inflexible to compete in Australia’s future electricity system,” the report said.

“In this context, renewable energy remains attractive to the market given it is able to deliver energy reliability, with no emissions, at low cost prices, with clean grid and battery trends in Canada informing the shift for policymakers. This affirms that renewables are a lay down misere to out-compete traditionally fossil-fuel sources in Australia for the foreseeable future.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.