Wal-Mart wants Burlington turbine

By Hamilton Spectator


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Wal-Mart Canada wants to install a 20 kilowatt, 80-foot-high wind turbine this fall at its store on Fairview Street.

The giant retailer has advertised required notice of an application to the Ministry of Environment for the turbine.

Burlington and Milton are the first Canadian municipalities in the country where Wal-Mart has proposed wind turbines, budgeting $2 million for the turbines, as well as a solar project at a yet-to-be-announced store.

“In 2005, globally we announced three long-term sustainability goals: one is to generate zero waste, the second is to sell products that sustain the environment and people, and the third is to be supplied 100 per cent by renewable energies,” said Karin Campbell, Wal-Mart Canada’s corporate affairs manager. “This project fits into the third goal and we’re hoping this will serve as a test to look at the viability and commercialization of this technology for us down the road.”

A draft project description report prepared by Wal-Mart for the ministry indicates the turbine would be built in the parking lot on the north side of the store.

Energy created by the structure would be used directly by the Fairview store, transferred from the turbine by underground cable.

Wind Power Media Inc., a Canadian company, would build the Burlington and Milton turbines.

The report says the blade length is 6.3 meters, the swept area is 116.6 meters. The blades will be made of fiberglass and it will have quiet operation.

“The project will operate year round and will generate electricity when the wind is above 2.5 meters per second,” the report says. “The amount of power generated will depend on the daily weather conditions and the wind resources available.”

Wal-Mart says that the turbine “may result in a minor increase to the normal environmental sound levels.” However, it outlines in the report that no specific or potential negative environmental effects have been identified.

Campbell said that Wal-Mart believes the turbine will have minimal impact on the surrounding area.

“This is an urban, low-wind speed wind turbine it’s at the back of the Burlington property near the railway tracks and it is not near residential. It is also 40 to 59 decibels, which is roughly the same as noise from traffic, so there shouldn’t be any concern at the local level,” she said.

“Sound power measurement has been established and reviewed based on the recommendations from various small turbine suppliers,” the report reads. “Although small wind turbines emit some minimal sound power we expect no negative sound or noise impact on the community on or adjacent to the project site.”

Wal-Mart says that other permits, licenses and authorizations besides ministry approval may be required before the turbine is installed. Included in that list is a building permit from the city.

Ward 2 Councillor Peter Thoem said he was unaware of the proposal when contacted. He said he had no comment on the issue.

Mayor Cam Jackson also said he didnÂ’t know about the turbine until he saw the notice in The Burlington Post. He said he hopes that Wal-Mart includes significant public notification and consultation as it moves forward with the proposed project.

Related News

Turning thermal energy into electricity

Near-Field Thermophotovoltaics captures radiated energy across a nanoscale gap, using thin-film photovoltaic cells and indium gallium arsenide to boost power density and efficiency, enabling compact Army portable power from emitters via radiative heat transfer.

 

Key Points

A nanoscale TPV method capturing near-field photons for higher power density at lower emitter temperatures.

✅ Nanoscale gap boosts radiative transfer and usable photon flux

✅ Thin-film InGaAs cells recycle sub-band-gap photons via reflector

✅ Achieved ~5 kW/m2 power density with higher efficiency

 

With the addition of sensors and enhanced communication tools, providing lightweight, portable power has become even more challenging, with concepts such as power from falling snow illustrating how diverse new energy-harvesting approaches are. Army-funded research demonstrated a new approach to turning thermal energy into electricity that could provide compact and efficient power for Soldiers on future battlefields.

Hot objects radiate light in the form of photons into their surroundings. The emitted photons can be captured by a photovoltaic cell and converted to useful electric energy. This approach to energy conversion is called far-field thermophotovoltaics, or FF-TPVs, and has been under development for many years; however, it suffers from low power density and therefore requires high operating temperatures of the emitter.

The research, conducted at the University of Michigan and published in Nature Communications, demonstrates a new approach, where the separation between the emitter and the photovoltaic cell is reduced to the nanoscale, enabling much greater power output than what is possible with FF-TPVs for the same emitter temperature.

This approach, which enables capture of energy that is otherwise trapped in the near-field of the emitter is called near-field thermophotovoltaics or NF-TPV and uses custom-built photovoltaic cells and emitter designs ideal for near-field operating conditions, alongside emerging smart solar inverters that help manage conversion and delivery.

This technique exhibited a power density almost an order of magnitude higher than that for the best-reported near-field-TPV systems, while also operating at six-times higher efficiency, paving the way for future near-field-TPV applications, including remote microgrid deployments in extreme environments, according to Dr. Edgar Meyhofer, professor of mechanical engineering, University of Michigan.

"The Army uses large amounts of power during deployments and battlefield operations and must be carried by the Soldier or a weight constrained system," said Dr. Mike Waits, U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "If successful, in the future near-field-TPVs could serve as more compact and higher efficiency power sources for Soldiers as these devices can function at lower operating temperatures than conventional TPVs."

The efficiency of a TPV device is characterized by how much of the total energy transfer between the emitter and the photovoltaic cell is used to excite the electron-hole pairs in the photovoltaic cell, where insights from near-light-speed conduction research help contextualize performance limits in semiconductors. While increasing the temperature of the emitter increases the number of photons above the band-gap of the cell, the number of sub band-gap photons that can heat up the photovoltaic cell need to be minimized.

"This was achieved by fabricating thin-film TPV cells with ultra-flat surfaces, and with a metal back reflector," said Dr. Stephen Forrest, professor of electrical and computer engineering, University of Michigan. "The photons above the band-gap of the cell are efficiently absorbed in the micron-thick semiconductor, while those below the band-gap are reflected back to the silicon emitter and recycled."

The team grew thin-film indium gallium arsenide photovoltaic cells on thick semiconductor substrates, and then peeled off the very thin semiconductor active region of the cell and transferred it to a silicon substrate, informing potential interfaces with home battery systems for distributed use.

All these innovations in device design and experimental approach resulted in a novel near-field TPV system that could complement distributed resources in virtual power plants for resilient operations.

"The team has achieved a record ~5 kW/m2 power output, which is an order of magnitude larger than systems previously reported in the literature," said Dr. Pramod Reddy, professor of mechanical engineering, University of Michigan.

Researchers also performed state-of-the-art theoretical calculations to estimate the performance of the photovoltaic cell at each temperature and gap size, informing hybrid designs with backup fuel cell solutions that extend battery life, and showed good agreement between the experiments and computational predictions.

"This current demonstration meets theoretical predictions of radiative heat transfer at the nanoscale, and directly shows the potential for developing future near-field TPV devices for Army applications in power and energy, communication and sensors," said Dr. Pani Varanasi, program manager, DEVCOM ARL that funded this work.

 

Related News

View more

Buyer's Remorse: Questions about grid modernization affordability

Grid Modernization drives utilities to integrate DER, AMI, and battery storage while balancing reliability, safety, and affordability; regulators pursue cost-benefit analyses, new rate design, and policy actions to guide investment and protect customer-owned resources.

 

Key Points

Upgrading the grid to manage DER with digital tools, while maintaining reliability, safety, and customer affordability.

✅ Cost-benefit analyses guide prudent grid investments

✅ AMI and storage deployments enable DER visibility and control

✅ Rate design reforms support customer-owned resources

 

Utilities’ pursuit of a modern grid, including the digital grid concept, to maintain the reliability and safety pillars of electricity delivery has raised a lot of questions about the third pillar — affordability.

Utilities are seeing rising penetrations of emerging technologies, highlighted in recent grid edge trends reports, like distributed solar, behind-the-meter battery storage, and electric vehicles. These new distributed energy resources (DER) do not eliminate utilities' need to keep distribution systems safe and reliable.

But the need for modern tools to manage DER imposes costs on utilities, prompting calls to invest in smarter infrastructure even as some regulators, lawmakers and policymakers are concerned those costs could drive up electricity rates.

The result is an increasing number of legislative and regulatory grid modernization actions aimed at identifying what is necessary to serve the coming power sector transformation and address climate change risks across the grid.

 

The rise of grid modernization

Grid modernization, which is supported by both conservatives and distributed energy resources advocates, got a lot of attention last year. According to the 2017 review of grid modernization policy by the North Carolina Clean Energy Technology Center (NCCETC), 288 grid modernization policy actions were proposed, pending or enacted in 39 states.

These numbers from NCCETC's first annual review of policy activity set a benchmark against which future years' activity can be measured.

The most common type of state actions, by far, were those that focused on the deployment of advanced metering infrastructure (AMI) and battery energy storage. Those are two of the 2017 trends identified in NCCETC’s 50 States of Grid Modernization report. But deployment of those technologies, while foundational to an updated grid, only begins to prepare distribution systems for the coming power sector transformation.

Bigger advances, including the newest energy system management tools, are being held back by 2017’s other policy actions requiring more deliberation and fact-finding, even as grid vulnerability report cards underscore the risks that modernization seeks to mitigate.

Utilities’ proposals to more fully prepare their grids to deliver 21st century technologies are being met with questions about completeness and cost.

Utilities are being asked to address these questions in comprehensive, public utility commission-led cost-benefit analyses and studies. This is also one of NCCETC’s top 2017 policy action trends for grid modernization. The outcome to date appears to be an increased, but still incomplete, understanding of what is needed to build a 21st century grid.

Among the top objectives of those driving the policy actions are resolving questions about private sector participation in grid modernizaton buildouts and developing new rate designs to protect and support customer-owned distributed energy resources. Actions on those topics are also on NCCETC’s list of 2017 policy trends.

Altogether, the trend list is dominated by actions that do not lead to completion of grid modernization but to more work on it.

 

Related News

View more

U.S. Speeds Up Permitting for Geothermal Energy

Geothermal Emergency Permitting accelerates BLM approvals on public lands via categorical exclusions for exploratory drilling and geophysical surveys, boosting domestic energy security, cutting timelines by up to a year, and streamlining low-impact reviews.

 

Key Points

A policy fast-tracking geothermal exploration on public lands, using BLM categorical exclusions to cut review delays.

✅ Categorical exclusions speed exploratory drilling approvals

✅ Cuts permitting timelines by up to one year

✅ Focused on public lands to enhance energy security

 

In a significant policy shift, the U.S. Department of the Interior has introduced emergency permitting procedures aimed at expediting the development of geothermal energy projects. This initiative, announced on May 30, 2025, is part of a broader strategy to enhance domestic energy production, seen in proposals to replace Obama's power plant overhaul and reduce reliance on foreign energy sources.

Background and Rationale

The decision to fast-track geothermal energy projects comes in the wake of President Donald Trump's declaration of a national energy emergency, which faces a legal challenge from Washington's attorney general, on January 20, 2025. This declaration cited high energy costs and an unreliable energy grid as threats to national security and economic prosperity. While the emergency order includes traditional energy resources such as oil, gas, coal, and uranium and nuclear energy resources, it notably excludes renewable sources like solar, wind, and hydrogen from its scope.

Geothermal energy, which harnesses heat from beneath the Earth's surface to generate electricity, is considered a reliable and low-emission energy source. However, its development has been hindered by lengthy permitting processes and environmental reviews, with recent NEPA rule changes influencing timelines. The new emergency permitting procedures aim to address these challenges by streamlining the approval process for geothermal projects.

Key Features of the Emergency Permitting Procedures

Under the new guidelines, the Bureau of Land Management (BLM) has adopted categorical exclusions to expedite the review and approval of geothermal energy exploration on public lands. These exclusions allow for faster permitting of low-impact activities, such as drilling exploratory wells and conducting geophysical surveys, without the need for extensive environmental assessments.

Additionally, the BLM has proposed a new categorical exclusion that would apply to operations related to the search for indirect evidence of geothermal resources. This proposal is currently open for public comment and, if finalized, would further accelerate the discovery of new geothermal resources on public lands.

Expected Impact on Geothermal Energy Development

The implementation of these emergency permitting procedures is expected to significantly reduce the time and cost associated with developing geothermal energy projects. According to the Department of the Interior, the new measures could cut permitting timelines by up to a year for certain types of geothermal exploration activities.

This acceleration in project development is particularly important given the untapped geothermal potential in regions like Nevada, which is home to some of the largest undeveloped geothermal resources in the country.

Industry and Environmental Reactions

The geothermal industry has largely welcomed the new permitting procedures, viewing them as a necessary step to unlock the full potential of geothermal energy. Industry advocates argue that reducing permitting delays will facilitate the deployment of geothermal projects, contributing to a more reliable and sustainable energy grid amid debates over electricity pricing changes that affect market signals.

However, the exclusion of solar and wind energy projects from the emergency permitting procedures has drawn criticism from some environmental groups. Critics argue that a comprehensive approach to energy development should include all renewable sources, not just geothermal, to effectively address climate change, as reflected in new EPA pollution limits for coal and gas power plants, and promote energy sustainability.

The U.S. government's move to implement emergency permitting procedures for geothermal energy development marks a significant step toward enhancing domestic energy production and reducing reliance on foreign energy sources. By streamlining the approval process for geothermal projects, the administration aims to accelerate the deployment of this reliable and low-emission energy source. While the exclusion of other renewable energy sources from the emergency procedures has sparked debate, especially after states like California halted an energy rebate program during a federal freeze, the focus on geothermal energy underscores its potential role in the nation's energy future.

 

Related News

View more

OEB issues decision on Hydro One's first combined T&D rates application

OEB Hydro One Rate Decision 2023-2027 sets approved transmission and distribution rates in Ontario, with a settlement reducing revenue requirement, modest bill impacts, higher productivity factors, inflation certainty, DVA credits, and First Nations participation measures.

 

Key Points

OEB-approved Hydro One 2023-2027 transmission and distribution rates settlement, lowering costs and limiting bill impacts.

✅ $482.7M revenue reductions vs. original proposal

✅ Avg bill impact: +$0.69 trans., +$2.43 distr. per month

✅ Faster DVA refunds; productivity and efficiency incentives

 

The Ontario Energy Board (OEB) issued its Decision and Order on an application filed by Hydro One Networks Inc. (Hydro One) on August 5, 2021 seeking approval for changes to the rates it charges for electricity transmission and distribution, beginning January 1, 2023 and for each subsequent year through to December 31, 2027. 

The proceeding resulted in the filing of a settlement proposal that the OEB has now approved after concluding that it is in the public interest. 

The negotiated reductions in Hydro One's transmission and distribution revenue requirements over the 2023 to 2027 period total $482.7 million compared to the requests made by Hydro One in its application.

The OEB found that the reductions in Hydro One's proposed capital expenditure and operating, maintenance and administration costs were reasonable, and should not compromise the safety and reliability of Hydro One's transmission and distribution systems. It also concluded that the estimated bill impacts for both transmission and distribution customers are reasonable, and that the January 1, 2023 implementation and effective date of the new rates is appropriate.

In the broader Canadian context, pressures on utility finances at other companies, such as Manitoba Hydro's debt provide additional background for stakeholders.

 

Bill Impacts

This proceeding related to both transmission and distribution operations.

 

Transmission

The new transmission revenue requirement will affect Ontario electricity consumers across the province because it will be incorporated into updated transmission rates, which are paid by electricity distributors and other large consumers connected directly to the transmission system, and distributors then pass this cost on to their customers.

As a result of the settlement approved on the transmission portion of the application, it is estimated that for a typical Hydro One residential customer with a monthly consumption of 750 kWh, the total bill impact averaged over the 2023-2027 period will be an increase of $0.69 per month or 0.5%, which follows the 2021 electricity rate reductions that affected many businesses.

 

Distribution

The new OEB-approved distribution rates will affect Hydro One's distribution customers, including areas served through acquisitions such as the Peterborough Distribution sale which expanded its customer base.

As a result of the settlement reached on the distribution portion of the application, it is estimated that for a typical residential distribution customer of Hydro One with a monthly consumption of 750 kWh, the total bill impact averaged over the 2023-2027 period will be an increase of $2.43 per month or 1.5%.
This proceeding included 24 approved intervenors representing a wide variety of customer classes and other interests. Representatives of 18 of those intervenors participated in the settlement conference. Having this diversity of perspective enriches the already thorough examination of evidence and argument that the OEB routinely undertakes when considering an application.

Other features of the settlement proposal include:

  • A commitment by Hydro One to include, in future operational and capital investment plans, a discussion of how the proposed spending will directly support the achievement of Hydro One's climate change policy.
  • Eliminating further updates to reflect changes to inflation in 2022 and 2023 as originally proposed, to provide Hydro One's customers with greater certainty as to the potential impacts of inflation on their bills.
  • Increases in the productivity factors and supplemental stretch factors for both the distribution and transmission business segments which will provide Hydro One with additional incentives to achieve greater efficiencies during the 2023 to 2027 period.
  • Undertaking certain measures to seek economic participation or equity investment opportunities from First Nations.
  • Disposition of net credit balances in deferral and variance accounts (DVAs) owed to customers will be returned over a shorter period of time:
  • Transmission DVA – $22.5M over a one-year period in 2023 (versus five years)
  • Distribution DVA – $85.9M over a three-year period – 2023-2025 (versus five years)
  • Undertaking certain measures to continue examining cost-effective transmission and distribution line losses
  • In the decision, the OEB acknowledged the efforts involved by parties to participate in this entire proceeding, including the settlement conference, considering the number of participants, the complexity of the issues, and the challenging logistics of a "virtual" proceeding. The OEB commended the parties and OEB staff for achieving a comprehensive settlement on all issues.

 

Related News

View more

Japanese utilities buy into vast offshore wind farm in UK

Japan Offshore Wind Investment signals Japanese utilities entering UK offshore wind, as J-Power and Kansai Electric buy into Innogy's Triton Knoll, leveraging North Sea expertise, 9.5MW turbines, and 15-year fixed-rate contracts.

 

Key Points

Japanese utilities buying UK offshore wind stakes to import expertise, as J-Power and Kansai join Innogy's Triton Knoll.

✅ $900M deal: J-Power 25%, Kansai Electric ~16% in Innogy unit

✅ Triton Knoll: 860MW, up to 90 9.5MW turbines, 15-year fixed PPA

✅ Goal: Transfer North Sea expertise to develop Japan offshore wind

 

Two of Japan's biggest power companies will buy around 40% of a German-owned developer of offshore wind farms in the U.K., seeking to learn from Britain's lead in this sector, as highlighted by a UK offshore wind milestone this week, and bring the know-how back home.

Tokyo-based Electric Power Development, better known as J-Power, will join Osaka regional utility Kansai Electric Power in investing in a unit of Germany's Innogy.

The deal, estimated to be worth around $900 million, will give J-Power a 25% stake and Kansai Electric a roughly 16% share. It will mark the first investment in an offshore wind project by Japanese power companies, as other markets shift strategies, with Poland backing wind over nuclear signaling broader momentum.

Innogy plans to start up the 860-megawatt Triton Knoll offshore wind project -- one of the biggest of its kind in the world -- in the North Sea in 2021. The vast installation will have up to 90 9.5MW turbines and sell its output to local utilities under a 15-year fixed-rate contract.

J-Power, which supplies mainly fossil-fuel-based electricity to Japanese regional utilities, will set up a subsidiary backed by the government-run Development Bank of Japan to participate in the Innogy project. Engineers will study firsthand construction and maintenance methods.

While land-based wind turbines are proliferating worldwide, offshore wind farms have progressed mainly in Europe, though U.S. offshore wind competitiveness is improving in key markets. Installed capacity totaled more than 18,000MW at the end of 2017, which at maximum capacity can produce as much power as 18 nuclear reactors.

Japan has hardly any offshore wind farms in commercial operation, and has little in the way of engineering know-how in this field or infrastructure for linking such installations to the land power grid, with a recent Japan grid blackout analysis underscoring these challenges. But there are plans for a total of 4,000MW of offshore wind power capacity, including projects under feasibility studies.

J-Power set up a renewable energy division in June to look for opportunities to expand into wind and geothermal energy in Japan, and efforts like a Japan hydrogen energy system are emerging to support decarbonization. Kansai Electric also seeks know-how for increasing its reliance on renewable energy, even as it hurries to restart idled nuclear reactors.

They are not the only Japanese investors is in this field. In Asia, trading house Marubeni will invest in a Taiwanese venture with plans for a 600MW offshore wind farm.

 

Related News

View more

Financial update from N.L energy corp. reflects pandemic's impact

Nalcor Energy Pandemic Loss underscores Muskrat Falls delays, hydroelectric risks, oil price shocks, and COVID-19 impacts, affecting ratepayers, provincial debt, timelines, and software commissioning for the Churchill River project and Atlantic Canada subsea transmission.

 

Key Points

A $171M Q1 2020 downturn linked to COVID-19, oil price collapse, and Muskrat Falls delays impacting schedules and costs.

✅ Q1 2020 profit swing: +$92M to -$171M amid oil price crash

✅ Muskrat Falls timeline slips; cost may reach $13.1B

✅ Software, workforce, COVID-19 constraints slow commissioning

 

Newfoundland and Labrador's Crown energy corporation reported a pandemic-related profit loss from the first quarter of 2020 on Tuesday, along with further complications to the beleaguered Muskrat Falls hydroelectric project.

Nalcor Energy recorded a profit loss of $171 million in the first quarter of 2020, down from a $92 million profit in the same period last year, due in part to falling oil prices during the COVID-19 pandemic.

The company released its financial statements for 2019 and the first quarter of 2020 on Tuesday, and officials discussed the numbers in a livestreamed presentation that detailed the impact of the global health crisis on the company's operations.

The loss in the first quarter was caused by lower profits from electricity sales and a drop in oil prices due to the pandemic and other global events, company officials said.

The novel coronavirus also added to the troubles plaguing the Muskrat Falls hydroelectric dam on Labrador's Churchill River, amid Quebec-N.L. energy tensions that long predate the pandemic.

Work at the remote site stopped in March over concerns about spreading the virus. Operations have been resuming slowly, with a reduced workforce tackling the remaining jobs.

Officials with Nalcor said it will likely be another year before the megaproject is complete.

CEO Stan Marshall estimates the months of delays could bring the total cost to $13.1 billion including financing, up from the previous estimate of $12.7 billion -- though the total impact of the coronavirus on the project's price tag has yet to be determined.

"If we're going to shut down again, all of that's wrong," Marshall said. "But otherwise, we can just carry on and we'll have a good idea of the productivity level. I'm hoping that by September we'll have a more definitive number here."

The 824 megawatt hydroelectric dam will eventually send power to Newfoundland, and later Nova Scotia, through subsea cables, even as Nova Scotia boosts wind and solar in its energy mix.

It has seen costs essentially double since it was approved in 2012, and faced significant delays even before pandemic-forced shutdowns in North America and around the world this spring.

Cost and schedule overruns were the subject of a sweeping inquiry that held hearings last year, while broader generation choices like biomass use have drawn scrutiny as well.

The commissioner's report faulted previous governments for failing to protect residents by proceeding with the project no matter what, and for placing trust in Nalcor executives who "frequently" concealed information about schedule, cost and related risks.

Some of the latest delays have come from challenges with the development of software required to run the transmission link between Labrador and Newfoundland, where winter reliability issues have been flagged in reports.

The software is still being worked out, Marshall said Tuesday, and the four units at the dam will come online gradually over the next year.

"It's not an all or nothing thing," Marshall said of the final work stages.
Nalcor's financial snapshot follows a bleak fiscal update from the province this month. The Liberal government reported a net debt of $14.2 billion and a deficit of more than $1.1 billion, even as a recent Churchill Falls deal promised new revenues for the province, citing challenges from pandemic-related closures and oil production shutdowns.

Finance Minister Tom Osborne said at the time that help from Ottawa will be necessary to get the province's finances back on track.

Muskrat Falls represents about one-third of the province's debt, and is set to produce more power than the province of about half a million people requires. Anticipated rate increases due to the ballooning costs and questions about Muskrat Falls benefits have posed a significant political challenge for the provincial government.

Ottawa has agreed to work with Newfoundland and Labrador on a rewrite of the project's financial structure, scrapping the format agreed upon in past federal-provincial loan agreements in order to ease the burden on ratepayers, while some argue independent planning would better safeguard ratepayers.

Marshall, a former Fortis CEO who was brought in to lead Nalcor in 2016, has called the project a "boondoggle" and committed to seeing it completed within four years. Though that plan has been disrupted by the pandemic, Marshall said the end is in sight.

"I'm looking forward to a year from now. And I hope to be gone," Marshall said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified