Stiff EPA emission limits to boost US electric vehicle sales


ev-boost

CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

EPA Auto Emissions Proposal 2027-2032 sets strict tailpipe emissions limits, accelerating electric vehicle adoption, cutting greenhouse gases, advancing climate policy, and reducing oil dependence through battery-electric cars and trucks across U.S. markets.

 

Key Points

An EPA plan setting strict tailpipe limits to drive EV adoption, cut greenhouse gases, and reduce oil use in vehicles.

✅ Cuts GHGs 56% vs. 2026 standards; improves national air quality.

✅ Targets up to two-thirds EV sales by 2032 nationwide.

✅ Reduces oil imports by about 20 billion barrels; lowers costs.

 

The Biden administration is proposing strict new automobile pollution limits that would require up to two-thirds of new vehicles sold in the U.S. to be electric by 2032, a nearly tenfold increase over current electric vehicle sales.

The proposed regulation, announced Wednesday by the Environmental Protection Agency, would set tailpipe emissions limits for the 2027 through 2032 model years that are the strictest ever imposed — and call for far more new EV sales than the auto industry agreed to less than two years ago, a shift aligned with U.S. EV sales momentum in early 2024.

If finalized next year as expected, the plan would represent the strongest push yet toward a once almost unthinkable shift from gasoline-powered cars and trucks to battery-powered vehicles, as the market approaches an inflection point in adoption.

The Biden administration is proposing strict new automobile pollution limits that would require up to two-thirds of new vehicles sold in the U.S. to be electric by 2032, a nearly tenfold increase over current electric vehicle sales.

The proposed regulation, announced Wednesday by the Environmental Protection Agency, would set tailpipe emissions limits for the 2027 through 2032 model years that are the strictest ever imposed — and call for far more new EV sales than the auto industry agreed to less than two years ago, a direction mirrored by Canada's EV sales regulations now being finalized.

If finalized next year as expected, the plan would represent the strongest push yet toward a once almost unthinkable shift from gasoline-powered cars and trucks to battery-powered vehicles, with many analysts forecasting widespread adoption within a decade among buyers.

Reaching half was always a “stretch goal," given that EVs still trail gas cars in market share and contingent on manufacturing incentives and tax credits to make EVs more affordable, he wrote.

“The question isn’t can this be done, it’s how fast can it be done,” Bozzella wrote. “How fast will depend almost exclusively on having the right policies and market conditions in place.”

European car maker Stellantis said that, amid broader EV mandate debates across North America, officials were “surprised that none of the alternatives” proposed by EPA "align with the president’s previously announced target of 50% EVs by 2030.''

Q. How will the proposal benefit the environment?

A. The proposed standards for light-duty cars and trucks are projected to result in a 56% reduction in projected greenhouse gas emissions compared with existing standards for model year 2026, the EPA said. The proposals would improve air quality for communities across the nation, and, with actual benefits influenced by grid mix — for example, Canada's fossil electricity share affects lifecycle emissions — avoiding nearly 10 billion tons of carbon dioxide emissions by 2055, more than twice the total U.S. CO2 emissions last year, the EPA said.

The plan also would save thousands of dollars over the lives of the vehicles sold and reduce U.S. reliance on approximately 20 billion barrels of oil imports, the agency said.

Related News

Bimbo Canada signs agreements to offset 100 per cent of its electricity consumption for Canadian operations

Bimbo Canada VPPAs secure renewable electricity from RES wind and solar projects in Alberta, totaling 170MW, via 15-year contracts to offset consumption, advance RE100 goals, and drive decarbonization across bakeries, depots, and distribution centers.

 

Key Points

Virtual power purchase agreements sourcing wind and solar to offset Bimbo Canadas electricity and support RE100.

✅ 15-year RES contracts for Alberta wind and solar capacity

✅ Offsets electricity for bakeries, depots, and distribution centers

✅ Advances Grupo Bimbo RE100 target for 100% renewable power

 

Canada's oldest and largest bakery, Bimbo Canada, has signed two virtual power purchase agreements (VPPAs) with Renewable Energy Systems  (RES) to procure renewable electricity, similar to federal green electricity contracts advancing in Alberta, that will offset 100 per cent of the company's electricity consumption in Canada. The projects are expected to be fully operational by December, 2022.

Canada is the second market, alongside the United States, to enter into VPPAs, where companies like Amazon clean energy projects are expanding rapidly. These agreements, together with additional sustainability initiatives conducted around the world by the parent company Grupo Bimbo, will help the company offset 90 per cent of its global electricity consumption.

"Bimbo Canada is committed to nourishing a better world through productive sustainability practices," said Joe McCarthy, president of Bimbo Canada. "These agreements are the next big step in reducing our environmental footprint, as peers such as Arvato's first solar plant signal industry momentum, and becoming leaders in responsible stewardship of the environment."

The 15-year agreements with RES will support the commercial development of two renewable energy projects in southern Alberta, consisting of wind and solar projects, similar to RBC's solar PPA announced in the region, totaling 170MW of installed capacity. Under these two agreements, Bimbo Canada will procure the benefit of approximately 50MW of renewable electricity to offset electricity consumption for its 16 bakeries, 14 distribution centres and 191 depots. Commercial development for the wind and solar farms will be finalized later this year by RES Canada and the projects are expected to be fully operational by the end of next year.  

"RES is proud that its Alberta wind and solar projects, amid growth such as a $200M Alberta wind farm led by a Buffett-linked firm, are helping Bimbo Canada meet its sustainability initiatives," said Peter Clibbon, RES Senior VP of Development. "It's a win-win situation with our projects delivering competitive wind and solar electricity to Bimbo Canada, and while providing our host communities with long-term tax and landowner income."

In 2018, Grupo Bimbo joined RE100, a global initiative led by The Climate Group and in partnership with Carbon Disclosure Project (CDP) and committed to operating with 100 per cent renewable electricity by 2025. As a leading supplier of fresh-baked goods and snacks for Canadian families, these agreements support the company's targets and builds upon many successful past sustainability initiatives, as market activity by Canadian Solar project sales continues nationwide.

"The renewable electricity initiatives in our operations respond to Grupo Bimbo's deep commitment that we have had for many decades globally with the planet and with present and future generations," said Daniel Servitje, global CEO of Grupo Bimbo. "With this announcement, we have achieved another important milestone for the company on our journey towards becoming 100 per cent renewable electricity by 2025."

Last year, Bimbo Canada reduced product waste and exceeded its product waste reduction target by 18 per cent, which saved four million units of products from landfills. The company also eliminated 174 metric tonnes of plastic per year (equal to 43 adult elephants) through several packaging optimization initiatives.

Earlier this year, Bimbo Canada signed the Canada Plastics Pact (CPP) and, amid a broader push for clean energy exemplified by Edmonton rooftop solar installations, earned its first ENERGY STAR certification for its Hamilton, Ontario bakery. The company will continue to work towards other initiatives that fulfill its commitment to be a sustainable, highly productive and deeply humane company.

 

Related News

View more

Why Electric Vehicles Are "Greener" Than Ever In All 50 States

UCS EV emissions study shows electric vehicles produce lower life-cycle emissions than gasoline cars across all states, factoring tailpipe, grid mix, power plant sources, and renewable energy, delivering mpg-equivalent advantages nationwide.

 

Key Points

UCS study comparing EV and gas life-cycle emissions, finding EVs cleaner than new gas cars in every U.S. region.

✅ Average EV equals 93 mpg gas car on emissions.

✅ Cleaner than 50 mpg gas cars in 97% of U.S.

✅ Regional grid mix included: tailpipe to power plant.

 

One of the cautions cited by electric vehicle (EV) naysayers is that they merely shift emissions from the tailpipe to the local grid’s power source, implicating state power grids as a whole, and some charging efficiency claims get the math wrong, too. And while there is a kernel of truth to this notion—they’re indeed more benign to the environment in states where renewable energy resources are prevalent—the average EV is cleaner to run than the average new gasoline vehicle in all 50 states. 

That’s according to a just-released study conducted the Union of Concerned Scientists (UCS), which determined that global warming emissions related to EVs has fallen by 15 percent since 2018. For 97 percent of the U.S., driving an electric car is equivalent or better for the planet than a gasoline-powered model that gets 50 mpg. 

In fact, the organization says the average EV currently on the market is now on a par, environmentally, with an internal combustion vehicle that’s rated at 93 mpg. The most efficient gas-driven model sold in the U.S. gets 59 mpg, and EV sales still trail gas cars despite such comparisons, with the average new petrol-powered car at 31 mpg.

For a gasoline car, the UCS considers a vehicle’s tailpipe emissions, as well as the effects of pumping crude oil from the ground, transporting it to a refinery, creating gasoline, and transporting it to filling stations. For electric vehicles, the UCS’ environmental estimates include both emissions from the power plants themselves, along with those created by the production of coal, natural gas or other fossil fuels used to generate electricity, and they are often mischaracterized by claims about battery manufacturing emissions that don’t hold up. 

Of course the degree to which an EV ultimately affects the atmosphere still varies from one part of the country to another, depending on the local power source. In some parts of the country, driving the average new gasoline car will produce four to eight times the emissions of the average EV, a fact worth noting for those wondering if it’s the time to buy an electric car today. The UCS says the average EV driven in upstate New York produces total emissions that would be equivalent to a gasoline car that gets an impossible 255-mpg. In even the dirtiest areas for generating electricity, EVs are responsible for as much emissions as a conventionally powered car that gets over 40 mpg.

 

Related News

View more

The Age of Electric Cars Is Dawning Ahead of Schedule

EV Price Parity is nearing reality in Europe as subsidies, falling battery costs, higher energy density, and expanding charging infrastructure push Tesla, Volkswagen, and Renault to compete under EU CO2 regulations and fleet targets.

 

Key Points

EV price parity means EVs match ICE cars on total ownership cost as subsidies fade and batteries get cheaper.

✅ Battery pack costs trending toward $100/kWh

✅ EU CO2 rules and incentives accelerate adoption

✅ Charging networks reduce range anxiety and TCO

 

An electric Volkswagen ID.3 for the same price as a Golf. A Tesla Model 3 that costs as much as a BMW 3 Series. A Renault Zoe electric subcompact whose monthly lease payment might equal a nice dinner for two in Paris.

As car sales collapsed in Europe because of the pandemic, one category grew rapidly: electric vehicles, a shift that some analysts say could put most drivers within a decade on battery power. One reason is that purchase prices in Europe are coming tantalizingly close to the prices for cars with gasoline or diesel engines.

At the moment this near parity is possible only with government subsidies that, depending on the country, can cut more than $10,000 from the final price. Carmakers are offering deals on electric cars to meet stricter European Union regulations on carbon dioxide emissions. In Germany, an electric Renault Zoe can be leased for 139 euros a month, or $164.

Electric vehicles are not yet as popular in the United States, largely because government incentives are less generous, but an emerging American EV boom could change that trajectory. Battery-powered cars account for about 2 percent of new car sales in America, while in Europe the market share is approaching 5 percent. Including hybrids, the share rises to nearly 9 percent in Europe, according to Matthias Schmidt, an independent analyst in Berlin.

As electric cars become more mainstream, the automobile industry is rapidly approaching the tipping point, an inflection point for the market, when, even without subsidies, it will be as cheap, and maybe cheaper, to own a plug-in vehicle than one that burns fossil fuels. The carmaker that reaches price parity first may be positioned to dominate the segment.

A few years ago, industry experts expected 2025 would be the turning point. But technology is advancing faster than expected, and could be poised for a quantum leap. Elon Musk is expected to announce a breakthrough at Tesla’s “Battery Day” event on Tuesday that would allow electric cars to travel significantly farther without adding weight.

The balance of power in the auto industry may depend on which carmaker, electronics company or start-up succeeds in squeezing the most power per pound into a battery, what’s known as energy density. A battery with high energy density is inherently cheaper because it requires fewer raw materials and less weight to deliver the same range.

“We’re seeing energy density increase faster than ever before,” said Milan Thakore, a senior research analyst at Wood Mackenzie, an energy consultant which recently pushed its prediction of the tipping point ahead by a year, to 2024.

Some industry experts are even more bullish. Hui Zhang, managing director in Germany of NIO, a Chinese electric carmaker with global ambitions, said he thought parity could be achieved in 2023.

Venkat Viswanathan, an associate professor at Carnegie Mellon University who closely follows the industry, is more cautious, though EV revolution skeptics argue the revolution is overstated. But he said: “We are already on a very accelerated timeline. If you asked anyone in 2010 whether we would have price parity by 2025, they would have said that was impossible.”

This transition will probably arrive at different times for different segments of the market. High-end electric vehicles are pretty close to parity already. The Tesla Model 3 and the gas-powered BMW 3 Series both sell for about $41,000 in the United States.

A Tesla may even be cheaper to own than a BMW because it never needs oil changes or new spark plugs and electricity is cheaper, per mile, than gasoline. Which car a customer chooses is more a matter of preference, particularly whether an owner is willing to trade the convenience of gas stations for charging points that take more time. (On the other hand, owners can also charge their Teslas at home.)

Consumers tend to focus on sticker prices, and it will take longer before unsubsidized electric cars cost as little to drive off a dealer’s lot as an economy car, even for shoppers weighing whether it’s the right time to buy an electric car now.

The race to build a better battery
The holy grail in the electric vehicle industry has been to push the cost of battery packs — the rechargeable system that stores energy — below $100 per kilowatt-hour, the standard measure of battery power. That is the point, more or less, at which propelling a vehicle with electricity will be as cheap as it is with gasoline.

Current battery packs cost around $150 to $200 per kilowatt-hour, depending on the technology. That means a battery pack costs around $20,000. But the price has dropped 80 percent since 2008, according to the United States Department of Energy.

All electric cars use lithium-ion batteries, but there are many variations on that basic chemistry, and intense competition to find the combination of materials that stores the most power for the least weight.

For traditional car companies, this is all very scary. Internal combustion engines have not changed fundamentally for decades, but battery technology is still wide open. There are even geopolitical implications. China is pouring resources into battery research, seeing the shift to electric power as a chance for companies like NIO to make their move on Europe and someday, American, markets. In less than a decade, the Chinese battery maker CATL has become one of the world’s biggest manufacturers.


Everyone is trying to catch Tesla
The California company has been selling electric cars since 2008 and can draw on years of data to calculate how far it can safely push a battery’s performance without causing overheating or excessive wear. That knowledge allows Tesla to offer better range than competitors who have to be more careful. Tesla’s four models are the only widely available electric cars that can go more than 300 miles on a charge, according to Kelley Blue Book.

On Tuesday, Mr. Musk could unveil a technology offering 50 percent more storage per pound at lower cost, according to analysts at the Swiss bank UBS. If so, competitors could recede even further in the rearview mirror.

“The traditional car industry is still behind,” said Peter Carlsson, who ran Tesla’s supplier network in the company’s early days and is now chief executive of Northvolt, a new Swedish company that has contracts to manufacture batteries for Volkswagen and BMW.

“But,” Mr. Carlsson said, “there is a massive amount of resources going into the race to beat Tesla. A number, not all, of the big carmakers are going to catch up.”

The traditional carmakers’ best hope to avoid oblivion will be to exploit their expertise in supply chains and mass production to churn out economical electrical cars by the millions.

A key test of the traditional automakers’ ability to survive will be Volkswagen’s new battery-powered ID.3, which will start at under €30,000, or $35,000, after subsidies and is arriving at European dealerships now. By using its global manufacturing and sales network, Volkswagen hopes to sell electric vehicles by the millions within a few years. It plans to begin selling the ID.4, an electric sport utility vehicle, in the United States next year. (ID stands for “intelligent design.”)

But there is a steep learning curve.

“We have been mass-producing internal combustion vehicles since Henry Ford. We don’t have that for battery vehicles. It’s a very new technology,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology in southwestern Germany whose research focuses on battery manufacturing. “The question will be how fast can we can get through this learning curve?”

It’s not just about the batteries
Peter Rawlinson, who led design of the Tesla Model S and is now chief executive of the electric car start-up Lucid, likes to wow audiences by showing up at events dragging a rolling carry-on bag containing the company’s supercompact drive unit. Electric motor, transmission and differential in one, the unit saves space and, along with hundreds of other weight-saving tweaks, will allow the company’s Lucid Air luxury car — which the company unveiled on Sept. 9 — to travel more than 400 miles on a charge, Mr. Rawlinson said.

His point is that designers should focus on things like aerodynamic drag and weight to avoid the need for big, expensive batteries in the first place. “There is kind of a myopia,” Mr. Rawlinson said. “Everyone is talking about batteries. It’s the whole system.”

“We have been mass-producing internal combustion vehicles since Henry Ford,” said Jürgen Fleischer, a professor at the Karlsruhe Institute of Technology. “We don’t have that for battery vehicles.”

A charger on every corner would help
When Jana Höffner bought an electric Renault Zoe in 2013, driving anywhere outside her home in Stuttgart was an adventure. Charging stations were rare, and didn’t always work. Ms. Höffner drove her Zoe to places like Norway or Sicily just to see if she could make it without having to call for a tow.

Ms. Höffner, who works in online communication for the state of Baden-Württemberg, has since traded up to a Tesla Model 3 equipped with software that guides her to the company’s own network of chargers, which can fill the battery to 80 percent capacity in about half an hour. She sounds almost nostalgic when she remembers how hard it was to recharge back in the electric-vehicle stone age.

“Now, it’s boring,” Ms. Höffner said. “You say where you want to go and the car takes care of the rest.”

The European Union has nearly 200,000 chargers, far short of the three million that will be needed when electric cars become ubiquitous, according to Transport & Environment, an advocacy group. The United States remains far behind, with less than half as many as Europe, even as charging networks jostle under federal electrification efforts.

But the European network is already dense enough that owning and charging an electric car is “no problem,” said Ms. Höffner, who can’t charge at home and depends on public infrastructure.
 

 

Related News

View more

"World?s Most Powerful? Tidal Turbine Starts Pumping Green Electricity To Onshore Grid

O2 Tidal Turbine delivers tidal energy in Orkney, Scotland, supplying grid-connected renewable power via EMEC and enabling green hydrogen production, providing clean electricity with predictable generation from strong coastal currents.

 

Key Points

A 2 MW, grid-connected tidal device in Orkney that delivers clean power and enables EMEC green hydrogen production.

✅ 2 MW capacity; powers ~2,000 UK homes via EMEC grid

✅ Predictable renewable output from strong coastal currents

✅ Enables onshore electrolyzer to produce green hydrogen

 

“The world’s most powerful” tidal turbine has been hooked up to the onshore electricity grid in Orkney, a northerly archipelago in Scotland, and is ready to provide homes with clean, green electricity, even as a major UK offshore windfarm begins supplying power this week.

The tidal turbine, known as the O2, was developed by Scottish engineering firm Orbital Marine Power. On July 28, they announced O2 “commenced grid connected power generation” at the European Marine Energy Centre (EMEC) in Orkney, meaning it's all set up and providing energy to the local power grid, similar to another Scottish tidal project that recently powered nearly 4,000 homes.

The 74-meter-long (242-foot) turbine is said to be “the world’s most powerful” tidal turbine. It will lay in the waters off Orkney for the next 15 years with the capacity to meet the annual electricity demand of around 2,000 UK homes. The 2MW turbine is also set to power the EMEC’s land-based electrolyzer that will generate green hydrogen (hydrogen made without fossil fuels) that can also be used as a clean energy source, in a UK energy system that recently set a wind generation record for output.

“Our vision is that this project is the trigger to the harnessing of tidal stream resources around the world and, alongside investment in UK offshore wind, to play a role in tackling climate change whilst creating a new, low-carbon industrial sector,” Orbital CEO, Andrew Scott, said in a press release.

Tidal energy is harnessed by converting energy from the natural rise and fall of ocean tides and currents. The O2 turbine consists of two submerged blades with a 20-meter (65-foot) diameter attached to a turbine that will move with the shifting currents of Orkney’s coast to generate electricity. Electricity is then transferred from the turbine along the seabed via cables towards the local onshore electricity network, a setup also being used by a Nova Scotia tidal project to supply the grid today.


This method of harnessing energy is not just desirable because it doesn't release carbon emissions, but it’s more predictable than other renewable energy sources, such as solar or Scotland's wind farms that can be influenced by weather conditions. Tidal energy production is still in its infancy and there are relatively few large-scale tidal power plants in the world, but many argue that some parts of the world could potentially draw huge benefits from this innovative form of hydropower, especially coastal regions with strong currents such as the northern stretches of the UK and the Bay of Fundy in Atlantic Canada.

The largest tidal power operation in the world is the Sihwa Lake project on the west coast of South Korea, which harnesses enough power to support the domestic needs of a city with a population of 500,000 people. However, once fully operational, the MeyGen tidal power project in northern Scotland hopes to snatch its title.

 

Related News

View more

Bus depot bid to be UK's largest electric vehicle charging hub

First Glasgow Electric Buses will transform the Caledonia depot with 160 charging points, zero-emission operations, grid upgrades, and rapid charging, supported by Transport Scotland funding and Alexander Dennis manufacturing for cleaner urban routes by 2023.

 

Key Points

Electric single-deckers at Caledonia depot with 160 chargers and upgrades, delivering zero-emission service by 2023

✅ 160 charging points; 4-hour rapid recharge capability

✅ Grid upgrades to power a fleet equal to a 10,000-person town

✅ Supported by Transport Scotland; built by Alexander Dennis

 

First Bus will install 160 charging points and replace half its fleet with electric buses at its Caledonia depot in Glasgow.

The programme is expected to be completed in 2023, similar to Metro Vancouver's battery-electric rollout milestones, with the first 22 buses arriving by autumn.

Charging the full fleet will use the same electricity as it takes to power a town of 10,000 people.

The scale of the project means changes are needed to the power grid, a challenge highlighted in global e-bus adoption analysis, to accommodate the extra demand.

First Glasgow managing director Andrew Jarvis told BBC Scotland: "We've got to play our part in society in changing how we all live and work. A big part of that is emissions from vehicles.

"Transport is stubbornly high in terms of emissions and bus companies need to play their part, and are playing their part, in that zero emission journey."

First Bus currently operates 337 buses out of its largest depot with another four sites across Glasgow.

The new buses will be built by Alexander Dennis at its manufacturing sites in Falkirk and Scarborough.

The transition requires a £35.6m investment by First with electric buses costing almost double the £225,000 bill for a single decker running on diesel.

But the company says maintenance and running costs, as seen in St. Albert's electric fleet results, are then much lower.

The buses can run on urban routes for 16 hours, similar to Edmonton's first e-bus performance, and be rapidly recharged in just four hours.

This is a big investment which the company wouldn't be able to achieve on its own.

Government grants only cover 75% of the difference between the price of a diesel and an electric bus, similar to support for B.C. electric school buses programmes, so it's still a good bit more expensive for them.

But they know they have to do it as a social responsibility, and large-scale initiatives like US school bus conversions show the direction of travel, and because the requirements for using Low Emissions Zones are likely to become stricter.

The SNP manifesto committed to electrifying half of Scotland's 4,000 or so buses within two years.

Some are questioning whether that's even achievable in the timescale, though TTC's large e-bus fleet offers lessons, given the electricity grid changes that would be necessary for charging.

But it's a commitment that environmental groups will certainly hold them to.

Transport Scotland is providing £28.1m of funding to First Bus as part of the Scottish government's commitment to electrify half of Scotland's buses in the first two years of the parliamentary term.

Net Zero Secretary Michael Matheson said: "It's absolute critical that we decarbonise our transport system and what we have set out are very ambitious plans of how we go about doing that.

"We've set out a target to make sure that we decarbonise as many of the bus fleets across Scotland as possible, at least half of it over the course of the next couple of years, and we'll set out our plans later on this year of how we'll drive that forward."

Transport is the single biggest source of greenhouse gas emissions in Scotland which are responsible for accelerating climate change.

In 2018 the sector was responsible for 31% of the country's net emissions.

Electric bus
First Glasgow has been trialling two electric buses since January 2020.

Driver Sally Smillie said they had gone down well with passengers because they were much quieter than diesel buses.

She added: "In the beginning it was strange for them not hearing them coming but they adapt very easily and they check now.

"It's a lot more comfortable. You're not feeling a gear change and the braking's smoother. I think they're great buses to drive."

 

Related News

View more

Zero-emissions electricity by 2035 is possible

Canada Net-Zero Electricity 2035 aligns policy and investments with renewables, wind, solar, hydro, storage, and transmission to power electrification of EVs and heat pumps, guided by a stringent clean electricity standard and carbon pricing.

 

Key Points

A 2035 plan for a zero-emissions grid using renewables, storage and transmission to electrify transport and homes.

✅ Wind, solar, and hydro backed by battery storage and reservoirs

✅ Interprovincial transmission expands reliability and lowers costs

✅ Stringent clean electricity standard and full carbon pricing

 

By Tom Green
Senior Climate Policy Advisor
David Suzuki Foundation

Electric vehicles are making inroads in some areas of Canada. But as their numbers grow, will there be enough electrical power for them, and for all the buildings and the industries that are also switching to electricity?

Canada – along with the United States, the European Union and the United Kingdom – is committed to a “net-zero electricity grid by 2035 policy goal”. This target is consistent with the Paris Agreement’s ambition of staying below 1.5 C of global warming, compared with pre-industrial levels.

This target also gives countries their best chance of energy security, as laid out in landmark reports over the past year from the International Energy Agency and the Intergovernmental Panel on Climate Change. A new federal regulation in the form of a clean electricity standard is being developed, but will it be stringent enough to set us up for climate success and avoid dead ends?

Canada starts this work from a relatively low emissions-intensity grid, powered largely by hydroelectricity. However, some provinces such as Alberta, Saskatchewan, Nova Scotia and New Brunswick still have predominantly fossil fuel-powered electricity. Plus, there is a risk of more natural gas generation of electricity in the coming years in most provinces without new federal and provincial regulations.

This means the transition of Canada’s electricity system must solve two problems at once. It must first clean up the existing electricity system, but it must also meet future electricity needs from zero-emissions sources while overall electricity capacity doubles or even triples by 2050.

Canada has enormous potential for renewable generation, even though it remains a solar power laggard in deployment to date. Wind, solar and energy storage are proven, affordable technologies that can be produced here in Canada, while avoiding the volatility of global fossil fuel markets.

As wind and solar have become the cheapest forms of electricity generation in history, we’re already seeing foreign governments and utilities ramp up renewable projects at the pace and scale that would be needed here in Canada, highlighting a significant global electricity market opportunity for Canadian firms at home. In 2020, 280 gigawatts of new capacity was added globally – a 45 per cent increase over the previous year. In Canada, since 2010, annual growth in renewables has so far averaged less than three per cent.

So why aren’t we moving full steam – or electron – ahead? With countries around the world bringing in wind and solar for new generation, why is there so much delay and doubt in Canada, even as analyses explore why the U.S. grid isn’t 100% renewable and remaining barriers?

The modelling team drew on a dataset that accounts for how wind and solar potential varies across the country, through the weeks of the year and the hours of each day. The models provide solutions for the most cost-effective new generation, storage and transmission to add to the grid while ensuring electricity generation meets demand reliably every hour of the year.

The David Suzuki Foundation partnered with the University of Victoria to model the electricity grid of the future.

To better understand future electricity demand, a second modelling team was asked to explore a future when homes and businesses are aggressively electrified; fossil fuel furnaces and boilers are retired and replaced with electric heat pumps; and gasoline and diesel cars are replaced by electric vehicles and public transit. It also dialed up investments in energy efficiency to further reduce the need for energy. These hourly electricity-demand projections were fed back to the models developed at the University of Victoria.

The results? It is possible to meet Canada’s needs for clean electricity reliably and affordably through a focus on expanding wind and solar generation capacity, complemented with new transmission connections between provinces, and other grid improvements.

How is it that such high levels of variable wind and solar can be added to the grid while keeping the lights on 24/7? The model took full advantage of the country’s existing hydroelectric reservoirs, using them as giant batteries, storing water behind the dams when wind and solar generation was high to be used later when renewable generation is low, or when demand is particularly high. The model also invested in more transmission to enable expanded electricity trade between provinces and energy storage in the form of batteries to smooth out the supply of electricity.

Not only is it possible, but the renewable pathway is the safe bet.

There’s no doubt it will take unprecedented effort and scale to transform Canada’s electricity systems. The high electrification pathway would require an 18-fold increase over today’s renewable electricity capacity, deploying an unprecedented amount of new wind, solar and energy storage projects every year from now to 2050. Although the scale seems daunting, countries such as Germany are demonstrating that this pace and scale is possible.

The modelling also showed that small modular nuclear reactors (SMRs) are neither necessary nor cost-effective, making them a poor candidate for continued government subsidies. Likewise, we presented pathways with no need for continued fossil fuel generation with carbon capture and storage (CCS) – an expensive technology with a global track record of burning through public funds while allowing fossil fuel use to expand and while capturing a smaller proportion of the smokestack carbon than promised. We believe that Canada should terminate the significant subsidies and supports it is giving to fossil fuel companies and redirect this support to renewable electricity, energy efficiency and energy affordability programming.

The transition to clean electricity would come with new employment for people living in Canada. Building tomorrow’s grid will support more than 75,000 full-time jobs each year in construction, operation and maintenance of wind, solar and transmission facilities alone.

Regardless of the path chosen, all energy projects in Canada take place on unceded Indigenous territories or treaty land. Decolonizing power structures with benefits to Indigenous communities is imperative. Upholding Indigenous rights and title, ensuring ownership opportunities and decision-making and direct support for Indigenous communities are all essential in how this transition takes place.

Wind, solar, storage and smart grid technologies are evolving rapidly, but our understanding of the possibilities they offer for a zero-emissions future, including debates over clean energy’s dirty secret in some supply chains, appears to be lagging behind reality. As the Institut de L’énergie Trottier observed, decarbonization costs have fallen faster than modellers anticipated.

The shape of tomorrow’s grid will largely depend on policy decisions made today. It’s now up to people living in Canada and their elected representatives to create the right conditions for a renewable revolution that could make the country electric, connected and clean in the years ahead.

To avoid a costly dash-to-gas that will strand assets and to secure early emissions reductions, the electricity sector needs to be fully exposed to the carbon price. The federal government’s announcement that it will move forward with a clean electricity standard – requiring net-zero emissions in the electricity sector by 2035 – will help if the standard is stringent.

Federal funding to encourage provinces to expand interprovincial transmission, including recent grid modernization investments now underway will also move us ahead. At the provincial level, electricity system governance – from utility commission mandates to electricity markets design – needs to be reformed quickly to encourage investments in renewable generation. As fossil fuels are swapped out across the economy, more and more of a household’s total energy bill will come from a local electric utility, so a national energy poverty strategy focused on low-income and equity-seeking households must be a priority.

The payoff from this policy package? Plentiful, reliable, affordable electricity that brings better outcomes for community health and resilience while helping to avoid the worst impacts of climate change.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified