Chinese power producer to cut spending

By International Herald Tribune


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Huadian Power International, a Chinese electricity producer listed in Hong Kong, plans to cut spending on new plants by two-thirds next year to increase profitability.

Capital investment may drop to 5 billion yuan, or $654 million, and will add 1,200 megawatts of coal-fired capacity in 2008, Zhang Gelin, head of the Beijing-based utility's securities department, said. Spending may total 15 billion yuan this year, the managing director, Chen Jianhua, said in March.

Huadian Power's bigger rivals, including Huaneng Power International, are adding plants at a faster pace than growth in demand, leaving some capacity unused. That has increased pressure on Huadian Power to maintain profitability amid higher fuel costs, the deputy general manager, Zhong Tonglin, said recently, after the company's annual general meeting in Beijing.

"Huadian Power is cutting spending amid concern of a possible supply surplus and it needs to reduce debt by making full use of existing plants," Zhang Wenxian, an analyst with Guotai Junan Securities Hong Kong, said. "The government is also tightening approvals for new plants."

China is limiting coal-fired power generation to improve the environment. Huadian Power's parent, China Huadian, is among companies ordered by the government in March to reduce pollution.

"We will try to stabilize our profits this year from the 2006 level amid operational pressures," Zhong, the deputy general manager, said. "Our profitability will improve after 2008 as fewer plants are put on stream, increasing the company's utilization rate."

Construction of new power plants in China will decrease next year because of a potential surplus in the market after three years of rapid development since 2004, Zhong said.

Growth in China's electricity demand will probably slow to a maximum of 12.5 percent this year, from 14 percent in 2006, the State Grid Corp. of China said in January. The country plans to increase power generating capacity by 15 percent this year, the government said in April.

Huadian Power will start operating 6,000 megawatts of capacity this year, raising total output to about 20,000 megawatts, Zhong said. Among the independent generators, the company may experience the biggest decline in the utilization rate at its plants, JPMorgan Chase said in March.

Related News

Hydro-Quebec won't ask for rate hike next year

Hydro-Quebec Rate Freeze maintains current electricity rates, aligned with Bill 34, inflation indexing, and energy board oversight, delivering rebates to residential, commercial, and industrial customers and projecting nearly $1 billion in savings across Quebec.

 

Key Points

A Bill 34 policy holding power rates, adding 2020 rebates, and indexing 2021-2024 rates to inflation for Quebec customers.

✅ 2020-21 rates frozen; savings near $1B over five years.

✅ $500M rebate: residential, commercial, industrial shares.

✅ 2021-2024 rates index to inflation; five-year reviews after 2025.

 

Hydro-Quebec Distribution will not file a rate adjustment application with the province’s energy board this year, amid a class-action lawsuit alleging customers were overcharged.

In a statement released on Friday the Crown Corporation said it wants current electricity rates to be maintained for another year, as pandemic-driven demand pressures persist, starting April 1. That is consistent with the recently tabled Bill 34, and echoes Ontario legislation to lower electricity rates in its aims, which guarantees lower electricity rates for Quebecers.

The bill also provides a $500 million rebate in 2020, similar to a $535 million refund previously issued, half of which will go to residential customers while $190 million will go to commercial customers and another $60 million to industrial ones.

Hydro-Quebec said the 2020-21 rate freeze will generate savings of nearly $1 billion for its clients over the next five years, even as Manitoba Hydro scales back increases in a different market.

Bill 34, which was tabled in June, also proposes to set rates based on inflation for the years 2021 to 2024, contrasting with Ontario rate increases over the same period. After 2025 Hydro-Quebec would have to ask the energy board to set new rates every five years, as opposed to the current annual system, while BC Hydro is raising rates by comparison.

 

Related News

View more

Biden's Announcement of a 100% Tariff on Chinese-Made Electric Vehicles

U.S. 100% Tariff on Chinese EVs aims to protect domestic manufacturing, counter subsidies, and reshape the EV market, but could raise prices, disrupt supply chains, invite retaliation, and complicate climate policy and trade relations.

 

Key Points

A 100% import duty on Chinese EVs to boost U.S. manufacturing, counter subsidies, and address supply chain risks.

✅ Protects domestic EV manufacturing and jobs

✅ Counters alleged subsidies and IP concerns

✅ May raise prices, limit choice, trigger retaliation

 

President Joe Biden's administration recently made headlines with its announcement of a 100% tariff on Chinese electric vehicles (EVs), marking a significant escalation in trade tensions between the two economic powerhouses. The decision, framed as a measure to protect American industries and promote domestic manufacturing, has sparked debates over its potential impact on the EV market, global supply chains, and bilateral relations between the United States and China.

The imposition of a 100% tariff on Chinese-made EVs reflects the Biden administration's broader efforts to revitalize the American automotive industry and promote the transition to electric vehicles as part of its climate agenda and tighter EPA emissions rules that could accelerate adoption. By imposing tariffs on imported EVs, particularly those from China, the administration aims to incentivize domestic production and create jobs in the growing green economy, and to secure critical EV metals through allied supply efforts. Additionally, the tariff is seen as a response to concerns about unfair trade practices, including intellectual property theft and market distortions, allegedly perpetuated by Chinese companies.

However, the announcement has triggered a range of reactions from various stakeholders, with both proponents and critics offering contrasting perspectives on the potential consequences of such a policy. Proponents argue that the tariff will help level the playing field for American automakers, who face stiff competition from Chinese companies benefiting from government subsidies and lower production costs. They contend that promoting domestic manufacturing of EVs will not only create high-quality jobs but also enhance national security by reducing dependence on foreign supply chains at a time when an EV inflection point is approaching.

On the other hand, critics warn that the 100% tariff on Chinese-made EVs could have unintended consequences, including higher prices for consumers, as seen in the UK EV prices and Brexit debate, disruptions to global supply chains, and retaliatory measures from China. Chinese EV manufacturers, such as NIO, BYD, and XPeng, have been gaining momentum in the global market, offering competitive products at relatively affordable prices. The tariff could limit consumer choice at a time when U.S. EV market share dipped in Q1 2024, potentially slowing the adoption of electric vehicles and undermining efforts to combat climate change and reduce greenhouse gas emissions.

Moreover, the tariff announcement comes at a sensitive time for U.S.-China relations, which have been strained by various issues, including trade disputes, human rights concerns, and geopolitical tensions. The imposition of tariffs on Chinese-made EVs could further exacerbate bilateral tensions, potentially leading to retaliatory measures from China and escalating trade frictions. As the world's two largest economies, the United States and China have significant economic interdependencies, and any escalation in trade tensions could have far-reaching implications for global trade and economic stability.

In response to the Biden administration's announcement, Chinese officials have expressed concerns and called for dialogue to resolve trade disputes through negotiation and mutual cooperation. China has also emphasized its commitment to fair trade practices and compliance with international rules and regulations governing trade.

Moving forward, the Biden administration faces the challenge of balancing its domestic priorities with the need to maintain constructive engagement with China and other trading partners, even as EV charging networks scale under its electrification push. While promoting domestic manufacturing and protecting American industries are legitimate policy goals, achieving them without disrupting global trade and undermining diplomatic relations requires careful deliberation and strategic foresight.

In conclusion, President Biden's announcement of a 100% tariff on Chinese-made electric vehicles reflects his administration's commitment to revitalizing American industries and promoting domestic manufacturing. However, the decision has raised concerns about its potential impact on the EV market, global supply chains, and U.S.-China relations. As policymakers navigate these complexities, finding a balance between protecting domestic interests and fostering international cooperation will be crucial to achieving sustainable economic growth and addressing global challenges such as climate change.

 

Related News

View more

How Alberta’s lithium-laced oil fields can fuel the electric vehicle revolution

Alberta Lithium Brine can power EV batteries via direct lithium extraction, leveraging oilfield infrastructure and critical minerals policy to build a low-carbon supply chain with clean energy, lower emissions, and domestic manufacturing advantages.

 

Key Points

Alberta lithium brine is subsurface saline water rich in lithium, extracted via DLE to supply EV batteries.

✅ Uses direct lithium extraction from oilfield brines

✅ Leverages Alberta infrastructure and skilled workforce

✅ Supports EV battery supply chain with lower emissions

 

After a most difficult several months, Canadians are cautiously emerging from their COVID-19 isolation and confronting a struggling economy.
There’s a growing consensus that we need to build back better from COVID-19, and to position for the U.S. auto sector’s pivot to electric vehicles as supply chains evolve. Instead of shoring up the old economy as we did following the 2008 financial crisis, we need to make strategic investments today that will prepare Canada for tomorrow’s economy.

Tomorrow’s energy system will look very different from today’s — and that tomorrow is coming quickly. The assets of today’s energy economy can help build and launch the new industries required for a low-carbon future. And few opportunities are more intriguing than the growing lithium market.

The world needs lithium – and Alberta has plenty

It’s estimated that three billion tonnes of metals will be required to generate clean energy by 2050. One of those key metals – lithium, a light, highly conductive metal – is critical to the construction of battery electric vehicles (BEV). As global automobile manufacturers design hundreds of new BEVs, demand for lithium is expected to triple in the next five years alone, a trend sharpened by pandemic-related supply risks for automakers.

Most lithium today originates from either hard rock or salt flats in Australia and South America. Alberta’s oil fields hold abundant deposits of lithium in subsurface brine, but so far it’s been overlooked as industrial waste. With new processing technologies and growing concerns about the security of global supplies, this is set to change. In January, Canada and the U.S. finalized a Joint Action Plan on Critical Minerals to ensure supply security for critical minerals such as lithium and to promote supply chains closer to home, aligning with U.S. efforts to secure EV metals among allies worldwide.

This presents a major opportunity for Canada and Alberta. Lithium brine will be produced much like the oil that came before it. This lithium originates from many of the same reservoirs responsible for driving both Alberta’s economy and the broader transportation fuel sector for decades. The province now has extensive geological data and abundant infrastructure, including roads, power lines, rail and well sites. Most importantly, Alberta has a highly trained workforce. With very little retooling, the province could deliver significant volumes of newly strategic lithium.

Specialized technologies known as direct lithium extraction, or DLE, are being developed to unlock lithium-brine resources like those in Canada. In Alberta, E3 Metals* has formed a development partnership with U.S. lithium heavyweight Livent Corporation to advance and pilot its DLE technology. Prairie Lithium and LiEP Energy formed a joint venture to pilot lithium extraction in Saskatchewan. And Vancouver’s Standard Lithium is already piloting its own DLE process in southern Arkansas, where the geology is very similar to Alberta and Saskatchewan.

Heavy on quality, light on emissions

All lithium produced today has a carbon footprint, most of which can be tied back to energy-intensive processing. The purity of lithium is essential to battery safety and performance, but this comes at a cost when lithium is mined with trucks and shovels and then refined in coal-heavy China.

As automakers look to source more sustainable raw materials, battery recycling will complement responsible extraction, and Alberta’s experience with green technologies such as renewable electricity and carbon capture and storage can make it one of the world’s largest suppliers of zero-carbon lithium.

Beyond raw materials

The rewards would be considerable. E3 Metals’ Alberta project alone could generate annual revenues of US$1.8 billion by 2030, based on projected production and price forecasts. This would create thousands of direct jobs, as initiatives like a lithium-battery workforce initiative expand training, and many more indirectly.

To truly grow this industry, however, Canada needs to move beyond its comfort zone. Rather than produce lithium as yet another raw-commodity export, Canadians should be manufacturing end products, such as batteries, for the electrified economy, with recent EV assembly deals underscoring Canada’s momentum. With nickel and cobalt refining, graphite resources and abundant petrochemical infrastructure already in place, Canada must aim for a larger piece of the supply chain.

By 2030, the global battery market is expected to be worth $116 billion annually. The timing is right to invest in a strategic commodity and grow our manufacturing sector. This is why the Alberta-based Energy Futures Lab has called lithium one of the ‘Five big ideas for Alberta’s economic recovery.’  The assets of today’s energy economy can be used to help build and launch new resource industries like lithium, required for the low-carbon energy system of the future.

Industry needs support

To do this, however, governments will have to step up the way they did a generation ago. In 1975, the Alberta government kick-started oil-sands development by funding the Alberta Oil Sands Technology and Research Authority. AOSTRA developed a technology called SAGD (steam-assisted gravity drainage) that now accounts for 80% of Alberta’s in situ oil-sands production.

Canada’s lithium industry needs similar support. Despite the compelling long-term economics of lithium, some industry investors need help to balance the risks of pioneering such a new industry in Canada. The U.S. government has recognized a similar need, with the Department of Energy’s recent US$30 million earmarked for innovation in critical minerals processing and the California Energy Commission’s recent grants of US$7.8 million for geothermal-related lithium extraction.

To accelerate lithium development in Canada, this kind of leadership is needed. Government-assisted financing could help early-stage lithium-extraction technologies kick-start a whole new industry.

Aspiring lithium producers are also looking for government’s help to repurpose inactive oil and gas wells. The federal government has earmarked $1 billion for cleaning up inactive Alberta oil wells. Allocating a small percentage of that total for repurposing wells could help transform environmental liabilities into valuable clean-energy assets.

The North American lithium-battery supply chain will soon be looking for local sources of supply, and there is room for Canada-U.S. collaboration as companies turn to electric cars, strengthening regional resilience.
 

 

Related News

View more

This kite could harness more of the world's wind energy

Autonomous Energy Kites harness offshore wind on floating platforms, using carbon fiber wings, tethers, and rotors to generate grid electricity; an airborne wind energy solution backed by Alphabet's Makani to cut turbine costs.

 

Key Points

Autonomous Energy Kites are tethered craft that capture winds with rotors, generating grid power from floating platforms.

✅ Flies circles on tethers; rotors drive generators to feed the grid.

✅ Operates over deep-sea winds where fixed turbines are impractical.

✅ Lighter, less visual impact, and lower installation costs offshore.

 

One company's self-flying energy kite may be the answer to increasing wind power around the world, alongside emerging wave power solutions as well.

California-based Makani -- which is owned by Google's parent company, Alphabet -- is using power from the strongest winds found out in the middle of the ocean, where the offshore wind sector has huge potential, typically in spots where it's a challenge to install traditional wind turbines. Makani hopes to create electricity to power communities across the world.

Despite a growing number of wind farms in the United States and the potential of this energy source, lessons from the U.K. underscore how to scale, yet only 6% of the world's electricity comes from wind due to the the difficulty of setting up and maintaining turbines, according to the World Wind Energy Association.

When the company's co-founders, who were fond of kiteboarding, realized deep-sea winds were largely untapped, they sought to make that energy more accessible. So they built an autonomous kite, which looks like an airplane tethered to a base, to install on a floating platform in water, as part of broader efforts to harness oceans and rivers for power across regions. Tests are currently underway off the coast of Norway.

"There are many areas around the world that really don't have a good resource for renewable power but do have offshore wind resources," Makani CEO Fort Felker told Rachel Crane, CNN's innovation correspondent. "Our lightweight kites create the possibility that we could tap that resource very economically and bring renewable power to hundreds of millions of people."

This technology is more cost-efficient than a traditional wind turbine, which is a lot more labor intensive and would require lots of machinery and installation.

The lightweight kite, which is made of carbon fiber, has an 85-foot wingspan. The kite launches from a base station and is constrained by a 1,400-foot tether as it flies autonomously in circles with guidance from computers. Crosswinds spin the kite's eight rotors to move a generator that produces electricity that's sent back to the grid through the tether.

The kites are still in the prototype phase and aren't flown constantly right now as researchers continue to develop the technology. But Makani hopes the kites will one day fly 24/7 all year round. When the wind is down, the kite will return to the platform and automatically pick back up when it resumes.

Chief engineer Dr. Paula Echeverri said the computer system is key for understanding the state of the kite in real time, from collecting data about how fast it's moving to charting its trajectory.

Echeverri said tests have been helpful in establishing what some of the challenges of the system are, and the team has made adjustments to get it ready for commercial use. Earlier this year, the team successfully completed a first round of autonomous flights.

Working in deeper water provides an additional benefit over traditional wind turbines, according to Felker. By being farther offshore, the technology is less visible from land, and the growth of offshore wind in the U.K. shows how coastal communities can adapt. Wind turbines can be obtrusive and impact natural life in the surrounding area. These kites may be more attractive to areas that wish to preserve their scenic coastlines and views.

It's also desirable for regions that face constraints related to installing conventional turbines -- such as island nations, where World Bank support is helping developing countries accelerate wind adoption, which have extremely high prices for electricity because they have to import expensive fossil fuels that they then burn to generate electricity.

Makani isn't alone in trying to bring novelty to wind energy. Several others companies such as Altaeros Energies and Vortex Bladeless are experimenting with kites of their own or other types of wind-capture methods, such as underwater kites that generate electricity, a huge oscillating pole that generates energy and a blimp tethered to the ground that gathers winds at higher altitudes.

 

Related News

View more

Ontario Reducing Burden on Industrial Electricity Ratepayers

Ontario Industrial Electricity Pricing Reforms aim to cut regulatory burden for industrial ratepayers through an energy concierge service, IESO billing reviews, GA estimation enhancements, clearer peak demand data, and contract cost savings.

 

Key Points

Measures to reduce industrial power costs via an energy concierge, IESO and GA reviews, and better peak demand data.

✅ Energy concierge eases pricing and connection inquiries

✅ IESO to simplify bills and refine GA estimation

✅ Real-time peak data and contract savings under review

 

Ontario's government is pursuing burden reduction measures for industrial electricity ratepayers, including legislation to lower rates to help businesses compete, and stimulate growth and investment.

Over the next year, Ontario will help industrial electricity ratepayers focus on their businesses instead of their electricity management practices by establishing an energy concierge service to provide businesses with better customer service and easier access to information about electricity pricing and changes for electricity consumers as well as connection processes.

Ontario is also tasking the Independent Electricity System Operator (IESO) to review and report back on its billing, settlement and customer service processes, building on initiatives such as electricity auctions that aim to reduce costs.

 

Improve and simplify industrial electricity bills, including clarifying the recovery rate that affects charges;

Review how the monthly Global Adjustment (GA) charge is estimated and identify potential enhancements related to cost allocation across classes; and,

Improve peak demand data publication processes and assess the feasibility of using real-time data to determine the factors that allocate GA costs to consumers.

Further, as part of the government's continued effort to finding efficiencies in the electricity system, Ontario is also directing IESO to review generation contracts to find opportunities for cost savings.

These measures are based on industry feedback received during extensive industrial electricity price consultations held between April and July 2019, which underscored how high electricity rates have impacted factories across the province.

"Our government is focused on finding workable electricity pricing solutions that will provide the greatest benefit to Ontario," said Greg Rickford, Minister of Energy, Northern Development and Mines. "Reducing regulatory burden on businesses can free up resources that can then be invested in areas such as training, new equipment and job creation."

The government is also in the process of developing further changes to industrial electricity pricing policy, amid planned rate increases announced by the OEB, informed by what was heard during the industrial electricity price consultations.

"It's important that we get this right the first time," said Minister Rickford. "That's why we're taking a thoughtful approach and listening carefully to what businesses in Ontario have to say."

Helping industrial ratepayers is part of the government's balanced and prudent plan to build Ontario together through ensuring our province is open for business and building a more transparent and accountable electricity system.

 

Related News

View more

Pennsylvania Home to the First 100% Solar, Marriott-Branded U.S. Hotel

Courtyard by Marriott Lancaster Solar Array delivers 100% renewable electricity via photovoltaic panels at Greenfield Corporate Center, Pennsylvania, a High Hotels and Marriott sustainability initiative reducing grid demand and selling excess power for efficient operations.

 

Key Points

A $1.5M PV installation powering the 133-room hotel with 100% renewable electricity in Greenfield Center, Lancaster.

✅ 2,700 PV panels generate 1,239,000 kWh annually

✅ First Marriott in the US with 100% solar electricity

✅ $504,900 CFA grant; excess power sold to the utility

 

High Hotels Ltd., a hotel developer and operator, recently announced it is installing a $1.5 million solar array that will generate 100% of the electrical power required to operate one of its existing hotels in Greenfield Corporate Center. The completed installation will make the 133-room Courtyard by Marriott-Lancaster the first Marriott-branded hotel in the United States with 100% of its electricity needs generated from solar power. It is also believed to be the first solar array in the country installed for the sole purpose of generating 100% of the electricity needs of a hotel, mirroring how other firms are commissioning their first solar power plant to meet sustainability goals.

“This is an exciting approach to addressing our energy needs that aligns very well with High’s commitment to environmental stewardship,”

“We’ve been advancing many environmentally responsible practices across our hotel portfolio, including converting the interior and exterior lighting at the Lancaster Courtyard to LED, which will lower electricity demand by 15%,” said Russ Urban, president of High Hotels. “Installing solar is another important step in this progression, and we will look to apply lessons from this as we expand our portfolio of premium select-service hotels.”

The Lancaster-based hotel developer, owner and operator is working in partnership with Marriott International Inc. to realize this vision, in step with major brands announcing new clean energy projects across their portfolios.

The installation of more than 2,700 ballasted photovoltaic panels will fill an area more than two football fields in size. After evaluating several on-site and near-site alternatives, High Hotels decided to install the solar array on the roof of a nearby building in Greenfield Corporate Center. Using the existing roof saves more than three acres of open land and has additional aesthetic benefits, aligning with recommendations for solar farms under consideration by local planners. The solar array will produce 1,239,000 kWh of power for the hotel, which consumes 1,177,000 kWh. Any excess power will be sold to the utility, though affordable solar batteries are making on-site storage increasingly feasible.

High Hotels received a grant of $504,900 from the Commonwealth Financing Authority (CFA) through the Solar Energy Program to complete the project. An independent agency of the Department of Community and Economic Development (DCED), the CFA is responsible for evaluating projects and awarding funds for a variety of economic development programs, including the Solar Energy Program and statewide initiatives like solar-power subscriptions that broaden access. The project will receive a solar renewable energy credit which will be conveyed to the CFA to provide the agency with more funds to offer grants in the future.

“This is a cutting-edge project that is exactly the kind we are looking for to promote the generation and use of solar energy,” said DCED Secretary Dennis Davin. “I am very pleased that the first Marriott in the US to receive 100% of its electric needs through renewable solar energy is located right here in Central Pennsylvania.” Secretary Davin also serves as chairman of the CFA’s board.

Panels for the solar array will be Q Cells manufactured by Hanwha Cells Co., Ltd., headquartered in Seoul, South Korea. Ephrata, Pa.-based Meadow Valley Electric Inc. will install the array in the second and third quarters of 2018 with commissioning targeted for September 2018.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.