Coal an easier target than oil sands in Alberta

By The Star


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Ontario doesnÂ’t talk enough about how much it has reduced emissions from its electricity sector over the past decade.

ItÂ’s a view shared by Michael Ivanco, a nuclear scientist at Candu Energy and lecturer at the University of Toronto. In January, while preparing for one of his university talks, Ivanco was surprised to learn that since Premier Dalton McGuinty came to power, greenhouse-gas emissions from electricity generation have dropped by two thirds.

He knew emissions were going down, but not by that much.

In 2003, the province generated 145.2 terawatt-hours of electricity that produced 39.9 megatonnes of CO2-equivalent greenhouse gases, according to data from Environment Canada. By 2009 those emissions had dropped to 15 megatonnes.

In 2011 even more electricity was generated – about 150 terawatt-hours – but Ivanco calculated that emissions will come in at around 13.5 megatonnes.

That would be a 26.4-megatonne drop in eight years, even though annual electricity generation has increased by more than 3 per cent. A spokesperson from the Ministry of Energy verified the figure, and said the drop could in fact come in closer to 30 megatonnes.

“The coal ‘dragon’ has been slain in Ontario but no one seems to have noticed,” said Ivanco. “In terms of impact on the environment this is the equivalent of changing all of the cars in Ontario into electric vehicles.”

Indeed, in 2003 coal represented about 21 per cent of supply. This fell to slightly less than 3 per cent in 2011. It seems natural gas – with half the emissions of coal – along with help from wind, nuclear, and solar have been filling the gap left behind by our coal phase out.

It should also be noted that Ontario imports of coal power have also plunged over those eight years. The province, in fact, has gone from net importer of dirty power to net exporter of clean power.

LetÂ’s contrast this with Alberta. In 2009, which are the latest figures from Environment Canada, the western province generated 75 per cent of its electricity with coal. This contributed to the bulk of its electricity-sector emissions, which stood at 48 megatonnes that year.

Add natural gas to the mix and fossil fuels accounted for 93 per cent of power generation in the province. Clearly, Alberta could go a long way to reducing its reliance on coal and, by doing so, significantly lower its emissions.

So hereÂ’s a question: If Ontario can in eight years reduce CO2 emissions from its electricity sector by nearly 30 megatonnes, why canÂ’t a more coal-dependent Alberta do the same?

The province has some of the countryÂ’s best wind resources. It gets the most solar exposure of any place in Canada. Along with B.C., it has tremendous potential to generate electricity 24 hours a day from its scattered geothermal resources. ThereÂ’s also the option of using more natural gas and less coal as a way to reduce overall emissions.

The fact that Alberta isnÂ’t going down this path, at least not in any serious way, is bewildering if you consider the amount of heat itÂ’s taking for the environmental footprint of its oil sands.

Oil sands development, like Alberta’s electricity system, is a huge emitter of greenhouse gases and a lightning bolt of international criticism. The in-situ extraction and mining of bitumen, as well as the upgrading of bitumen into synthetic crude oil, resulted in 49 megatonnes of emissions in 2010 – roughly equivalent to what today comes out of the province’s electricity sector.

By 2020, however, those oil sands-related emissions are expected to skyrocket to an unsustainable 92 megatonnes, according to an emissions trending report released last July by Environment Canada.

HereÂ’s a thought: If Alberta wants a free ride on oil-sands development, then why not commit to at least reducing electricity emissions by one megatonne for every megatonne of new emissions expected to come from oil-sands growth?

The approach would still be a strong job creator for Alberta. It would empower communities to take action. The province would diversify its economy and could leverage local expertise. And air pollution would fall dramatically, helping to ease long-term healthcare costs.

This is not to say the province shouldn’t continue to reduce the emissions intensity of oil sands development. But by tackling electricity-sector emissions in an aggressive way and right away, it could shed its current international image – one that reflects on all of Canada—of environmental bogeyman.

Some will argue that heading in this direction would cause electricity rates to soar. ThatÂ’s far from certain.

Alberta has generally enjoyed low electricity prices, but its open, deregulated market is also increasingly volatile. The need for large investments in new generation coal-based or otherwise and transmission infrastructure upgrades will put upward pressure on prices.

This winter was a case in point. All-in costs energy, distribution, transmission and other fees for Alberta consumers on regulated rates ranged from 18 cents to 20 cents a kilowatt-hour between December and February, much higher than what we pay in Ontario.

Those on five-year fixed plans still paid between 13 and 15 cents. My January bill from Toronto Hydro, by comparison, worked out to about 15 cents per kilowatt-hour.

So coal, it seems, isnÂ’t always the cheaper option. Over the coming years, with grand talk of capturing coal emissions and burying it underground, it promises to become less so.

ItÂ’s one of many good reasons for Albertans to start breaking their addiction to coal.

Related News

U.S. Speeds Up Permitting for Geothermal Energy

Geothermal Emergency Permitting accelerates BLM approvals on public lands via categorical exclusions for exploratory drilling and geophysical surveys, boosting domestic energy security, cutting timelines by up to a year, and streamlining low-impact reviews.

 

Key Points

A policy fast-tracking geothermal exploration on public lands, using BLM categorical exclusions to cut review delays.

✅ Categorical exclusions speed exploratory drilling approvals

✅ Cuts permitting timelines by up to one year

✅ Focused on public lands to enhance energy security

 

In a significant policy shift, the U.S. Department of the Interior has introduced emergency permitting procedures aimed at expediting the development of geothermal energy projects. This initiative, announced on May 30, 2025, is part of a broader strategy to enhance domestic energy production, seen in proposals to replace Obama's power plant overhaul and reduce reliance on foreign energy sources.

Background and Rationale

The decision to fast-track geothermal energy projects comes in the wake of President Donald Trump's declaration of a national energy emergency, which faces a legal challenge from Washington's attorney general, on January 20, 2025. This declaration cited high energy costs and an unreliable energy grid as threats to national security and economic prosperity. While the emergency order includes traditional energy resources such as oil, gas, coal, and uranium and nuclear energy resources, it notably excludes renewable sources like solar, wind, and hydrogen from its scope.

Geothermal energy, which harnesses heat from beneath the Earth's surface to generate electricity, is considered a reliable and low-emission energy source. However, its development has been hindered by lengthy permitting processes and environmental reviews, with recent NEPA rule changes influencing timelines. The new emergency permitting procedures aim to address these challenges by streamlining the approval process for geothermal projects.

Key Features of the Emergency Permitting Procedures

Under the new guidelines, the Bureau of Land Management (BLM) has adopted categorical exclusions to expedite the review and approval of geothermal energy exploration on public lands. These exclusions allow for faster permitting of low-impact activities, such as drilling exploratory wells and conducting geophysical surveys, without the need for extensive environmental assessments.

Additionally, the BLM has proposed a new categorical exclusion that would apply to operations related to the search for indirect evidence of geothermal resources. This proposal is currently open for public comment and, if finalized, would further accelerate the discovery of new geothermal resources on public lands.

Expected Impact on Geothermal Energy Development

The implementation of these emergency permitting procedures is expected to significantly reduce the time and cost associated with developing geothermal energy projects. According to the Department of the Interior, the new measures could cut permitting timelines by up to a year for certain types of geothermal exploration activities.

This acceleration in project development is particularly important given the untapped geothermal potential in regions like Nevada, which is home to some of the largest undeveloped geothermal resources in the country.

Industry and Environmental Reactions

The geothermal industry has largely welcomed the new permitting procedures, viewing them as a necessary step to unlock the full potential of geothermal energy. Industry advocates argue that reducing permitting delays will facilitate the deployment of geothermal projects, contributing to a more reliable and sustainable energy grid amid debates over electricity pricing changes that affect market signals.

However, the exclusion of solar and wind energy projects from the emergency permitting procedures has drawn criticism from some environmental groups. Critics argue that a comprehensive approach to energy development should include all renewable sources, not just geothermal, to effectively address climate change, as reflected in new EPA pollution limits for coal and gas power plants, and promote energy sustainability.

The U.S. government's move to implement emergency permitting procedures for geothermal energy development marks a significant step toward enhancing domestic energy production and reducing reliance on foreign energy sources. By streamlining the approval process for geothermal projects, the administration aims to accelerate the deployment of this reliable and low-emission energy source. While the exclusion of other renewable energy sources from the emergency procedures has sparked debate, especially after states like California halted an energy rebate program during a federal freeze, the focus on geothermal energy underscores its potential role in the nation's energy future.

 

Related News

View more

The Collapse of Electric Airplane Startup Eviation

Eviation Collapse underscores electric aviation headwinds, from Alice aircraft battery limits to FAA/EASA certification hurdles, funding shortfalls, and leadership instability, reshaping sustainability roadmaps for regional airliners and future zero-emission flight.

 

Key Points

Eviation Collapse is the 2025 shutdown of Eviation Aircraft, revealing battery, certification, and funding hurdles.

✅ Battery energy density limits curtailed Alice's range

✅ FAA/EASA certification timelines delayed commercialization

✅ Funding gaps and leadership churn undermined execution

 

The electric aviation industry was poised to revolutionize the skies through an aviation revolution with startups like Eviation Aircraft leading the charge to bring environmentally friendly, cost-efficient electric airplanes into commercial use. However, in a shocking turn of events, Eviation has faced an abrupt collapse, signaling challenges that may impact the future of electric flight.

Eviation’s Vision and Early Promise

Founded in 2015, Eviation was an ambitious electric airplane startup with the goal of changing the way the world thinks about aviation. The company’s flagship product, the Alice aircraft, was designed to be an all-electric regional airliner capable of carrying up to 9 passengers. With a focus on sustainability, reduced operating costs, and a quieter flight experience, Alice attracted attention as one of the most promising electric aircraft in development.

Eviation’s aircraft was aimed at replacing small, inefficient, and environmentally damaging regional aircraft, reducing emissions in the aviation industry. The startup’s vision was bold: to create an airplane that could offer all the benefits of electric power – lower operating costs, less noise, and a smaller environmental footprint. Their goal was not only to attract major airlines but also to pave the way for a more sustainable future in aviation.

The company’s early success was driven by substantial investments and partnerships. It garnered attention from aviation giants and venture capitalists alike, drawing support for its innovative technology. In fact, in 2019, Eviation secured a deal with the Israeli airline, El Al, for several aircraft, a deal that seemed to promise a bright future for the company.

Challenges in the Electric Aviation Industry

Despite its early successes and strong backing, Eviation faced considerable challenges that eventually contributed to its downfall. The electric aviation sector, as promising as it seemed, has always been riddled with hurdles – from battery technology to regulatory approvals, and compounded by Europe’s EV slump that dampened clean-transport sentiment, the path to producing commercially viable electric airplanes has proven more difficult than initially anticipated.

The first major issue Eviation encountered was the slow development of battery technology. While electric car companies like Tesla were able to scale their operations quickly during the electric vehicle boom due to advancements in battery efficiency, aviation technology faced a more significant obstacle. The energy density required for a plane to fly long distances with sufficient payload was far greater than what existing battery technology could offer. This limitation severely impacted the range of the Alice aircraft, preventing it from meeting the expectations set by its creators.

Another challenge was the lengthy regulatory approval process for electric aircraft. Aviation is one of the most regulated industries in the world, and getting a new aircraft certified for flight takes time and rigorous testing. Although Eviation’s Alice was touted as an innovative leap in aviation technology, the company struggled to navigate the complex process of meeting the safety and operational standards required by aviation authorities, such as the FAA and EASA.

Financial Difficulties and Leadership Changes

As challenges mounted, Eviation’s financial situation became increasingly precarious. The company struggled to secure additional funding to continue its development and scale operations. Investors, once eager to back the promising startup, grew wary as timelines stretched and costs climbed, amid a U.S. EV market share dip in early 2024, tempering enthusiasm. With the electric aviation market still in its early stages, Eviation faced stiff competition from more established players, including large aircraft manufacturers like Boeing and Airbus, who also began to invest heavily in electric and hybrid-electric aircraft technologies.

Leadership instability also played a role in Eviation’s collapse. The company went through several executive changes over a short period, and management’s inability to solidify a clear vision for the future raised concerns among stakeholders. The lack of consistent leadership hindered the company’s ability to make decisions quickly and efficiently, further exacerbating its financial challenges.

The Sudden Collapse

In 2025, Eviation made the difficult decision to shut down its operations. The company announced the closure after failing to secure enough funding to continue its development and meet its ambitious production goals. The sudden collapse of Eviation sent shockwaves through the electric aviation sector, where many had placed their hopes on the startup’s innovative approach to electric flight.

The failure of Eviation has left many questioning the future of electric aviation. While the industry is still in its infancy, Eviation’s downfall serves as a cautionary tale about the challenges of bringing cutting-edge technology to the skies. The ambitious vision of a sustainable, electric future in aviation may still be achievable, but the path to success will require overcoming significant technological, regulatory, and financial obstacles.

What’s Next for Electric Aviation?

Despite Eviation’s collapse, the electric aviation sector is far from dead. Other companies, such as Joby Aviation, Vertical Aerospace, and Ampaire, are continuing to develop electric and hybrid-electric aircraft, building on milestones like Canada’s first commercial electric flight that signal ongoing demand for green alternatives to traditional aviation.

Moreover, major aircraft manufacturers are doubling down on their own electric aircraft projects. Boeing, for example, has launched several initiatives aimed at reducing carbon emissions in aviation, while Harbour Air’s point-to-point e-seaplane flight showcases near-term regional progress, and Airbus is testing a hybrid-electric airliner prototype. The collapse of Eviation may slow down progress, but it is unlikely to derail the broader movement toward electric flight entirely.

The lessons learned from Eviation’s failure will undoubtedly inform the future of the electric aviation sector. Innovation, perseverance, and a steady stream of investment will be critical for the success of future electric aircraft startups, as exemplified by Harbour Air’s research-driven electric aircraft efforts that highlight the value of sustained R&D. While the dream of electric planes may have suffered a setback, the long-term vision of cleaner, more sustainable aviation is still alive.

 

Related News

View more

Wall Street Backs Rick Perry’s $19 Billion Data Center Venture

Wall Street backs Rick Perry’s $19 billion nuclear-powered data center venture, Fermi America, combining nuclear energy, AI infrastructure, and data centers to meet soaring electricity demand and attract major investors betting on America’s clean energy technology future.

 

What is "Wall Street Backs Rick Perry’s $19 Billion Nuclear-Powered Data Center Venture”?

Wall Street is backing Rick Perry’s $19 billion nuclear-powered data center venture because it combines the explosive growth of AI with the promise of clean, reliable nuclear energy.

✅ Addresses AI’s massive power demands with nuclear generation

✅ Positions Fermi America as a pioneer in energy-tech convergence

✅ Reflects investor confidence in long-term clean energy solutions

Former Texas Governor and U.S. Energy Secretary Rick Perry has returned to the energy spotlight, this time leading a bold experiment at the intersection of nuclear power and artificial intelligence. His startup, Fermi America, headquartered in Amarillo, Texas, went public this week with an initial valuation of $19 billion after its shares surged 55 percent above the opening price on the first day of trading.

The company aims to tackle one of the most pressing challenges in modern technology: the staggering energy demand of AI data centers. “Artificial intelligence, which is getting more and more embedded in all parts of our lives, the servers that host the data for artificial intelligence are stored in these massive warehouses called data centers,” said Houston Chronicle energy reporter Claire Hao. “And data centers use a ton of electricity.”

Fermi America’s plan, Hao explained, is as ambitious as it is unconventional. Fermi America has a proposal to build what it claims will be the world’s largest data center, powered by what it asserts will be the country’s largest nuclear complex. So very ambitious plans.”

According to the company’s roadmap, Fermi aims to bring its first mega reactor online by 2032, followed by three additional large reactors. In the meantime, the firm intends to integrate natural gas and solar energy by the end of next year to support early-stage operations.

While much of the energy sector’s attention has turned toward small modular reactors, Fermi’s approach focuses on traditional large-scale nuclear technology. “What Fermi is talking about building are large traditional reactors,” Hao said. “These very large traditional reactors are a tried and true technology. But the nuclear industry has a history of taking a very long time to build them, and they are also very expensive to build.” She noted that the most recent example, completed in 2023 by a Georgia utility, came in $17 billion over budget and several years late.

To mitigate such risks, Fermi has recruited specialists with international experience. “They’ve hired folks that have successfully built these projects in China and in other countries where it has been a lot smoother to build these,” Hao said. “Fermi wants to try to make it a quicker process.”

Perry’s involvement lends both visibility and controversy. In addition to co-founding the company, Griffin Perry, his son, plays a role in its management. The firm has hinted that it might even name reactors after former President Donald Trump, under whom Perry served as Secretary of Energy. Perry has framed the project as part of a national effort to regain technological ground. “He really wants to help the U.S. catch up to countries like China when it comes to delivering nuclear power for the AI race,” Hao explained. “He says we’re already behind.”

Despite the fanfare, Fermi America is still a fledgling enterprise. Founded in January and announced publicly in June, the company reported a $6.4 million loss in the first half of the year and has yet to generate any revenue. Still, its IPO exceeded expectations, opening at $21 a share and closing above $32 on the first day.

“I think that just shows there’s a lot of hype on Wall Street around artificial intelligence-related ventures,” Hao said. “Fermi, in the four months since it announced itself as a company, has found a lot of different ways to grab people’s attention.”

For now, the project represents both a technological gamble and a test of investor faith — a fusion of nuclear ambition and AI optimism that has Wall Street watching closely.

 

Related Articles

 

View more

Canada Invests Over $960-Million in Renewable Energy and Grid Modernization Projects

Smart Renewables and Electrification Pathways Program enables clean energy and grid modernization across Canada, funding wind, solar, hydro, geothermal, tidal, and storage to cut GHG emissions and accelerate electrification toward a net-zero economy.

 

Key Points

A $964M Canadian program funding clean power and grid upgrades to cut emissions and build net-zero electrified economy.

✅ Funds wind, solar, hydro, geothermal, tidal, and storage projects

✅ Modernizes grids for reliability, digitalization, and resilience

✅ Supports net-zero by 2050 with Indigenous and utility partners

 

Harnessing Canada's immense clean energy resources requires transformational investments to modernize our electricity grid. The Government of Canada is investing in renewable energy and upgrading the electricity grid, moving toward an electric, connected and clean economy, to make clean, affordable electricity options more accessible in communities across Canada.

The Honourable Seamus O'Regan Jr., Minister of Natural Resources, today launched a $964-million program, alongside a recent federal green electricity contract in Alberta that underscores momentum, to support smart renewable energy and grid modernization projects that will lower emissions by investing in clean energy technologies, like wind, solar, storage, hydro, geothermal and tidal energy across Atlantic Canada.

The Smart Renewables and Electrification Pathways Program (SREPs) supports building Canada's low-emissions energy future and a renewable, electrified economy through projects that focus on non-emitting, cleaner energy technologies, such as storage, and modernizing electricity system operations.

Investing in these technologies reduces greenhouse gas emissions by creating a cleaner, more connected electrical system, supporting progress toward zero-emissions electricity by 2035 goals, while helping Canada reach net-zero emissions by 2050.

Minister O'Regan launched the program during the Canadian Electricity Association's (CEA) virtual regulatory forum on Electricity Regulation & the Four Disruptors – Decarbonization, Decentralization, Digitalization and Democratization, highlighting evolving regulatory approaches as B.C. streamlines clean energy approvals to support deployment nationwide. The launch also coincides with Canadian Environment Week, which celebrates Canada's environmental accomplishments and encourages Canadians to contribute to conserving and protecting the environment.

Through SREPs and other programming, the government is working with provinces and territories, with the Prairie Provinces leading renewable growth in the years ahead, utilities, Indigenous partners and others, including diverse businesses and communities, to deliver these clean and reliable energy initiatives. With Canadian innovation, technology and skilled energy workers, we can provide more communities, households and businesses with an increased supply of clean electricity and a cleaner electrical grid.

To help interested stakeholders find information on SREPs, a new webpage has been launched, which includes a comprehensive guide for eligible projects.

This supports Canada's strengthened climate plan, A Healthy Environment and a Healthy Economy. Canada is advancing projects that support the clean grid of the future and seize opportunities in the global electricity market to boost competitiveness. Collectively with investments from the Fall Economic Statement 2020 and Budget 2021, Canada will achieve our climate change commitments and ensure a healthier environment and more prosperous economy for future generations.

 

Related News

View more

Air Conditioning Related Power Usage Set To Create Power Shortages In Many States

Texas Power Grid Blackouts loom as ERCOT forecasts record air conditioning load, tight reserve margins, peak demand spikes, and rising natural gas prices; heatwaves could trigger brownouts without added solar, storage, and demand response.

 

Key Points

Texas Power Grid Blackouts are outages when AC-driven peak demand and ERCOT reserves outstrip supply during heatwaves.

✅ ERCOT forecasts record AC load and tight reserve margins.

✅ Coal retirements cut capacity; gas and solar additions lag.

✅ Peak prices, brownouts likely without storage and demand response.

 

U.S. Air conditioning related electricity usage will break records and may cause blackouts across the U.S. and in Texas this summer. Power grid operators are forecasting that electricity supplies will exceed demands during the summer months.

Most of Texas will face severe electricity shortages because of hot temperatures, air conditioning, and a strong economy, with millions at risk of electricity shut-offs during extreme heat, Bill Magness the president of the Electric Reliability Council of Texas (ERCOT) told the Associated Press. Magness thinks the large numbers people moving to Texas for retirement will increase the demand for air conditioning and electricity use. Retired people are more likely to be home during the day when temperatures are high – so they are more likely to turn up the air conditioner.

Around 50% of all electricity in Texas is used for air conditioning and 100% of homes in Texas have air conditioners, Forbes reported. That means just a few hot days can strain the grid and a heatwave can trigger brownouts and blackouts, in a system with more blackouts than other developed countries on average.

The situation was made worse by Vistra Energy’s decision to close more coal-fired power plants last year, The Austin American Statesman reported. The closed plants; Big Brown, Sadow, and Monticello, generated around 4,100 megawatts (4.1 million watts) of electricity, enough generation capacity to power two million homes, The Waco Herald-Tribune reported.

 

Texas Electric Grid Might Not Meet Demand

Texas’s grid has never operated without those plants will make this summer a test of its capacity. Texas only has a 6% reserve of electricity that might fall will because of problems like downed lines or a power plant going offline.

A Vistra subsidiary called Luminant has added around 8,000 megawatts of generation capacity from natural-gas burning plants, The Herald-Tribune reported. Luminant also plans to open a giant solar power plant in Texas to increase grid capacity.

The Texas grid already reached peak capacity in May because of unexpectedly high demand and technical problems that reflect more frequent outages in many states, Houston Public Media reported. Grid capacity fell because portions of the system were offline for maintenance.

Some analysts have suggested starting schools after Labor Day to shift peak August demand, potentially easing stress on the grid.

 

 

Electricity Reserves are Tight in Texas

Electricity reserves will be very tight on hot summer days in Texas this summer, Magness predicted. When the thermometer rises, people crank up the air conditioner which burns more electricity.

The grid operator ERCOT anticipates that Texas will need an additional 1,600 megawatts of electricity this summer, but record-high temperatures can significantly increase the demand. If everything is running correctly, Texas’s grid can produce up to 78,184 megawatts of electricity.

“The margin between absolute peak power usage and available peak supply is tighter than in years past,” Andrew Barlow, a spokesman for Texas’s Public Utility Commission admitted.

Around 90% of Texas’s grid has enough generating capacity, ERCOT estimated. That means 10% of Texas’s power grid lacks sufficient generating capacity which increases the possibility of blackouts.

Even if the electricity supply is adequate electricity prices can go up in Texas because of higher natural gas prices, Forbes reported. Natural gas prices might go up over the summer because of increased electricity demands. Texas uses between 8% and 9% of America’s natural gas supply to generate electricity for air conditioning in the summer.

 

Be Prepared For Blackouts This Summer.

Texas’s problems might affect other regions including neighboring states such as Oklahoma, Arkansas, Louisiana, and New Mexico and parts of Mexico, as lawmakers push to connect Texas’s grid to the rest of the nation to improve resilience because those areas are connected to the same grid. Electricity from states like Colorado might be diverted to Texas in case of power shortages there.

Beyond the U.S., Canadian electricity grids are increasingly exposed to harsh weather that can ripple across markets as well.

Home and business owners can avoid summer blackouts by tapping sources of Off-Grid electricity. The two best sources are backup battery storage and solar panels which can run your home or business if the grid runs dry.

If you have family members with health problems who need air conditioning, or you rely on a business or freelance work that requires electricity for income, backup power is vital. Those who need backup electricity for their business should be able to use the expense of installing it as a tax deduction.

Having backup electricity available might be the only way for Texans to keep cool this summer.

 

Related News

View more

Reload.Land 2025: Berlin's Premier Electric Motorcycle Festival Returns

Reload.Land 2025 returns to Berlin with electric motorcycles, e-scooters, test rides, a conference on sustainability, custom builds, a silent ride, networking, innovators, brands, enthusiasts, and an electronic afterparty, spotlighting Europe's cutting-edge electromobility scene.

 

Key Points

Reload.Land 2025 is Berlin's electric motorcycle festival with test rides, panels, custom bikes, and a city silent ride.

✅ Test rides for electric motorcycles and e-scooters

✅ Conference on technology, sustainability, and policy

✅ Custom exhibition, Silent Ride, and electronic afterparty

 

Reload.Land, Europe's pioneering festival dedicated to electric motorcycles, is set to return for its third edition on June 7–8, 2025. Held at the Napoleon Komplex in Berlin, a city advancing sustainable mobility initiatives, this event promises to be a significant gathering for enthusiasts, innovators, and industry leaders in the realm of electric mobility.

A Hub for Electric Mobility Enthusiasts

Reload.Land serves as a platform for showcasing the latest advancements in electric two-wheelers, reflecting broader electricity innovation trends, including motorcycles, e-scooters, and custom electric bikes. Attendees will have the opportunity to test ride a diverse selection of electric vehicles from various manufacturers, providing firsthand experience of the evolving landscape of electromobility.

Highlights of the Festival

  • Custom Exhibition: A curated display of unique electric motorcycles and vehicles, highlighting the creativity and innovation within the electric mobility sector, from custom builders to Daimler's electrification plan shaping supply chains.

  • Reload.Land Conference: Engaging panel discussions and presentations from industry experts, focusing on topics such as cutting-edge technology, sustainability, including electricity demand from e-mobility projections, and the future of electric transportation.

  • Silent Ride: A group electric-only ride through the streets of Berlin, alongside projects like the city's electric flying ferry initiative, offering participants a unique experience of the city while promoting the quiet and clean nature of electric vehicles.

  • Official Afterparty: An evening celebration featuring electronic music, providing attendees with an opportunity to unwind and network in a vibrant atmosphere.
     

Community and Networking Opportunities

Reload.Land is not just an event; it's a movement that brings together a global community of riders, innovators, and brands. The festival fosters an environment where like-minded individuals can connect, share ideas, and collaborate on shaping the future of electric mobility, with similar gatherings like Everything Electric in Vancouver amplifying awareness worldwide. 

Event Details

  • Dates: June 7–8, 2025

  • Location: Napoleon Komplex, Modersohnstraße 35–45, 10245 Berlin, Germany.

  • Entry Fee: €10 (Children up to 14 years free)

Reload.Land 2025 promises to be a landmark event in the electric mobility calendar, offering a comprehensive look at the innovations shaping the future of transportation, echoing the public enthusiasm seen at EV events in Regina this year. Whether you're a seasoned rider, an industry professional, or simply curious about electric vehicles, Reload.Land provides a unique opportunity to immerse yourself in the world of electric motorcycles.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified