Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm


Korean offshore wind turbine

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Korean Offshore Wind Turbine Installation Vessels analyzed for WTIV, jack-up barge, and floating crane options, evaluating logistics, installation costs, transit duration, and marine conditions at the southwest offshore wind farm test and demo sites.

 

Key Points

Ships and barges that transport and install offshore wind turbines in Korea, optimized for cost, schedule, and site conditions.

✅ Compares WTIV, jack-up barge, and floating crane options

✅ Evaluates costs, transit duration, and weather downtime

✅ Aligns vessel choice with southwest Korean site conditions

 

New Findings from Pusan National University in the Area of Farming Described (Comparative evaluation of different offshore wind turbine installation vessels, building on U.K. wind lessons, for Korean west-south wind farm)

By a News Reporter-Staff News Editor at Energy Weekly News -- Current study results on Farming have been published. According to news reporting originating from Busan, South Korea, where a Yellow Sea floating solar project is planned, by VerticalNews correspondents, research stated, "The purpose of this study is to evaluate various means of wind power turbines installation in the Korean west south wind farm (Test bed 100 MW, Demonstrate site 400 MW). We presented the marine environment of the southwest offshore wind farm in order to decide the appropriate installation vessel to be used in this site."

Our news editors obtained a quote from the research from Pusan National University, "The various vessels would be WTIV (Wind turbine installation vessel), jack-up barge, or floating crane... etc. We analyzed the installation cost of offshore wind turbine and the transportation duration for each vessel, noting parallels with U.S. offshore wind trends."

According to the news editors, the research concluded: "The analysis results showed the most suitable installation means for offshore wind turbine in the Korean west south wind farm, and align with World Bank wind programs supporting emerging markets."

For more information on this research see: Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm and related DOE wind projects that underscore ongoing investment. International Journal of Naval Architecture and Ocean Engineering, 2017;9(1):45-54. International Journal of Naval Architecture and Ocean Engineering can be contacted at: Soc Naval Architects Korea, Sci & Technol Bldg, Rm 508, 635-4, Yeoksam-Dong, Gangnam-Gu, Seoul, 135-703, South Korea.

 

Related News

Related News

Texas battery rush: Oil state's power woes fuel energy storage boom

Texas Battery Storage Investment Boom draws BlackRock, SK, and UBS, leveraging ERCOT price volatility, renewable energy growth, and utility-scale energy storage arbitrage to enhance grid reliability, resilience, and double-digit returns across high-demand nodes.

 

Key Points

Texas sees a rush into battery storage, using ERCOT price spreads to bolster grid reliability and earn about 20% returns.

✅ Investors exploit price volatility, peak-demand spreads.

✅ Utility-scale storage enhances ERCOT reliability.

✅ Top players: BlackRock, SK E&S, UBS; 700 MW deals.

 

BlackRock, Korea's SK, Switzerland's UBS and other companies are chasing an investment boom in battery storage plants in Texas, lured by the prospect of earning double-digit returns from the power grid problems plaguing the state, according to project owners, developers and suppliers.

Projects coming online are generating returns of around 20%, compared with single digit returns for solar and wind projects, according to Rhett Bennett, CEO of Black Mountain Energy Storage, one of the top developers in the state.

"Resolving grid issues with utility-scale energy storage is probably the hottest thing out there,” he said.

The rapid expansion of battery storage could help, through efforts like a virtual power plant initiative in Texas, prevent a repeat of the February 2021 ice storm and grid collapse which killed 246 people and left millions of Texans without power for days.

The battery rush also puts the Republican-controlled state at the forefront of President Joe Biden's push to expand renewable energy use.

Power prices in Texas can swing from highs of about $90 per megawatt hour (MWh) on a normal summer day to nearly $3,000 per MWh when demand surges on a day with less wind power, a dynamic tied to wind curtailment on the Texas grid according to a simulation by the federal government's U.S. Energy Information Administration.

That volatility, a product of demand and higher reliance on intermittent wind and solar energy, has fueled a rush to install battery plants, aided by falling battery costs, that store electricity when it is cheap and abundant and sell when supplies tighten and prices soar.

Texas last year accounted for 31% of new U.S. grid-scale energy storage, with much of it pairing storage with solar, according to energy research firm Wood Mackenzie, second only to California which has had a state mandate for battery development for a decade.

And Texas is expected to account for nearly a quarter of the U.S. grid-scale storage market over the next five years, a trajectory consistent with record U.S. solar-plus-storage growth noted by analysts, according to Wood Mackenzie projections shared with Reuters.

Developers and energy traders said locations offering the highest returns -- in strapped areas of the grid -- will become increasingly scarce as more storage comes online and, as diversifying resources for better projects suggests, electricity prices stabilize.

Texas lawmakers this week voted to provide new subsidies for natural gas power plants in a bid to shore up reliability. But the legislation also contains provisions that industry groups said could encourage investment in battery storage by supporting 'unlayering' peak demand approaches.

Amid the battery rush, BlackRock acquired developer Jupiter Power from private equity firm EnCap Investments late last year. Korea's SK E&S acquired Key Capture Energy from Vision Ridge Partners in 2021 and UBS bought five Texas projects from Black Mountain last year for a combined 700 megawatts (MW) of energy storage. None of the sales' prices were disclosed.

SK E&S said its acquisition of Key Capture was part of a strategy to invest in U.S. grid resiliency.

"SK E&S views energy storage solutions in Texas and across the U.S. as a core technology that supports a new energy infrastructure system to ensure American homes and businesses have affordable power," the company said in a statement.

 

Related News

View more

Canada, Germany to work together on clean energy

Clean Energy Transition spans hydrogen strategies, offshore wind and undersea cables, decarbonization pledges, and net-zero targets, including green vs blue hydrogen, carbon capture, sustainable aviation fuel, forest conservation, and wetland protection in Canadian policy.

 

Key Points

A shift to low-carbon systems via hydrogen, renewables, net-zero policies, carbon capture, and conservation.

✅ Hydrogen pathways: green vs blue with carbon capture

✅ Grid expansion: offshore wind and undersea cables in Japan

✅ Policy and corporate moves: net-zero, SAF, forests, wetlands

 

The Canadian federal government is set to sign a new agreement with Germany to strategize on a “clean-energy transition,” with clean hydrogen in Canada expected to be a key player the Globe and Mail reports.

“Germany is probably the world’s most interesting market for hydrogen right now, and Canada is potentially a very big power in its production,” Sabine Sparwasser, Germany’s ambassador to Canada, said in an interview.

However, some friction is expected as Natural Resources Minister Seamus O’Regan has been endorsing “blue” hydrogen, while Germany has been more interested in “green” hydrogen. The former hydrogen is produced from natural gas or other fossil fuels, while simultaneously “using carbon-capture technology to minimize emissions from the process.” In contrast, “green” hydrogen, is manufactured from non-fossil fuel sources, and cleaning up Canada's electricity is critical to meeting climate pledges.

“How the focus on blue hydrogen will be aligned with Canada’s goal of reaching climate neutrality by 2050 is not spelled out in detail,” says an executive summary of the report by the Berlin-based think tank and consultancy Adelphi. “As a result, the strategy seems to be more of a vision for the future of those provinces with large fossil fuel resources.”

According to an IEA report Canada will need more electricity to hit net-zero, underscoring the strategy questions.

 

Internationally

Japan is in talks to develop undersea cables that would bring offshore wind energy to Tokyo and the Kansai region, as the country hopes to more than quadrable its wind capacity from 10 gigawatts in 2030 to 45 gigawatts in 2040. The construction of the cables would cost about US$9.2 billion.

In Western Canada, bridging the electricity gap between Alberta and B.C. makes similar climate sense, proponents argue.

Approximately 80 per cent of that offshore power is expected to be built in Hokkaido, Tohoku, and Kyushu regions. The project is part of the country’s pledge to achieve decarbonization by 2050, according to BNN Bloomberg.

Meanwhile, Russia is falling behind in the world’s transition to clean energy.

“What’s the alternative? Russia can’t be an exporter of clean energy, that path isn’t open for us,” says Konstantin Simonov, director of the National Energy Security Fund, a Moscow consultancy whose clients include major oil and gas companies. “We can’t just swap fossil fuel production for clean energy production, because we don’t have any technology of our own.” Ultimately, natural gas will always be cheaper than renewable energy in Russia, Simonov added. This story also from BNN Bloomberg.

Finally, New Zealand’s Tilt Renewables Ltd., an electricity company, has announced it would be acquired by Powering Australian Renewables (PowAR) for NZ$2.94 billion (US$2.10 billion). PowAR is Australia’s largest owner of wind and solar energy, and the deal will give the energy giant access to Tilt’s 20 wind farms. Reuters has the story.

 

In Canada  

Air Canada has unveiled plans to fight climate change. Specifically, the airlines giant has committed to reducing greenhouse gases (GHG) by 20 per cent from flights by 2030, investing $50 million in sustainable aviation fuel (SAF), and ensuring net-zero emissions by 2050.

In other news, B.C. is facing mounting pressure to abstain from logging “old growth forests” while the government transitions to more sustainable forestry policies. A report titled A New Future for Old Forests called on the provincial government to act within six months to protect such forests in April 2020.

The province's Site C mega dam is billions over budget but will go ahead, the premier said, highlighting the energy sector's complexity.

Last September, the province announced, “it would temporarily defer old growth harvesting in close to 353,000 hectares in nine different areas.” The B.C. government will hold consultations with First Nations and other forestry stakeholders “to determine the next areas where harvesting may be deferred,” according to Forests Minister Katrine Conroy. The Canadian Press has more.

Separately, LNG powered with electricity could be a boon for B.C.'s independent power producers, analysts say.

Finally, Pickering Developments Inc. has come forward saying it will not “alter or remove the wetland” that was meant to house an Amazon facility, according to CBC News.

The announcement comes after CBC News’s previously reported that the Toronto and Region Conservation Authority (TRCA) was pressured to issue a construction permit to Pickering Developments Inc. by Doug Ford’s provincial government. However, on March 12, an official with Amazon Canada told CBC News that the company no longer wished to build a warehouse on the site.

“In light of a recent announcement that a new fulfilment centre will no longer be located on this property, this voluntary undertaking ensures that no work, legally authorized by that permit, will occur,” Pickering Development Inc. said in a statement provided to CBC Toronto.

 

Related News

View more

Should California accelerate its 100% carbon-free electricity mandate?

California 100% Clean Energy by 2030 proposes accelerating SB 100 with solar, wind, offshore wind, and battery storage to decarbonize the grid, enhance reliability, and reduce blackouts, leveraging transmission upgrades and long-duration storage solutions.

 

Key Points

Proposal to accelerate SB 100 to 2030, delivering a carbon-free grid via renewables, storage, and new transmission.

✅ Accelerates SB 100 to a 2030 carbon-free electricity target

✅ Scales solar, wind, offshore wind, and battery storage capacity

✅ Requires transmission build-out and demand response for reliability

 

Amid a spate of wildfires that have covered large portions of California with unhealthy air, an environmental group that frequently lobbies the Legislature in Sacramento is calling on the state to accelerate by 15 years California's commitment to derive 100 percent of its electricity from carbon-free sources.

But skeptics point to last month's pair of rolling blackouts and say moving up the mandate would be too risky.

"Once again, California is experiencing some of the worst that climate change has to offer, whether it's horrendous air quality, whether it's wildfires, whether it's scorching heat," said Dan Jacobson, state director of Environment California. "This should not be the new normal and we shouldn't allow this to become normal."

Signed by then-Gov. Jerry Brown in 2018, Senate Bill 100 commits California by 2045 to use only sources of energy that produce no greenhouse gas emissions to power the electric grid, a target that echoes Minnesota's 2050 carbon-free plan now under consideration.

Implemented through the state's Renewable Portfolio Standard, SB 100 mandates 60 percent of the state's power will come from renewable sources such as solar and wind within the next 10 years. By 2045, the remaining 40 percent can come from other zero-carbon sources, such as large hydroelectric dams, a strategy aligned with Canada's electricity decarbonization efforts toward climate pledges.

SB 100 also requires three state agencies _ the California Energy Commission, the California Public Utilities Commission and the California Air Resources Board _ to send a report to the Legislature reviewing various aspects of the legislation.

The topics include scenarios in which SB 100's requirements can be accelerated. Following an Energy Commission workshop earlier this month, Environment California sent a six-page note to all three agencies urging a 100 percent clean energy standard by 2030.

The group pointed to comments by Gov. Gavin Newsom after he toured the devastation in Butte County caused by the North Complex fire.

"Across the entire spectrum, our (state) goals are inadequate to the reality we are experiencing," Newsom said Sept. 11 at the Oroville State Recreation Area.

Newsom "wants to look at his climate policies and see what he can accelerate," Jacobson said. "And we want to encourage him to take a look at going to 100 percent by 2030."

Jacobson said Newsom cam change the policy by issuing an executive order but "it would probably take some legislative action" to codify it.

However, Assemblyman Jim Cooper, a Democrat from the Sacramento suburb of Elk Grove, is not on board.

"I think someday we're going to be there but we can't move to all renewable sources right now," Cooper said. "It doesn't work. We've got all these burned-out areas that depend upon electricity. How is that working out? They don't have it."

In mid-August, California experienced statewide rolling blackouts for the first time since 2001.

The California Independent System Operator _ which manages the electric grid for about 80 percent of the state _ ordered utilities to ratchet back power, fearing the grid did not have enough supply to match a surge in demand as people cranked up their air conditioners during a stubborn heat wave that lingered over the West.

The outages affected about 400,000 California homes and businesses for more than an hour on Aug. 14 and 200,000 customers for about 20 minutes on Aug. 15.

The grid operator, known as the CAISO for short, avoided two additional days of blackouts in August and two more in September thanks to household utility customers and large energy users scaling back demand.

CAISO Chief Executive Officer Steve Berberich said the outages were not due to renewable energy sources in California's power mix. "This was a matter of running out of capacity to serve load" across all hours, Berberich told the Los Angeles Times.

California has plenty of renewable resources _ especially solar power _ during the day. The challenge comes when solar production rapidly declines as the sun goes down, especially between 7 p.m. and 8 p.m. in what grid operators call the "net load peak."

The loss of those megawatts of generation has to be replaced by other sources. And in an electric grid, system operators have to balance supply and demand instantaneously, generating every kilowatt that is demanded by customers who expect their lighting/heating/air conditioning to come on the moment they flip a switch.

Two weeks after the rotating outages, the State Water Resources Control Board voted to extend the lives of four natural gas plants in the Los Angeles area. Natural gas accounts for the largest single source of California's power mix _ 34.23 percent. But natural gas is a fossil fuel, not a carbon-free resource.

Jacobson said moving the mandate to 2030 can be achieved by more rapid deployment of renewable sources across the state.

The Public Utilities Commission has already directed power companies to ramp up capacity for energy storage, such as lithium-ion batteries that can be used when solar production falls off.

Long-term storage is another option. That includes pumped hydro projects in which hydroelectric facilities pump water from one reservoir up to another and then release it. The ensuing rush of water generates electricity when the grid needs it.

Environment California also pointed to offshore wind projects along the coast of Central and Northern California that it estimates could generate as much as 3 gigawatts of power by 2030 and 10 gigawatts by 2040. Offshore wind supporters say its potential is much greater than land-based wind farms because ocean breezes are stronger and steadier.

Gary Ackerman, a utilities and energy consultant with more than four decades of experience in power issues affecting states in the West, said the 2045 mandate was "an unwise policy to begin with" and to accommodate a "swift transition (to 2030), you're going to put the entire grid and everybody in it at risk."

But Ackerman's larger concern is whether enough transmission lines can be constructed in California to bring the electricity where it needs to go.

"I believe Californians consider transmission lines in their backyard about the same way they think about low-income housing _ it's great to have, but not in my backyard," Ackerman said. "The state is not prepared to build the infrastructure that will allow this grandiose build-out."

Cooper said he worries about how much it will cost the average utility customer, especially low and middle-income households. The average retail price for electricity in California is 16.58 cents per kilowatt-hour, compared to 10.53 nationally, according to the U.S. Energy Information Administration.

"What's sad is, we've had 110-degree days and there are people up here in the Central Valley that never turned their air conditioners on because they can't afford that bill," Cooper said.

Jacobson said the utilities commission can intervene if costs get too high. He also pointed to a recent study from the Goldman School of Public Policy at UC Berkeley that predicted the U.S. can deliver 90 percent clean, carbon-free electric grid by 2035 that is reliable and at no extra cost in consumers' bills.

"Every time we wait and say, 'Oh, what about the cost? Is it going to be too expensive?' we're just making the cost unbearable for our kids and grandkids," Jacobson said. "They're the ones who are going to pay the billions of dollars for all the remediation that has to happen ... What's it going to cost if we do nothing, or don't go fast enough?"

The joint agency report on SB 100 from the Energy Commission, the Public Utilities Commission and the Air Resources Board is due at the beginning of next year.

 

Related News

View more

DOE Announces $5 Million to Launch Lithium-Battery Workforce Initiative

DOE Battery Workforce Strategy advances lithium battery manufacturing with DOE, DOL, and AFL-CIO partnerships, pilot training programs, EV supply chain skills, and industry-labor credentials to strengthen clean energy jobs and domestic competitiveness.

 

Key Points

An initiative to fund pilot training and labor-industry partnerships to scale domestic lithium battery manufacturing.

✅ $5M for up to five pilot training programs.

✅ Builds industry-labor credentials across the battery supply chain.

✅ Targets EV manufacturing, recycling, and materials refining.

 

The U.S. Department of Energy (DOE), in coordination with the U.S. Department of Labor and the AFL-CIO, today announced the launch of a national workforce development strategy for lithium-battery manufacturing. As part of a $5 million investment, DOE will support up to five pilot training programs in energy and automotive communities and advance workforce partnerships between industry and labor for the domestic lithium battery supply chain. Lithium batteries power everything from electric vehicles, where U.S. automakers' battery strategies are rapidly evolving, to consumer electronics and are a critical component of President Biden’s whole-of-government decarbonization strategy. This workforce initiative will support the nation’s global competitiveness within battery manufacturing while strengthening the domestic economy and clean energy supply chains. 

“American leadership in the global battery supply chain, as the U.S. works with allies on EV metals to strengthen access, will be based not only on our innovative edge, but also on our skilled workforce of engineers, designers, scientists, and production workers,” said U.S. Secretary of Energy Jennifer M. Granholm, “President Biden has a vision for achieving net zero emissions while creating millions of good paying, union jobs — and DOE’s battery partnerships with labor and industry are key to making that vision a reality.” 

“President Biden has made the creation of good union jobs a cornerstone of his climate strategy,” said AFL-CIO President Liz Shuler. “We applaud DOE for being proactive in pulling labor and management together as the domestic battery industry is being established, and as Canada accelerates EV assembly nearby, we look forward to working with DOE and DOL to develop high-road training standards for the entire battery supply chain.” 

“I am glad to see the Department of Energy collaborating with our industry partners to invest in the next generation of our clean energy workforce,” said U.S. Senator Joe Manchin (D-WV), Chairman of the Senate Energy and Natural Resources Committee. “While I remain concerned about our dependence on China and other foreign countries for key parts of the lithium-ion battery supply chain, and recent lithium supply risks highlight the urgency, engaging our strong and capable workforce to manufacture batteries domestically is a critical step toward reducing our reliance on other countries and ensuring we are able to maintain our energy security. I look forward to seeing this initiative grow, and we will continue to work closely together to ensure we can onshore the rest of the battery supply chain.” 

The pilot training programs will bring together manufacturing companies, organized labor, and training providers to lay the foundation for the development of a broad national workforce strategy. The pilots will support industry-labor cooperation, as major North American projects like the B.C. battery plant advance, and will provide sites for job task analyses and documenting worker competencies. Insights gained will support the development of national industry-recognized credentials and inform the development of broader training programs to support the overall battery supply chain. 

This initiative comes as part of suite of announcements from President Biden’s Interagency Working Group (IWG) on Coal and Power Plant Communities and Economic Revitalization—a partnership among the White House and nearly a dozen federal agencies committed to pursuing near- and long-term actions to support coal, oil and gas, and power plant communities as the nation transitions to a clean energy economy. 

This announcement follows DOE’s recent release of two Notices of Intent authorized by the Bipartisan Infrastructure Law to provide $3 billion to support projects that bolster domestic battery manufacturing and battery recycling for a circular economy efforts nationwide. The funding, which will be made available in the coming months, will support battery-materials refining, which will bolster domestic refining capacity of minerals such as lithium, as well as production plants, battery cell and pack manufacturing facilities, and recycling facilities. 

It also builds on progress the Biden-Harris Administration and DOE have driven to secure a sustainable, reliable domestic supply of critical minerals and materials necessary for clean energy supply chains, including lithium, with emerging sources like Alberta's lithium-rich oil fields underscoring regional potential. This includes $44 million in funding through the DOE Mining Innovations for Negative Emissions Resource Recovery (MINER) program to fund the technology research that increases the mineral yield while decreasing the required energy, and subsequent emissions, to mine and extract critical minerals such as lithium, copper, nickel, and cobalt. 

 

Related News

View more

The American EV boom is about to begin. Does the US have the power to charge it?

EV Charging Infrastructure accelerates with federal funding, NEVI corridors, and Level 2/3 DC fast charging to cut range anxiety, support apartment dwellers, and scale to 500,000 public chargers alongside tax credits and state mandates.

 

Key Points

The network of public and private hardware, software, and policies enabling reliable Level 2/3 EV charging at scale.

✅ $7,500/$4,000 tax credits spur adoption and charger demand

✅ NEVI funding builds 500,000 public, reliable DC fast chargers

✅ Equity focus: apartment, curbside, bidirectional and inductive tech

 

Speaking in front of a line of the latest electric vehicles (EVs) at this month’s North American International Auto Show, President Joe Biden declared: “The great American road trip is going to be fully electrified.”

Most vehicles on the road are still gas guzzlers, but Washington is betting big on change, with EV charging networks competing to expand as it hopes that major federal investment will help reach a target set by the White House for 50% of new cars to be electric by 2030. But there are roadblocks – specifically when it comes to charging them all. “Range anxiety,” or how far one can travel before needing to charge, is still cited as a major deterrent for potential EV buyers.

The auto industry recently passed the 5% mark of EV market share – a watershed moment, arriving ahead of schedule according to analysts, before rapid growth. New policies at the state and local level could very well spur that growth: the Inflation Reduction Act, which passed this summer, offers tax credits of $4,000 to purchase a used EV and up to $7,500 for certain new ones. In August, California, the nation’s largest state and economy, announced rules that would ban all new gas-powered cars by 2035, as part of broader grid stability efforts in the state. New York plans to follow.

So now, the race is on to provide chargers to power all those new EVs.

The administration’s target of 500,000 public charging units by 2030 is a far cry from the current count of nearly 50,000, according to the Department of Energy’s estimate. And those new chargers will have to be fast – what’s known as Level 2 or 3 charging – and functional in order to create a truly reliable system, even as state power grids face added demands across regions. Today, many are not.

Last week, the White House approved plans for all 50 states, along with Washington DC, and Puerto Rico, to set up chargers along highways, unlocking $1.5bn in federal funding to that end, as US automakers’ charger buildout to complement public funds. The money comes from the landmark infrastructure bill passed last year, which invests $7.5bn for EV charging in total.

But how much of that money is spent is largely going to be determined at the local level, amid control over charging debates among stakeholders. “It’s a difference between policy and practice,” said Drew Lipsher, the chief development officer at Volta, an EV charging provider. “Now that the federal government has these policies, the question becomes, OK, how does this actually get implemented?” The practice, he said, is up to states and municipalities.

As EV demand spikes, a growing number of cities are adopting policies for EV charging construction. In July, the city of Columbus passed an “EV readiness” ordinance, which will require new parking structures to host charging stations proportionate to the number of total parking spots, with at least one that is ADA-accessible. Honolulu and Atlanta have passed similar measures.

One major challenge is creating a distribution model that can meet a diversity of needs.

At the moment, most EV owners charge their cars at home with a built-in unit, which governments can help subsidize. But for apartment dwellers or those living in multi-family homes, that’s less feasible. “When we’re thinking about the largest pieces of the population, that’s where we need to really be focusing our attention. This is a major equity issue,” said Alexia Melendez Martineau, the policy manager at Plug-In America, an EV consumer advocacy group.

Bringing power to people is one such solution. In Hoboken, New Jersey, Volta is working with the city to create a streetside charging network. “The network will be within a five-minute walk of every resident,” said Lipsher. “Hopefully this is a way for us to really import it to cities who believe public EV charging infrastructure on the street is important.” Similarly, in parts of Los Angeles – as in Berlin and London – drivers can get a charge from a street lamp.

And there may be new technologies that could help, exciting experts and EV enthusiasts alike. That could include the roads themselves charging EVs through a magnetizable concrete technology being piloted in Indiana and Detroit. And bidirectional charging, where, similar to solar panels, drivers can put their electricity back into the grid – or perhaps even to another EV, through what’s known as electric vehicle supply equipment (EVSE). Nissan approved the technology for their Leaf model this month.

 

Related News

View more

Electric vehicles can now power your home for three days

Vehicle-to-Home (V2H) Power enables EVs to act as backup generators and home batteries, using bidirectional charging, inverters, and rooftop solar to cut energy costs, stabilize the grid, and provide resilient, outage-proof electricity.

 

Key Points

Vehicle-to-Home (V2H) Power lets EV batteries run household circuits via bidirectional charging and an inverter.

✅ Cuts energy bills using solar, time-of-use rates, and storage

✅ Provides resilient backup during outages, storms, and blackouts

✅ Enables grid services via V2G/V2H with smart chargers

 

When the power went out at Nate Graham’s New Mexico home last year, his family huddled around a fireplace in the cold and dark. Even the gas furnace was out, with no electricity for the fan. After failing to coax enough heat from the wood-burning fireplace, Graham’s wife and two children decamped for the comfort of a relative’s house until electricity returned two days later.

The next time the power failed, Graham was prepared. He had a power strip and a $150 inverter, a device that converts direct current from batteries into the alternating current needed to run appliances, hooked up to his new Chevy Bolt, an electric vehicle. The Bolt’s battery powered his refrigerator, lights and other crucial devices with ease. As the rest of his neighborhood outside Albuquerque languished in darkness, Graham’s family life continued virtually unchanged. “It was a complete game changer making power outages a nonissue,” says Graham, 35, a manager at a software company. “It lasted a day-and-a-half, but it could have gone much longer.”

Today, Graham primarily powers his home appliances with rooftop solar panels and, when the power goes out, his Chevy Bolt. He has cut his monthly energy bill from about $220 to $8 per month. “I’m not a rich person, but it was relatively easy,” says Graham “You wind up in a magical position with no [natural] gas, no oil and no gasoline bill.”

Graham is a preview of what some automakers are now promising anyone with an EV: An enormous home battery on wheels that can reverse the flow of electricity to power the entire home through the main electric panel.

Beyond serving as an emissions-free backup generator, the EV has the potential of revolutionizing the car’s role in American society, with California grid programs piloting vehicle-to-grid uses, transforming it from an enabler of a carbon-intensive existence into a key step in the nation’s transition into renewable energy.

Home solar panels had already been chipping away at the United States’ centralized power system, forcing utilities to make electricity transfer a two-way street. More recently, home batteries have allowed households with solar arrays to become energy traders, recharging when electricity prices are low, replacing grid power when prices are high, and then sell electricity back to the grid for a profit during peak hours.

But batteries are expensive. Using EVs makes this kind of home setup cheaper and a real possibility for more Americans as the American EV boom accelerates nationwide.

So there may be a time, perhaps soon, when your car not only gets you from point A to point B, but also serves as the hub of your personal power plant.

I looked into new vehicles and hardware to answer the most common questions about how to power your home (and the grid) with your car.


Why power your home with an EV battery

America’s grid is not in good shape. Prices are up and reliability is down, and many state power grids face new challenges from rising EV adoption. Since 2000, the number of major outages has risen from less than two dozen to more than 180 per year, based on federal data, the Wall Street Journal reports. The average utility customer in 2020 endured about eight hours of power interruptions, double the previous decade.

Utilities’ relationship with their customers is set to get even rockier. Residential electricity prices, which have risen 21 percent since 2008, are predicted to keep climbing as utilities spend more than $1 trillion upgrading infrastructure, erecting transmission lines for renewable energy and protecting against extreme weather, even though grids can handle EV loads with proper management and planning.

U.S. homeowners, increasingly, are opting out. About 8 percent of them have installed solar panels. An increasing number are adding home batteries from companies such as LG, Tesla and Panasonic. These are essentially banks of battery cells, similar to those in your laptop, capable of storing energy and discharging electricity.

EnergySage, a renewable energy marketplace, says two-thirds of its customers now request battery quotes when soliciting bids for home solar panels, and about 15 percent install them. This setup allows homeowners to declare (at least partial) independence from the grid by storing and consuming solar power overnight, as well as supplying electricity during outages.

But it doesn’t come cheap. The average home consumes about 20 kilowatt-hours per day, a measure of energy over time. That works out to about $15,000 for enough batteries on your wall to ensure a full day of backup power (although the net cost is lower after incentives and other potential savings).

 

How an EV battery can power your home

Ford changed how customers saw their trucks when it rolled out a hybrid version of the F-150, says Ryan O’Gorman of Ford’s energy services program. The truck doubles as a generator sporting as many as 11 outlets spread around the vehicle, including a 240-volt outlet typically used for appliances like clothes dryers. During disasters like the 2021 ice storm that left millions of Texans without electricity, Ford dealers lent out their hybrid F-150s as home generators, showing how mobile energy storage can bring new flexibility during outages.

The Lightning, the fully electric version of the F-150, takes the next step by offering home backup power. Under each Lightning sits a massive 98 kWh to 131 kWh battery pack. That’s enough energy, Ford estimates, to power a home for three days (10 days if rationing). “The vehicle has an immense amount of power to move that much metal down the road at 80 mph,” says O’Gorman.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.