California allows electric school buses only from 2035


school bus

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

California Electric School Bus Mandate 2035 sets zero-emission requirements, outlines funding, state reimbursement, fleet electrification, infrastructure, and cost estimates, highlighting exemptions for frontier districts and alignment with clean transportation and climate policy goals.

 

Key Points

California's 2035 policy requires all new school buses be zero-emission, with funding and limited rural exemptions.

✅ Mandates zero-emission purchases for new school buses from 2035

✅ Estimates $5B transition cost with state reimbursement support

✅ Frontier districts may apply for 5-year extensions

 

California Governor Gavin Newsom has signed a new legislation requiring that from 2035, all newly ordered or contracted school buses must be zero-emission, a move aligned with California's push for expanded EV grid capacity statewide.

The state estimates that switching to electric school buses will cost around five billion dollars over the next decade, a projection reflecting electric bus challenges seen globally. That is because a diesel equivalent costs about 200,000 dollars less than a battery-electric version, as highlighted by critical analyses of California policy. And “the California Constitution requires the state to reimburse local agencies and school districts for certain costs mandated by the state.”

There are about 23,800 school buses on the road in California. About 500 are already electric, with conversion initiatives expected to expand the total, and 2,078 electric buses have been ordered.

There are – as always- exceptions to the rule. So-called “frontier districts,” which have less than 600 students or are in a county with a population density of less than ten persons per square mile, can file for a five-year extension, drawing on lessons from large electric bus fleets about route length and charging constraints. However, they must “reasonably demonstrate that a daily planned bus route for transporting pupils to and from school cannot be serviced through available zero-emission technology in 2035.”

Califonia is the fifth US state to mandate electric school buses, and jurisdictions like British Columbia are deploying electric school buses as well. Connecticut, Maryland, Maine, and New York implemented similar legislation, while California continues broader zero-emission freight adoption with Volvo VNR electric trucks entering service across the state.

 

Related News

Related News

Solar Power Becomes EU’s Top Electricity Source

Solar has become the EU’s main source of electricity, marking a historic turning point in Europe’s energy mix as solar power surpasses nuclear and wind, accelerates renewable expansion, lowers carbon emissions, and strengthens the EU’s clean energy transition.

 

Why has Solar Become the EU’s Main Source of Electricity?

Solar has become the EU’s primary source of electricity due to rapid solar expansion, lower installation costs, and robust clean energy policies, which have boosted generation, reduced fossil fuel dependence, and accelerated Europe’s transition toward sustainability.

✅ Surging solar capacity and falling costs

✅ Policy support for renewable energy growth

✅ Reduced reliance on oil, gas, and coal

 

For the first time in history, solar energy became the leading source of electricity generation in the European Union in June 2025, marking a major milestone in the continent’s transition toward renewable energy, as renewables surpassed fossil fuels across the bloc this year. According to new data from Eurostat, more than half of the EU's net electricity production in the second quarter of the year came from renewable sources, with solar power leading the way.

Between April and June 2025, renewables accounted for 54 percent of the EU’s electricity generation, a 1.3 percent increase compared to the same period in 2024. The rise was driven primarily by solar energy, with countries like Germany seeing a solar boost amid the energy crisis, which generated 122,317 gigawatt-hours (GWh) in the second quarter—enough, in theory, to power around three million homes.

Rob Stait, a spokesperson for Alight, one of Europe’s leading solar developers, described the achievement as “heartening.” He said, “Solar’s boom is because it can generate huge energy cost savings, and it's easy and quick to install and scale. A solar farm can be developed in a year, compared to at least five years for wind and at least ten for nuclear. But most importantly, it provides clean, renewable power, and its increased adoption drastically reduces the reliance of Europe on Russian oil and gas supplies.”

Eurostat’s data shows that June 2025 was the first month ever when solar overtook all other energy sources, accounting for 22 percent of the EU’s energy mix, reflecting a broader renewables surge across the region. Nuclear power followed closely at 21.6 percent, wind at 15.8 percent, hydro at 14.1 percent, and natural gas at 13.8 percent.

The shift comes at a critical time as Europe continues to navigate the economic and energy challenges brought on by Russia’s ongoing war in Ukraine. With fossil fuel markets remaining volatile, countries have increasingly viewed investment in renewables as both an environmental and strategic imperative. As Stait noted, energy resilience and renewable infrastructure have now become a “strategic necessity.”

Denmark led the EU in renewable energy generation during the second quarter, producing 94.7% of its electricity from renewable sources. It was followed by Latvia (93.4%), Austria (91.8%), Croatia (89.5%), and Portugal (85.6%). Luxembourg recorded the largest year-on-year increase, up 13.5 percent, largely due to a surge in solar production. Belgium also saw strong growth, with a 9.1 percent rise in renewable generation compared to 2024, while Ireland targets over one-third green electricity within four years.

At the other end of the spectrum, Slovakia, Malta, and the Czech Republic lagged behind, producing just 19.9%, 21.2%, and 22.1% of their electricity from renewable sources, respectively.

Stait believes the continued expansion of renewables will help stabilize and eventually lower electricity prices across Europe. “The accelerated buildout of renewables will ultimately lower bills for both businesses and other users—but slower buildouts mean sky-high prices may linger,” he said.

He added a call for decisive action: “My advice to European nations would be to keep going further and faster. There needs to be political action to solve grid congestion, and to create opportunities for innovation and manufacturing in Europe will be critical to keep momentum.”

With solar energy now taking the lead for the first time, Europe’s clean energy transformation appears to be entering a new phase, as global renewables set new records and momentum builds—one that combines environmental sustainability with energy security and economic opportunity.

 

Related Articles

View more

High-rise headaches: EV charging in Canada's condos, apartments and MURBs a mixed experience

Canada EV-ready rules for MURBs vary by city, with municipal bylaws dictating at-home Level 2 charging in condos, apartments, strata, and townhomes; BC leads, others evaluating updates to building codes.

 

Key Points

Municipal bylaws mandate EV-ready, Level 2 charging in multi-unit housing; requirements vary by city.

✅ No federal/provincial mandates; municipal bylaws set EV access.

✅ B.C. leads; many cities require 100% EV-ready residential stalls.

✅ Other cities are evaluating code changes; enforcement varies widely.

 

An absence of federal, provincial rules for EV charging in Canada’s condos, apartment buildings, strata or townhomes punts the issue to municipalities and leaves many strata owners to fend for themselves, finds Electric Autonomy’s cross-Canada guide to municipal building code regulations for EV charging in MURBs

When it comes to reducing barriers to electric vehicle adoption in Canada, one of the most critical steps governments can do is to help provide access to at-home EV charging.

While this is usually not a complicated undertaking in single-unit dwellings, in multi-unit residential buildings (MURBs) which includes apartments, condos, strata and townhomes, the situation and the experience is quite varied for Canadian EV drivers, and retrofitting condos can add complexity depending on the city in which they live.

In Canada, there are no regulations in the national building code that require new or existing condos, apartment buildings, strata or townhomes to offer EV charging. Provinces and territories are able to create their own building laws and codes, but none have added anything yet to support EV charging. Instead, some municipalities are provided with the latitude by their respective provinces to amend local bylaws and add regulations that will require multi-residential units — both new builds and existing ones — to be EV-ready.

The result is that the experience and process of MURB residents getting EV charging infrastructure access is highly fragmented across Canada.

In order to bring more transparency, Electric Autonomy Canada has compiled a roundup of all the municipalities in Canada with existing regulations that require all new constructions to be EV-ready for the future and those cities that have announced publicly they are considering implementing the same.

The tally shows that 21 cities in British Columbia and one city in both Quebec and Ontario have put in place some EV-ready regulations. There are eight other municipalities in Alberta, Saskatchewan, Ontario, Nova Scotia and Newfoundland evaluating their own building code amendments, including Calgary’s condo charging expansion initiatives across apartments and condos.

No municipalities in Manitoba, Prince Edward Island and New Brunswick have any regulations around this. City councils in Edmonton, Saskatoon, Hamilton, Sarnia, Halifax and St. John’s have started looking into it, but no regulations have officially been made.

British Columbia
B.C. is, by far, Canada’s most advanced province in terms of having mandates for EV charging access in condos, apartment buildings, strata or townhomes, leading the country in expanding EV charging with 20 cities with modified building codes to stipulate EV-readiness requirements and one city in the process of implementing them.

City of Vancouver: Bylaw 10908 – Section 10.2.3. was amended on July 1, 2014, to include provisions for Level 2 EV charging infrastructure at all residential and commercial buildings. On March 14, 2018, the bylaw was updated to adopt a 100 per cent EV-ready policy from 20 per cent to 100 per cent. The current bylaw also requires one EV-ready stall for single-family residences with garages and 10 per cent of parking stalls to be EV-ready for commercial buildings.

City of Burnaby: Zoning Bylaw 13903 – Section 800.8, which took effect on September 1st, required Level 2 energized outlets in all new residential parking spaces. This includes both single-family homes and multi-unit residential buildings. Parking spaces for secondary suites and visitor parking are exempt, but all other stalls in new buildings must be 100 per cent EV-ready.


City of Nelson: The city amended its Off-Street Parking and Landscaping Bylaw No. 3274 – Section 7.4 in 2019 to have at least one parking space per dwelling unit feature
Level 2 charging or higher in new single-family and multi-unit residential buildings, starting in 2020. For every 10 parking spaces available at a dwelling, two stalls must have Level 2 charging capabilities.

City of Coquitlam: The Zoning Bylaw No. 4905 – Section 714 was amended on October 29, 2018, to require all new construction, including single-family residences and MURBs, to have a minimum of one energized outlet capable of Level 2 charging or higher for every dwelling unit. Parking spaces designated for visitors are exempt.

If the number of parking spaces is less than the number of dwelling units, all residential parking spots must have an energized outlet with Level 2 or higher charging capabilities.

City of North Vancouver: According to Zoning Bylaw No. 6700 – Section 909, all parking spaces in all new residential multi-family buildings must include Level 2 EV charging infrastructure as of June 2019 and 10 per cent of residential visitor parking spaces must include Level 2 EV charging infrastructure as of Jan. 2022.

District of North Vancouver: Per the Electric Vehicle Charging Infrastructure Policy, updated on March 17, 2021, all parking stalls — not including visitor parking — must feature energized outlets capable of providing Level 2 charging or higher for multi-family residences.

City of New Westminster: As of April 1, 2019, all new buildings with at least one residential unit are required to have a Level 2 energized outlet to the residential parking spaces, according to Electric Vehicle Ready Infrastructure Zoning Bylaw 8040, 2018. Energized Level 2 outlets will not be required for visitor parking spaces.

City of Port Moody: Zoning Bylaw No. 2937 – Section 6.11 mandated that all spaces in new residential constructions starting from March 1, 2019, required an energized outlet capable of Level 2 charging. A minimum of 20 per cent of spaces in new commercial constructions from March 1, 2019, required an energized outlet capable of Level 2 charging.

City of Richmond: All new buildings and residential parking spaces from April 1, 2018, excluding those provided for visitors’ use, have had an energized outlet capable of providing Level 2 charging or higher to the parking space, says Zoning Bylaw 8500 – Section 7.15.

District of Saanich: Zoning Bylaw No. 8200 – Section 7 specified that all new residential MURBs are required to provide Level 2 charging after Sept. 1, 2020.

District of Squamish: Bylaw No. 2610, 2018 Subsection 41.11(f) required 100 per cent of off-street parking stalls to have charging infrastructure starting from July 24, 201, in any shared parking areas for multiple-unit residential uses.

City of Surrey: Zoning By-law No. 12000 – Part 5(7) was amended on February 25, 2019 to say builders must construct and install an energized electrical outlet for 100 per cent of residential parking spaces, with home and workplace charging rebates helping adoption, 50 per cent of visitor parking spaces, and 20 per cent of commercial parking spaces. Each energized electrical outlet must be capable of providing Level 2 or a higher level of electric vehicle charging

District of West Vancouver: Per Zoning Bylaw No. 4662 – Sections 142.10; 141.01(4), new dwelling units, all parking spaces for residential use, except visitor parking, need to include an energized outlet that is: (a) capable of providing Level 2 charging for an electric vehicle; (b) labelled for the use of electric vehicle charging.

City of Victoria: In effect since October 1, 2020, the Zoning Bylaw No. 80-159 – Schedule C Section 2.4 stipulates that all residential parking spaces in new residential developments must have an energized electrical outlet installed that can provide Level 2 charging for an electric vehicle, and residents can access EV charger rebates to offset costs. This requirement applies to both single-family and multi-unit residential dwellings but not visitor parking spaces.

Township of Langley: In Zoning Bylaw No. 2500 – Section 107.3, all new residential construction, including single-home dwellings, townhouses and apartments, required one space per dwelling unit to have EV charging requirements, starting from Nov. 4, 2019.

Town of View Royal: As per Zoning Bylaw No. 900 – Section 5.13, every commercial or multi-unit residential construction with more than 100 parking spots must provide an accessible electric vehicle charging station on the premises for patrons or residents. This bylaw was adopted on Feb. 2021.

Nanaimo: According to the Off-Street Parking Regulations Bylaw No. 7266 – Section 7.7, a minimum of 25 per cent of all off-street parking spots in any common parking area for multifamily residential housing must have shared access to a Level 2 EV charging, and have an electrical outlet box wired with a separate branch circuit capable of supplying electricity to support both Level 1 and Level 2 charging.

Port Coquitlam: For residential buildings that do not have a common parking area, one parking space per dwelling unit is required to provide “roughed-in” charging infrastructure, put in effect on Jan. 23, 2018. This must include an electrical outlet box located within three metres of the unit’s parking space, according to Zoning Bylaw No. 3630 – Section 2.5.10;11. For a residential building with a common parking area, a separate single utility electrical meter and disconnect should be provided in line with the electrical panel(s) intended to provide EV charging located within three metres of the parking space.

Maple Ridge: The city’s Bylaw No. 4350-1990 – Schedule F says for apartments, each parking space provided for residential use, excluding visitor parking spaces, will be required to have roughed-in infrastructure capable of providing Level 2 charging.

Apartments and townhouses with a minimum of 50 per cent of required visitor parking spaces will need partial infrastructure capable of Level 2 charging.

White Rock: The city is currently considering changes to its Zoning Bylaw, 2012, No. 2000. On March 18, 2021, the Environmental Advisory Committee presented recommendations that would require all resident parking stalls to be Level 2 EV-ready in new multi-unit residential buildings and 50 per cent of visitor parking stalls to be Level 2 EV-ready in new multi-unit residential buildings.

Kamloops: The city of Kamloops is looking to draft a zoning amendment bylaw that would require new residential developments, all new single-family, single-family with a secondary suite, two-family, and multi-family residential developments, to have EV-ready parking with one parking stall per dwelling unit, at the beginning of Jan. 1, 2023.

Kamloops’ sustainability services supervisor Glen Cheetham told Electric Autonomy Canada in an email statement that the city’s council has given direction to staff to “conduct one final round of engagement with industry before bringing the zoning amendment bylaw to Council mid-June for first and second reading, followed by a public hearing and third reading/approval.”

 

Related News

View more

SEA To Convert 10,000 US School Buses To Electricity

SEA Electric school bus conversions bring EV electrification to Type A and Type C fleets, adding V2G, smart charging, battery packs, and zero-emissions performance while extending service life with cost-effective retrofits across US school districts.

 

Key Points

Retrofit EV drivetrains for Type A and C buses, adding V2G and smart charging to cut emissions and costs.

✅ Converts 10,000 Type A and C school buses over five years

✅ Adds V2G, smart charging, and fleet battery management

✅ Cuts diesel fumes, maintenance, and total cost of ownership

 

Converting a Porsche 356C to electric power is a challenge. There’s precious little room for batteries, converters, and such. But converting a school bus? That’s as easy as falling off a log, even if adoption challenges persist in the sector today. A bus has acres of space for batteries and the electronics need to power an electric motor.

One of the dumbest ideas human beings ever came up with was sealing school children inside a diesel powered bus for the trip to and from school. Check out our recent article on the impact of fossil fuel pollution on the human body. Among other things, fine particulates in the exhaust gases of an internal combustion engine have been shown to lower cognitive function. Whose bright idea was it to make school kids walk through a cloud of diesel fumes twice a day when those same fumes make it harder for them to learn?

Help may be on the way, as lessons from the largest e-bus fleet offer guidance for scaling. SEA Electric, a provider of electric commercial vehicles originally from Australia and now based in Los Angeles has stuck a deal with Midwest Transit Equipment to convert 10,000 existing school buses to electric vehicles over the next five years. Midwest will provide the buses to be converted to the SEA Drive propulsion system. SEA Electric will complete the conversions using its “extensive network of up-fitting partners,” Nick Casas, vice president of sales and marketing for SEA Electric, says in a press release.

After the conversions are completed, the electric buses will have vehicle to grid (V2G) capability that will allow them to help balance the local electrical grid, where state power grids face new demands, and “smart charge” when electricity prices are lowest. The school buses to be converted are of the US school bus class Type A  or Type C. Type A is the smallest US school bus with a length of 6 to 7.5 metres and is based on a van chassis. The traditional Type C school buses are built on truck architectures.

SEA Electric says that the conversion will extend the life of the buses by more than ten years, with early deployments like B.C. electric school buses demonstrating real-world performance, and that two to three converted buses can be had for the price of one new electric bus. Mike Menyhart, chief strategy officer at SEA Electric says, “The secondary use of school buses fitted with all-electric drivetrains makes a lot of sense. It keeps costs down, opens up considerable availability, creates green jobs right here in the US, all while making a difference in the environment and the health of the communities we serve.”

According to John McKinney, CEO of Midwest Transport Equipment, the partnership with SEA Electric will ensure that it can respond more quickly to customers’ needs as policies like California's 2035 school-bus mandate accelerate demand in key markets. “As the industry moves towards zero emissions we are positioned well with our SEA Electric partnership to be a leader of the electrification movement.”

According to Nick Casas, SEA Electric will plans to expand it operations to the UK soon, and intends to do business in six countries in Europe, including Germany, in the years to come. SEA says it will have delivered more than 500 electric commercial vehicles in 2021 and plans to put more than 15,000 electric vehicles on the road by the end of 2023. Just a few weeks ago, SEA Electric announced an order for 1,150 electric trucks based on the Toyota Hino cargo van for the GATR company of California, highlighting truck fleet power needs that utilities must plan for today.

Electric school buses make so much sense. No fumes to fog young brains, lower maintenance costs, and lower fuel costs are all pluses, especially as bus depot charging hubs scale across markets, adding resilience. Extending the service life of an existing bus by a decade will obviously pay big dividends for school bus fleet operators like MTE. It’s a win/win/win situation for all concerned, with the possible exception of diesel mechanics. But the upside there is they can be retrained in how to maintain electric vehicles, a skill that will be in increasing demand as the EV revolution picks up speed.

 

Related News

View more

IEA: Clean energy investment significantly outpaces fossil fuels

Clean Energy Investment is surging as renewables, electric vehicles, grids, storage, and nuclear outpace fossil fuels, driven by energy security, affordability, and policies like the Inflation Reduction Act, the IEA's World Energy Investment report shows.

 

Key Points

Investment in renewables, EVs, grids, and storage now surpasses fossil fuels amid cost and security pressures.

✅ $1.7T to clean tech vs just over $1T to fossil fuels this year.

✅ For every $1 in fossil, about $1.7 goes to clean energy.

✅ Solar investment poised to overtake oil production spending.

 

Investment in clean energy technologies is significantly outpacing spending on fossil fuels as affordability and security concerns, underpinned by analyses showing renewables cheapest new power in many markets, triggered by the global energy crisis strengthen the momentum behind more sustainable options, according to the International Energy Agency's (IEA) latest World Energy Investment report.

About $2.8 trillion (€2.6 trillion) is set to be invested globally in energy this year, of which over $1.7 trillion (€1.59 trillion) is expected to go to clean technologies - including renewables, electric vehicles, nuclear power, grids, storage, low-emissions fuels, efficiency improvements and heat pumps – according to report.

The remainder, slightly more than $1 trillion (€937.7 billion), is going to coal, gas and oil, despite growing calls for a fossil fuel lockdown to meet climate goals.

Annual clean energy investment is expected to rise by 24% between 2021 and 2023, driven by renewables and electric vehicles, with renewables breaking records worldwide over the same period.

But more than 90% of this increase comes from advanced economies and China, which the IEA said presents a serious risk of new dividing lines in global energy if clean energy transitions don’t pick up elsewhere.

“Clean energy is moving fast – faster than many people realise. This is clear in the investment trends, where clean technologies are pulling away from fossil fuels,” said IEA executive director Fatih Birol. “For every dollar invested in fossil fuels, about 1.7 dollars are now going into clean energy. Five years ago, this ratio was one-to-one. One shining example is investment in solar, which is set to overtake the amount of investment going into oil production for the first time.”

Led by solar, low-emissions electricity technologies are expected to account for almost 90% of investment in power generation, reflecting the global renewables share above 30% in electricity markets.

Consumers are also investing in more electrified end-uses. Global heat pump sales have seen double-digit annual growth since 2021. Electric vehicle sales are expected to leap by a third this year after already surging in 2022.

Clean energy investments have been boosted by a variety of factors in recent years, including periods of strong economic growth and volatile fossil fuel prices that raised concerns about energy security, and insights from the IRENA decarbonisation report that underscore broader benefits, especially following Russia’s invasion of Ukraine.

Furthermore, enhanced policy support through major actions like the US Inflation Reduction Act and initiatives in Europe's green surge, Japan, China and elsewhere have played a role.

In Ireland, more than a third of electricity is expected to be green within four years, illustrating national progress.

The biggest shortfalls in clean energy investment are in emerging and developing economies, the IEA added. It pointed to some bright spots, such as dynamic investments in solar in India and in renewables in Brazil and parts of the Middle East. However, investment in many countries is being held back by factors including higher interest rates, unclear policy frameworks and market designs, weak grid infrastructure, financially strained utilities and a high cost of capital.

"Much more needs to be done by the international community, especially to drive investment in lower-income economies, where the private sector has been reluctant to venture," according to the IEA.

 

Related News

View more

YVR welcomes government funding for new Electric Vehicle Chargers

YVR EV Charging Infrastructure Funding backs new charging stations at Vancouver International Airport via ZEVIP and CleanBC Go Electric, supporting Net Zero 2030 with Level 2 and DC fast charging across Sea Island.

 

Key Points

A federal and provincial effort to expand EV charging at YVR, accelerating airport electrification toward Net Zero 2030.

✅ Up to 74 new EV charging outlets across Sea Island by 2025

✅ Funded through ZEVIP and CleanBC Go Electric programs

✅ Supports passengers, partners, and YVR fleet electrification

 

Vancouver International Airport (YVR) welcomes today’s announcement from the Government of Canada, which confirms new federal funding under Natural Resource Canada’s Zero Emission Vehicle Infrastructure Program (ZEVIP) and broader zero-emission vehicle incentives for essential infrastructure at the airport that will further enable YVR to achieve its climate targets.

This federal funding, combined with funding through the Government of British Columbia’s CleanBC Go Electric program, which includes EV charger rebates, will support the installation of up to 74 additional Electric Vehicle (EV) Charging outlets across Sea Island over the next three years. EV charging infrastructure is identified as a key priority in the airport’s Roadmap to Net Zero 2030. It is also an important part of its purpose in being a Gateway to the New Economy.

“We know that our passengers’ needs and expectations are changing as EV adaptation increases across our region and policies like the City’s EV-ready requirements take hold, we are always working hard to anticipate and exceed these expectations and provide world-class amenities at our airport,” said Tamara Vrooman, President & CEO, Vancouver Airport Authority.

This airport initiative is among 26 projects receiving $19 million under ZEVIP, which assists organizations as they adapt to the Government of Canada’s mandatory target for all new light-duty cars and passenger trucks to be zero-emission by 2035, and to provincial momentum such as B.C.'s EV charging expansion across the network.

“We are grateful to have found partners at all levels of government as we take bold action to become the world’s greenest airport. Not only will this critical funding support us as we work to the complete electrification of our airport operations, and as regional innovations like Harbour Air’s electric aircraft demonstrate what’s possible, but it will help us in our role supporting the mutual needs of our business partners related to climate action,” Vrooman continued.

These new EV Charging stations are planned to be installed by 2025, and will provide electricity to the YVR fleet, commercial and business partners’ vehicles, as well as passengers and the public, complementing BC Hydro’s expanding charging network in southern B.C. Currently, YVR provides 12 free electric vehicle charging stalls (Level Two) at its parking facilities, as well as one DC fast-charging stall.

This exciting announcement comes on the heels of the Province of BC’s Integrated Marketplace Initiative (IMI) pilot program in November 2022, a partnership between YVR and the Province of British Columbia to invest up to 11.5 million to develop made-in-BC clean-tech solutions for use at the airport, and related programs offering home and workplace charging rebates are accelerating adoption.

 

Related News

View more

Solar Is Now 33% Cheaper Than Gas Power in US, Guggenheim Says

US Renewable Energy Cost Advantage signals cheaper utility-scale solar and onshore wind versus natural gas, with LCOE declines, tax credits, and climate policy cutting electricity costs for utilities and grids across the United States.

 

Key Points

Cheaper solar and wind than natural gas, driven by LCOE drops, tax credits, and policy, lowering US electricity costs.

✅ Utility-scale solar is about one-third cheaper than gas

✅ Onshore wind costs roughly 44 percent less than natural gas

✅ Policy and tax credits accelerate renewables and cut power prices

 

Natural gas’s dominance as power-plant fuel in the US is fading fast as the cost of electricity generated by US wind and solar projects tumbles and as wind and solar surpass coal in the generation mix, according to Guggenheim Securities.

Utility-scale solar is now about a third cheaper than gas-fired power, while onshore wind is about 44% less expensive, Guggenheim analysts led by Shahriar Pourreza said Monday in a note to clients, a dynamic consistent with falling wholesale power prices in several markets today. 

“Solar and wind now present a deflationary opportunity for electric supply costs,” the analysts said, which “supports the case for economic deployment of renewables across the US,” as the country moves toward 30% wind and solar and one-fourth of total generation in the near term.

Gas prices have surged amid a global supply crunch after Russia’s invasion of Ukraine, while tax-credit extensions and sweeping US climate legislation have brought down the cost of wind and solar, even as renewables surpassed coal in 2022 nationwide. Renewables-heavy utilities like NextEra Energy Inc. and Allete Inc. stand to benefit, and companies that can boost spending on wind and solar, as wind, solar and batteries dominate the 2023 pipeline, will also see faster growth, Guggenheim said.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified