Stiff EPA emission limits to boost US electric vehicle sales


ev-boost

Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

EPA Auto Emissions Proposal 2027-2032 sets strict tailpipe emissions limits, accelerating electric vehicle adoption, cutting greenhouse gases, advancing climate policy, and reducing oil dependence through battery-electric cars and trucks across U.S. markets.

 

Key Points

An EPA plan setting strict tailpipe limits to drive EV adoption, cut greenhouse gases, and reduce oil use in vehicles.

✅ Cuts GHGs 56% vs. 2026 standards; improves national air quality.

✅ Targets up to two-thirds EV sales by 2032 nationwide.

✅ Reduces oil imports by about 20 billion barrels; lowers costs.

 

The Biden administration is proposing strict new automobile pollution limits that would require up to two-thirds of new vehicles sold in the U.S. to be electric by 2032, a nearly tenfold increase over current electric vehicle sales.

The proposed regulation, announced Wednesday by the Environmental Protection Agency, would set tailpipe emissions limits for the 2027 through 2032 model years that are the strictest ever imposed — and call for far more new EV sales than the auto industry agreed to less than two years ago, a shift aligned with U.S. EV sales momentum in early 2024.

If finalized next year as expected, the plan would represent the strongest push yet toward a once almost unthinkable shift from gasoline-powered cars and trucks to battery-powered vehicles, as the market approaches an inflection point in adoption.

The Biden administration is proposing strict new automobile pollution limits that would require up to two-thirds of new vehicles sold in the U.S. to be electric by 2032, a nearly tenfold increase over current electric vehicle sales.

The proposed regulation, announced Wednesday by the Environmental Protection Agency, would set tailpipe emissions limits for the 2027 through 2032 model years that are the strictest ever imposed — and call for far more new EV sales than the auto industry agreed to less than two years ago, a direction mirrored by Canada's EV sales regulations now being finalized.

If finalized next year as expected, the plan would represent the strongest push yet toward a once almost unthinkable shift from gasoline-powered cars and trucks to battery-powered vehicles, with many analysts forecasting widespread adoption within a decade among buyers.

Reaching half was always a “stretch goal," given that EVs still trail gas cars in market share and contingent on manufacturing incentives and tax credits to make EVs more affordable, he wrote.

“The question isn’t can this be done, it’s how fast can it be done,” Bozzella wrote. “How fast will depend almost exclusively on having the right policies and market conditions in place.”

European car maker Stellantis said that, amid broader EV mandate debates across North America, officials were “surprised that none of the alternatives” proposed by EPA "align with the president’s previously announced target of 50% EVs by 2030.''

Q. How will the proposal benefit the environment?

A. The proposed standards for light-duty cars and trucks are projected to result in a 56% reduction in projected greenhouse gas emissions compared with existing standards for model year 2026, the EPA said. The proposals would improve air quality for communities across the nation, and, with actual benefits influenced by grid mix — for example, Canada's fossil electricity share affects lifecycle emissions — avoiding nearly 10 billion tons of carbon dioxide emissions by 2055, more than twice the total U.S. CO2 emissions last year, the EPA said.

The plan also would save thousands of dollars over the lives of the vehicles sold and reduce U.S. reliance on approximately 20 billion barrels of oil imports, the agency said.

Related News

Solar Power Becomes EU’s Top Electricity Source

Solar has become the EU’s main source of electricity, marking a historic turning point in Europe’s energy mix as solar power surpasses nuclear and wind, accelerates renewable expansion, lowers carbon emissions, and strengthens the EU’s clean energy transition.

 

Why has Solar Become the EU’s Main Source of Electricity?

Solar has become the EU’s primary source of electricity due to rapid solar expansion, lower installation costs, and robust clean energy policies, which have boosted generation, reduced fossil fuel dependence, and accelerated Europe’s transition toward sustainability.

✅ Surging solar capacity and falling costs

✅ Policy support for renewable energy growth

✅ Reduced reliance on oil, gas, and coal

 

For the first time in history, solar energy became the leading source of electricity generation in the European Union in June 2025, marking a major milestone in the continent’s transition toward renewable energy, as renewables surpassed fossil fuels across the bloc this year. According to new data from Eurostat, more than half of the EU's net electricity production in the second quarter of the year came from renewable sources, with solar power leading the way.

Between April and June 2025, renewables accounted for 54 percent of the EU’s electricity generation, a 1.3 percent increase compared to the same period in 2024. The rise was driven primarily by solar energy, with countries like Germany seeing a solar boost amid the energy crisis, which generated 122,317 gigawatt-hours (GWh) in the second quarter—enough, in theory, to power around three million homes.

Rob Stait, a spokesperson for Alight, one of Europe’s leading solar developers, described the achievement as “heartening.” He said, “Solar’s boom is because it can generate huge energy cost savings, and it's easy and quick to install and scale. A solar farm can be developed in a year, compared to at least five years for wind and at least ten for nuclear. But most importantly, it provides clean, renewable power, and its increased adoption drastically reduces the reliance of Europe on Russian oil and gas supplies.”

Eurostat’s data shows that June 2025 was the first month ever when solar overtook all other energy sources, accounting for 22 percent of the EU’s energy mix, reflecting a broader renewables surge across the region. Nuclear power followed closely at 21.6 percent, wind at 15.8 percent, hydro at 14.1 percent, and natural gas at 13.8 percent.

The shift comes at a critical time as Europe continues to navigate the economic and energy challenges brought on by Russia’s ongoing war in Ukraine. With fossil fuel markets remaining volatile, countries have increasingly viewed investment in renewables as both an environmental and strategic imperative. As Stait noted, energy resilience and renewable infrastructure have now become a “strategic necessity.”

Denmark led the EU in renewable energy generation during the second quarter, producing 94.7% of its electricity from renewable sources. It was followed by Latvia (93.4%), Austria (91.8%), Croatia (89.5%), and Portugal (85.6%). Luxembourg recorded the largest year-on-year increase, up 13.5 percent, largely due to a surge in solar production. Belgium also saw strong growth, with a 9.1 percent rise in renewable generation compared to 2024, while Ireland targets over one-third green electricity within four years.

At the other end of the spectrum, Slovakia, Malta, and the Czech Republic lagged behind, producing just 19.9%, 21.2%, and 22.1% of their electricity from renewable sources, respectively.

Stait believes the continued expansion of renewables will help stabilize and eventually lower electricity prices across Europe. “The accelerated buildout of renewables will ultimately lower bills for both businesses and other users—but slower buildouts mean sky-high prices may linger,” he said.

He added a call for decisive action: “My advice to European nations would be to keep going further and faster. There needs to be political action to solve grid congestion, and to create opportunities for innovation and manufacturing in Europe will be critical to keep momentum.”

With solar energy now taking the lead for the first time, Europe’s clean energy transformation appears to be entering a new phase, as global renewables set new records and momentum builds—one that combines environmental sustainability with energy security and economic opportunity.

 

Related Articles

View more

Electric vehicle owners can get paid to sell electricity back to the grid

Ontario EV V2G Pilots enable bi-directional charging, backup power, and grid services with IESO, Toronto Hydro, and Hydro One, linking energy storage, solar, blockchain apps, and demand response incentives for smarter electrification.

 

Key Points

Ontario EV V2G pilots test bidirectional charging and backup power to support grid services with apps and incentives.

✅ Tests Nissan Leaf V2H backup with Hydro One and Peak Power.

✅ Integrates solar, storage, blockchain apps via Sky Energy and partners.

✅ Pilots demand response apps in Toronto and Waterloo utilities.

 

Electric vehicle owners in Ontario may one day be able to use the electricity in their EVs instead of loud diesel or gas generators to provide emergency power during blackouts. They could potentially also sell back energy to the grid when needed. Both are key areas of focus for new pilot projects announced this week by Ontario’s electricity grid operator and partners that include Toronto Hydro and Ontario Hydro.

Three projects announced this week will test the bi-directional power capabilities of current EVs and the grid, all partially funded by the Independent Electricity System Operator (IESO) of Ontario, with their announcement in Toronto also attended by Ontario Energy Minister Todd Smith.

The first project is with Hydro One Networks and Peak Power, which will use up to 10 privately owned Nissan Leafs to test what is needed technically to support owners using their cars for vehicle-to-building charging during power outages. It will also study what type of financial incentives will convince EV owners to provide backup power for other users, and therefore the grid.

A second pilot program with solar specialist Sky Energy and engineering firm Hero Energy will study EVs, energy storage, and solar panels to further examine how consumers with potentially more power to offer the grid could do it securely, in part using blockchain technology. York University and Volta Research are other partners in the program, which has already produced an app that can help drivers choose when and how much power to provide the grid — if any.

The third program is with local utilities in Toronto and Waterloo, Ont., and will test a secure digital app that helps EV drivers see the current demands on the grid through improved grid coordination mechanisms, and potentially price an incentive to EV drivers not to charge their vehicles for a few hours. Drivers could also be actively further paid to provide some of the charge currently in their vehicle back to the grid.

It all adds up to $2.7 million in program funding from IESO ($1.1 million) and the associated partners.

“An EV charged in Ontario produces roughly three per cent of emissions of a gas fuelled car,” said IESO’s Carla Nell, vice-president of corporate relations and innovation at the announcement near Peak Power chargers in downtown Toronto. “We know that Ontario consumers are buying EVs, and expected to increase tenfold — so we have to support electrification.”

If these types of programs sound familiar, it may be because utilities in Ontario have been testing such vehicle-to-grid technologies soon after affordable EVs became available in the fall of 2011. One such program was run by PowerStream, now the called Alectra, and headed by Neetika Sathe, who is now Alectra’s vice-president of its Green Energy and Technology (GRE&T) Centre in Guelph, Ont.

The difference between now and those tests in the mid-2010s is that the upcoming wave of EV sales can be clearly seen on the horizon, and California's grid stability work shows how EVs can play a larger role.

“We can see the tsunami now,” she said, noting that cost parity between EVs and gas vehicles is likely four or five years away — without government incentives, she stressed. “Now it’s not a question of if, it’s a question of when — and that when has received much more clarity on it.”

Sathe sees a benefit in studying all these types of bi-directional power-flowing scenarios, but notes that they are future scenarios for years in the future, especially since bi-directional charging equipment — and the vehicles with this capability — are pricey, and largely still not here. What she believes is much closer is the ability to automatically communicate what the grid needs with EV drivers, as Nova Scotia Power pilots integration, and how they could possibly help. For a price, of course.

“If I can set up a system that says ‘oh, the grid is stressed, can you not charge for the next two hours? And here’s what we’ll offer to you for that,’ that’s closer to low-hanging fruit,” she said, noting that Alectra is currently testing out such systems. “Think of it the same way as offering your car for Uber, or a room on Airbnb.”

 

Related News

View more

Wind and solar power generated more electricity in the EU last year than gas. Here's how

EU Renewable Energy Transition accelerates as solar and wind overtake gas, cutting coal reliance and boosting REPowerEU goals; falling electricity demand, hydro and nuclear recovery, and grid upgrades drive a cleaner, secure power mix.

 

Key Points

It is the EU's shift to solar and wind, surpassing gas and curbing coal to meet REPowerEU targets.

✅ Solar and wind supplied 22% of EU electricity in 2022.

✅ Gas fell behind; coal stayed near 16% with no major rebound.

✅ Demand fell; hydro and nuclear expected to recover in 2023.

 

European countries were forced to accelerate their renewable energy capacity after Russia's invasion of Ukraine sparked a global energy crisis amid a surge in global power demand that exceeded pre-pandemic levels. The EU’s REPowerEU plan aims to increase the share of renewables in final energy consumption overall to 45 percent by the end of the decade.

However, a new report by energy think tank Ember shows that the EU’s green energy transition is already making a significant difference. Solar and wind power generated more than a fifth (22 percent) of its electricity in 2022, pulling ahead of fossil gas (20 percent) for the first time, according to the European Electricity Review 2023.

Europe also managed to avoid resorting to emissions-intensive coal power for electricity generation as a consequence of the energy crisis, even as renewables to eclipse coal globally by mid-decade. Coal generated just 16 percent of the EU’s electricity last year, an increase of just 1.5 percentage points.

“Europe has avoided the worst of the energy crisis,” says Ember’s Head of Data Insights, Dave Jones. “The shocks of 2022 only caused a minor ripple in coal power and a huge wave of support for renewables. Any fears of a coal rebound are now dead.”

Ember’s analysis reveals that the EU faced a "triple crisis" in the electricity sector in 2022, as stunted hydro and nuclear output compounded the shock. "Just as Europe scrambled to cut ties with its biggest supplier of fossil gas, it faced the lowest levels of hydro and nuclear (power) in at least two decades, which created a deficit equal to 7 percent of Europe’s total electricity demand in 2022," the report says. A severe drought across Europe, French nuclear outages as well as the closure of German nuclear outlets were responsible for the drop.

 

Solar power shines through
However, the record surge in solar and wind power generation helped compensate for the nuclear and hydropower deficit. Solar power rose the fastest, growing by a record 24 percent last year which almost doubled its previous record, with wind growing by 8.6 percent.

Forty-one gigawatts of solar power capacity was added in 2022, almost 50 percent more than the year before. Ember says that 20 EU countries achieved solar records in 2022, with Germany, Spain, Poland, the Netherlands and France adding the most solar capacity.

The Netherlands and Greece generated more power from solar than coal for the first time. Greece is also predicted to reach its 2030 solar capacity target by the end of this year.


EU electricity demand falls
A significant drop in electricity use in 2022 also helped lessen the impact of Europe’s energy crisis. Demand fell by 7.9 percent in the last quarter of the year, despite the continent heading into winter. This was close to the 9.6 percent fall experienced when Europe was in Covid-19 lockdown in mid-2020.

"Mild weather was a deciding factor, but affordability pressures likely played a role, alongside energy efficiency improvements and citizens acting in solidarity to cut energy demand in a time of crisis," the report says.

A ‘coal comeback’ fails to materialize
The almost 8 percent fall in electricity demand in the last three months of 2022 was the main factor in the 9 percent fall in gas and coal generation during that time. However, Ember says that had France’s nuclear plants been operating at the same capacity as 2021, the EU’s fossil fuel generation would have fallen twice as fast in the last quarter of 2022.

The report says: "Coal power in the EU fell in all four of the final months of 2022, down 6 percent year-on-year. The 26 coal units placed on emergency standby for winter ran at an average of just 18 percent capacity. Despite importing 22 million tonnes of extra coal throughout 2022, the EU only used a third of it."

Gas generation was very similar compared to 2021, up just 0.8 percent. It made up 20 percent of the EU electricity mix in 2022, up from 19 percent the year before.


Fossil fuel generation set to fall in 2023
Ember says low-emissions sources like solar and wind power will continue to accelerate in 2023 and hydropower and French nuclear capacity will also recover. With electricity demand likely to continue to fall, it estimates that fossil fuel-generation "could plummet" by 20 percent in 2023.

Gas generation will fall the fastest, Ember predicts, as it will remain more expensive than coal over the next few years. "The large fall in gas generation means the power sector is likely to be the fastest falling segment of gas demand during 2023, helping to bring calm to European gas markets as Europe adjusts to life without Russian gas."

In order to stick to the 2015 Paris Agreement target of limiting global warming to no more than 1.5 degrees Celsius compared to pre-industrial levels, Ember says Europe must fully decarbonize its power system by the mid-2030s. Its modeling shows that this is possible without compromising the security of supply.

However, the report says "making this vision a reality will require investment above and beyond existing plans, as well as immediate action to address barriers to the expansion of clean energy infrastructure. Such a mobilization would boost the European economy, cement the EU’s position as a climate leader and send a vital international message that these challenges can be overcome."

 

Related News

View more

Court Sees If Church Solar Panels Break Electricity Monopoly

NC WARN Solar Case tests third-party solar rights as North Carolina Supreme Court reviews Utilities Commission fines over a Greensboro church's rooftop power deal, challenging Duke Energy's monopoly, onsite electricity sales, and potential rate impacts.

 

Key Points

A North Carolina Supreme Court test of third-party solar could weaken Duke Energy's monopoly and change utility rules.

✅ NC Supreme Court weighs Utilities Commission penalty on NC WARN

✅ Case could permit onsite third-party solar sales statewide

✅ Outcome may pressure Duke Energy's monopoly and rates

 

North Carolina's highest court is taking up a case that could force new competition on the state's electricity monopolies.

The state Supreme Court on Tuesday will consider the Utilities Commission's decision to fine clean-energy advocacy group NC WARN for putting solar panels on a Greensboro church's rooftop and then charging it below-market rates for power.

The commission told NC WARN that it was producing electricity illegally and fined the group $60,000. The group said it was acting privately and appealed to the high court.

If the group prevails, it could put new pressure on Duke Energy's monopoly, which has seen an oversubscribed solar solicitation in recent procurements. State regulators say a ruling for NC WARN would allow companies to install solar equipment and sell power on site, shaving away customers and forcing Duke Energy to raise rates on everyone else.

#google#

That's because if NC WARN's deal with Faith Community Church is allowed, the precedent could open the door for others to lure away from Duke Energy, as debates over how solar owners are paid continue, "the customers with the highest profit potential, such as commercial and industrial customers with large energy needs and ample rooftop space," attorney Robert Josey Jr. wrote in a court filing.

Losing those power sales would force the country's No. 2 electricity company to make it up by charging remaining customers more to cover the cost of all of its power plants, transmission lines and repair crews, a dynamic echoed in New England's grid upgrade debates as solar grows, wrote Josey, an attorney for the Public Staff, the state's official utilities consumer advocate.

The dispute is whether NC WARN is producing electricity "for the public," which would mean it's intruding on the territory of the publicly regulated monopoly utility, or whether the move was allowed because it was a private power deal with the church alone.

 

NC WARN installed the church's power panels in 2015 as part of what it described as a test case, amid wider debates like Nova Scotia's delayed solar charge for customers, challenging Duke Energy's monopoly position to generate and sell electricity.

North Carolina was one of nine states that as of last year explicitly disallowed residential customers from buying electricity generated by solar panels on their roof from a third party that owns the system, even as Maryland opens solar subscriptions more broadly, according to the North Carolina Clean Energy Technology Center. State law allows purchased or leased solar panels, but not payments simply for the power they generate.

NC WARN's goals included "reducing the effects of Duke Energy's monopoly control that has such negative impacts on power bills, clean air and water, and climate change," the church's pastor, Rev. Nelson Johnson, said in a statement the same day the clean-energy group asked state regulators to clear the plan.

Instead, the North Carolina Utilities Commission ruled the arrangement violated the state's system of legal electricity monopolies and hit the group with nearly $60,000 in fines, which would be suspended if the church's payments were refunded with interest and the solar equipment donated. The group has set aside the money and will donate the gear if it loses the Supreme Court case, NC WARN Executive Director Jim Warren said.

NC WARN's three-year agreement saw the group mount a rooftop solar array for which the church would pay about half the average retail electricity price, state officials said. The agreement states plainly that it is not a contract for the sale or lease of the $20,000 solar system, the church never owns the panels, and the low electricity price means its payback for the equipment would take 60 years, Josey wrote.

"Clearly, the only thing of value (the church) is obtaining for its payments under this agreement is the electricity created," he wrote.

In court filings, the group's attorneys have stuck to the argument that NC WARN isn't selling to the public because the deal involved a single customer only.

The deal "is not open to any other member of the public ... A private, bargained-for contract under which only one party receives electricity is not a sale of electricity 'to or for the public,' " attorney Matthew Quinn wrote to the court.

 

Related News

View more

Here's why the U.S. electric grid isn't running on 100% renewable energy yet

US Renewable Energy Transition is the shift from fossil fuels to wind, solar, and nuclear, targeting net-zero emissions via grid modernization, battery storage, and new transmission to replace legacy plants and meet rising electrification.

 

Key Points

The move to decarbonize electricity by scaling wind, solar, and nuclear with storage and transmission upgrades.

✅ Falling LCOE makes wind and solar competitive with gas and coal.

✅ 4-hour lithium-ion storage shifts solar to evening peak demand.

✅ New high-voltage transmission links resource-rich regions to load.

 

Generating electricity to power homes and businesses is a significant contributor to climate change. In the United States, one quarter of greenhouse gas emissions come from electricity production, according to the Environmental Protection Agency.

Solar panels and wind farms can generate electricity without releasing any greenhouse gas emissions, and recent research suggests wind and solar could meet about 80% of U.S. demand with supportive infrastructure. Nuclear power plants can too, although today’s plants generate long-lasting radioactive waste, which has no permanent storage repository.

But the U.S. electrical sector is still dependent on fossil fuels. In 2021, 61 percent of electricity generation came from burning coal, natural gas, or petroleum. Only 20 percent of the electricity in the U.S. came from renewables, mostly wind energy, hydropower and solar energy, according to the U.S. Energy Information Administration, and in 2022 renewable electricity surpassed coal nationwide as portfolios shifted. Another 19 percent came from nuclear power.

The contribution from renewables has been increasing steadily since the 1990s, and the rate of increase has accelerated, with renewables projected to reach one-fourth of U.S. generation in the near term. For example, wind power provided only 2.8 billion kilowatt-hours of electricity in 1990, doubling to 5.6 billion in 2000. But from there, it skyrocketed, growing to 94.6 billion in 2010 and 379.8 billion in 2021.

That’s progress, as the U.S. moves toward 30% electricity from wind and solar this decade, but it’s not happening fast enough to eliminate the worst effects of climate change for our descendants.

“We need to eliminate global emissions of greenhouse gases by 2050,” philanthropist and technologist Bill Gates wrote in his 2023 annual letter. “Extreme weather is already causing more suffering, and if we don’t get to net-zero emissions, our grandchildren will grow up in a world that is dramatically worse off.”

And the problem is actually bigger than it looks, even as pathways to zero-emissions electricity by 2035 are being developed.

“We need not just to create as much electricity as we have now, but three times as much,” says Saul Griffith, an entrepreneur who’s sold companies to Google and Autodesk and has written books on mass electrification. To get to zero emissions, all the cars and heating systems and stoves will have to be powered with electricity, said Griffith. Electricity is not necessarily clean, but at least it it can be, unlike gas-powered stoves or gasoline-powered cars.

The technology to generate electricity with wind and solar has existed for decades. So why isn’t the electric grid already 100% powered by renewables? And what will it take to get there?

First of all, renewables have only recently become cost-competitive with fossil fuels for generating electricity. Even then, prices depend on the location, Paul Denholm of the National Renewable Energy Laboratory told CNBC.

In California and Arizona, where there is a lot of sun, solar energy is often the cheapest option, whereas in places like Maine, solar is just on the edge of being the cheapest energy source, Denholm said. In places with lots of wind like North Dakota, wind power is cost-competitive with fossil fuels, but in the Southeast, it’s still a close call.

Then there’s the cost of transitioning the current power generation infrastructure, which was built around burning fossil fuels, and policymakers are weighing ways to meet U.S. decarbonization goals as they plan grid investments.

“You’ve got an existing power plant, it’s paid off. Now you need renewables to be cheaper than running that plant to actually retire an old plant,” Denholm explained. “You need new renewables to be cheaper just in the variable costs, or the operating cost of that power plant.”

There are some places where that is true, but it’s not universally so.

“Primarily, it just takes a long time to turn over the capital stock of a multitrillion-dollar industry,” Denholm said. “We just have a huge amount of legacy equipment out there. And it just takes awhile for that all to be turned over.”

 

Intermittency and transmission
One of the biggest barriers to a 100% renewable grid is the intermittency of many renewable power sources, the dirty secret of clean energy that planners must manage. The wind doesn’t always blow and the sun doesn’t always shine — and the windiest and sunniest places are not close to all the country’s major population centers.

Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
Wind resources in the United States, according to the the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.
The solution is a combination of batteries to store excess power for times when generation is low, and transmission lines to take the power where it is needed.

Long-duration batteries are under development, but Denholm said a lot of progress can be made simply with utility-scale batteries that store energy for a few hours.

“One of the biggest problems right now is shifting a little bit of solar energy, for instance, from say, 11 a.m. and noon to the peak demand at 6 p.m. or 7 p.m. So you really only need a few hours of batteries,” Denholm told CNBC. “You can actually meet that with conventional lithium ion batteries. This is very close to the type of batteries that are being put in cars today. You can go really far with that.”

So far, battery usage has been low because wind and solar are primarily used to buffer the grid when energy sources are low, rather than as a primary source. For the first 20% to 40% of the electricity in a region to come from wind and solar, battery storage is not needed, Denholm said. When renewable penetration starts reaching closer to 50%, then battery storage becomes necessary. And building and deploying all those batteries will take time and money.
 

 

Related News

View more

New Kind of 'Solar' Cell Shows We Can Generate Electricity Even at Night

Thermoradiative Diode Power leverages infrared radiation and night-sky cooling to harvest waste heat. Using MCT (mercury cadmium telluride) detectors with photovoltaics, it extends renewable energy generation after sunset, exploiting radiative cooling and low-power density.

 

Key Points

Technology using MCT infrared diodes to turn radiative Earth-to-space heat loss into electricity, aiding solar at night.

✅ MCT diodes radiate to cold sky, generating tiny current at 20 C

✅ Complements photovoltaics by harvesting post-sunset infrared flux

✅ Potential up to one-tenth solar output with further efficiency gains

 

Conventional solar technology soaks up rays of incoming sunlight to bump out a voltage. Strange as it seems, some materials are capable of running in reverse, producing power as they radiate heat back into the cold night sky environment.

A team of engineers in Australia has now demonstrated the theory in action, using the kind of technology commonly found in night-vision goggles to generate power, while other research explores electricity from thin air concepts under ambient humidity.

So far, the prototype only generates a small amount of power, and is probably unlikely to become a competitive source of renewable power on its own – but coupled with existing photovoltaics technology and thermal energy into electricity approaches, it could harness the small amount of energy provided by solar cells cooling after a long, hot day's work.

"Photovoltaics, the direct conversion of sunlight into electricity, is an artificial process that humans have developed in order to convert the solar energy into power," says Phoebe Pearce, a physicist from the University of New South Wales.

"In that sense, the thermoradiative process is similar; we are diverting energy flowing in the infrared from a warm Earth into the cold Universe."

By setting atoms in any material jiggling with heat, you're forcing their electrons to generate low-energy ripples of electromagnetic radiation in the form of infrared light, a principle also explored with carbon nanotube energy harvesters in ambient conditions.

As lackluster as this electron-shimmy might be, it still has the potential to kick off a slow current of electricity. All that's needed is a one-way electron traffic signal called a diode.

Made of the right combination of elements, a diode can shuffle electrons down the street as it slowly loses its heat to a cooler environment.

In this case, the diode is made of mercury cadmium telluride (MCT). Already used in devices that detect infrared light, MCT's ability to absorb mid-and long-range infrared light and turn it into a current is well understood.

What hasn't been entirely clear is how this particular trick might be used efficiently as an actual power source.

Warmed to around 20 degrees Celsius (nearly 70 degrees Fahrenheit), one of the tested MCT photovoltaic detectors generated a power density of 2.26 milliwatts per square meter.

Granted, it's not exactly enough to boil a jug of water for your morning coffee. You'd probably need enough MCT panels to cover a few city blocks for that small task.

But that's not really the point, either, given it's still very early days in the field, and there's potential for the technology to develop significantly further in the future.

"Right now, the demonstration we have with the thermoradiative diode is relatively very low power. One of the challenges was actually detecting it," says the study's lead researcher, Ned Ekins-Daukes.

"But the theory says it is possible for this technology to ultimately produce about 1/10th of the power of a solar cell."

At those kinds of efficiencies, it might be worth the effort weaving MCT diodes into more typical photovoltaic networks alongside thin-film waste heat solutions so that they continue to top up batteries long after the Sun sets.

To be clear, the idea of using the planet's cooling as a source of low-energy radiation is one engineers have been entertaining for a while now. Different methods have seen different results, all with their own costs and benefits, with low-cost heat-to-electricity materials also advancing in parallel.

Yet by testing the limits of each and fine-tuning their abilities to soak up more of the infrared bandwidth, we can come up with a suite of technologies and thermoelectric materials capable of wringing every drop of power out of just about any kind of waste heat.

"Down the line, this technology could potentially harvest that energy and remove the need for batteries in certain devices – or help to recharge them," says Ekins-Daukes.

"That isn't something where conventional solar power would necessarily be a viable option."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified