Efficiency Groups Sound Alarm on Potential Regulatory Rollbacks


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Energy Efficiency Standards face congressional scrutiny as bipartisan rules meet regulatory reform proposals like the REINS Act, risking appliance standards, consumer savings, grid reliability, and pollution cuts secured through transparent review and stakeholder consensus.

 

Key Points

Federal rules set minimum performance for appliances to cut costs, reduce pollution, and ease grid demand.

✅ Backed by 30 years of bipartisan support and stakeholder input

✅ Proposed REINS Act could delay or block new efficiency rules

✅ Typical households save about $500 annually under current standards

 

A coalition of energy efficiency groups, trade associations, energy efficiency organizations, environmental organizations, and consumer groups sent a letter to congressional leaders Friday voicing concern about legislative efforts that threaten years of bipartisan, cost-saving rules and standards on energy efficiency.

Bills being considered in the House and Senate would eliminate longstanding checks and balances that ensure thorough review and debate before Congress can eliminate federal regulation implemented appropriately under the law, including bipartisan efficiency standards. Lawmakers are also considering proposals such as the “REINS Act” that could effectively block new standards by adding lengthy, burdensome new steps to the regulatory process, even as energy groups warn of rushed electricity pricing changes, based on arbitrary cost limits that ignore the tremendous net financial gains to consumers from energy efficiency standards.

“We urge you to proceed with caution as Congress considers how best to accomplish broad regulatory reform and debates energy-related tax incentives to ensure that cost-saving energy efficiency standards, which have enjoyed 30 years of bipartisan support, are not put at risk,” the groups wrote in the letter.

The groups signing the letter were the Alliance to Save Energy, American Council for an Energy-Efficient Economy, Appliance Standards Awareness Project, ASHRAE, California Energy Commission, Consumer Federation of America, Copper Development Association, Cree, Environmental and Energy Study Institute, Hannon Armstrong, Midwest Energy Efficiency Alliance, National Consumer Law Center on Behalf of its Low Income Clients, Natural Resources Defense Council, Northeast Energy Efficiency Partnerships, Polyisocyanurate Insulation Manufacturers Association, Southeast Energy Efficiency Alliance, Southwest Energy Efficiency Project, Urban Green Council, and Vermont Energy Investment Corporation.

“Efficiency standards that take years to review, analyze and develop – with extensive involvement and most often the support from the industries and other stakeholders affected – are threatened by these sweeping bills,” Alliance to Save Energy President Kateri Callahan said. “Congress absolutely should review and update regulations where necessary, but it can and should do so under the current rules that already provide meaningful checks and balances. Businesses and consumers need a predictable playing field in which utility rate designs can evolve without being upended every time we have a power shift in Washington.”

The groups said some of these legislative proposals would make it far too easy for Congress to eliminate in one reckless and fell swoop dozens of regulations that have been years in the making.

They cited the “Midnight Rules Relief Act” that recently passed the House and has been introduced in the Senate. It would allow Congress to quickly rescind all regulations finalized since June 13. Among regulations finalized since then are several significant appliance standards, including, dehumidifiers, battery chargers and compressors. Several more standards have been issued but await final administrative approval under the Trump administration as a potential Clean Power Plan replacement is weighed by officials.

“These are not last-minute standards rushed in under the cover of darkness,” said ASAP Executive Director Andrew deLaski. “They were developed over years of transparent public review and stakeholder negotiation. Many of them have broad consensus support from affected industries that have long since adapted to the new rules and don’t want to see them changed.”

“There should be no question about the benefits of efficiency standards. A typical household with products meeting the latest standards is saving about $500 a year,” said ACEEE Executive Director Steven Nadel. “Appliance prices have dropped as the standards have been enacted and consumers have more product choices than ever before. And at the same time, we’ve reduced stress on the grid, significantly cut pollution, and, alongside a clean electricity standard, eliminated the need for expensive new power plants that drive up utility rates.”

 

Related News

Related News

Why Is Georgia Importing So Much Electricity?

Georgia Electricity Imports October 2017 surged as hydropower output fell and thermal power plants underperformed; ESCO balanced demand via low-cost imports, mainly from Azerbaijan, amid rising tariffs, kWh consumption growth, and a widening generation-consumption gap.

 

Key Points

They mark a record import surge due to costly local generation, lower hydropower, ESCO balancing costs, and rising demand.

✅ Imports rose 832% YoY to 157 mln kWh, mainly from Azerbaijan

✅ TPP output fell despite capacity; only low-tariff plants ran

✅ Balancing price 13.8 tetri/kWh signaled costly domestic PPAs

 

In October 2017, Georgian power plants generated 828 mln. KWh of electricity, marginally up (+0.79%) compared to September. Following the traditional seasonal pattern and amid European concerns over dispatchable power shortages affecting markets, the share of electricity produced by renewable sources declined to 71% of total generation (87% in September), while thermal power generation’s share increased, accounting for 29% of total generation (compared to 13% in September). When we compare last October’s total generation with the total generation of October 2016, however, we observe an 8.7% decrease in total generation (in October 2016, total generation was 907 mln. kWh). The overall decline in generation with respect to the previous year is due to a simultaneous decline in both thermal power and hydro power generation. 

Consumption of electricity on the local market in the same period was 949 mln. kWh (+7% compared to October 2016, and +3% with respect to September 2017), and reflected global trends such as India's electricity growth in recent years. The gap between consumption and generation increased to 121 mln. kWh (15% of the amount generated in October), up from 100 mln. kWh in September. Even more importantly, the situation was radically different with respect to the prior year, when generation exceeded consumption.

The import figure for October was by far the highest from the last 12 years (since ESCO was established), occurring as Ukraine electricity exports resumed regionally, highlighting wider cross-border dynamics. In October 2017, Georgia imported 157 mln. kWh of electricity (for 5.2 ¢/kWh – 13 tetri/kWh). This constituted an 832% increase compared to October 2016, and is about 50% larger than the second largest import figure (104.2 mln. kWh in October 2014). Most of the October 2017 imports (99.6%) came from Azerbaijan, with the remaining 0.04% coming from Russia.

The main question that comes to mind when observing these statistics is: why did Georgia import so much? One might argue that this is just the result of a bad year for hydropower generation and increased demand. This argument, however, is not fully convincing. While it is true that hydropower generation declined and demand increased, the country’s excess demand could have been easily satisfied by its existing thermal power plants, even as imported coal volumes rose in regional markets. Instead of increasing, however, the electricity coming from thermal power plants declined as well. Therefore, that cannot be the reason, and another must be found. The first that comes to mind is that importing electricity may have been cheaper than buying it from local TPPs, or from other generators selling electricity to ESCO under power purchase agreements (PPAs). We can test the first part of this hypothesis by comparing the average price of imported electricity to the price ceiling on the tariff that TPPs can charge for the electricity they sell. Looking at the trade statistics from Geostat, the average price for imported electricity in October 2017 remained stable with respect to the same month of the previous year, at 5.2 ¢ (13 tetri) per kWh. Only two thermal power plants (Gardabani and Mtkvari) had a price ceiling below 13 tetri per kWh. Observing the electricity balance of Georgia, we see that indeed more than 98% of the electricity generated by TPPs in October 2017 was generated by those two power plants.

What about other potential sources of electricity amid Central Asia's power shortages at the time? To answer this question, we can use the information derived from the weighted average price of balancing electricity. Why balancing electricity? Because it allows us to reconstruct the costs the market operator (ESCO) faced during the month of October to make sure demand and supply were balanced, and it allows us to gain an insight about the price of electricity sold through PPAs.

ESCO reports that the weighted average price of balancing electricity in October 2017 was 13.8 tetri/kWh, (25% higher than in October 2016, when it was below the average weighted cost of imports – 11 vs. 13 – and when the quantity of imported electricity was substantially smaller). Knowing that in October 2017, 61% of balancing electricity came from imports, while 39% came from hydropower and wind power plants selling electricity to ESCO under their PPAs, we can deduce that in this case, internal generation was (on average) also substantially more expensive than imports. Therefore, the high cost of internally generated electricity, rather than the technical impossibility of generating enough electricity to satisfy electricity demand, indeed appears to be one the main reasons why electricity imports spiked in October 2017.

 

Related News

View more

Maine Governor calls for 100% renewable electricity

Maine Climate Council Act targets 80% renewable power by 2030 and 100% by 2050, slashing greenhouse gas emissions via clean electricity, grid procurement, long-term contracts, wind and hydro integration, resilience planning, and carbon sequestration.

 

Key Points

A Maine policy forming a Climate Council to reach 80% renewables in 2030 100% in 2050 and cut greenhouse gas emissions.

✅ 80% renewable electricity by 2030; 100% by 2050.

✅ 45% GHG cut by 2030; 80% by 2050.

✅ Utility procurement authority for clean capacity and energy.

 

The winds of change have shifted and are blowing Northward, as Maine’s Governor, Janet T. Mills, has put forth an act establishing a Climate Council to guide the state’s consumption to 80% renewable electricity in 2030 and 100% by 2050, echoing New York's Green New Deal ambitions underway.

The act, LR 2478 (pdf), also sets a goal of reducing greenhouse gas emissions by 45% in 2030 and 80% by 2050. The document will be submitted to the state Legislature for consideration.

The commission would have the authority to direct investor owned transmission and distribution utilities to run competitive procurement processes, and enter into long-term contracts for capacity resources, energy resources, renewable energy credit contracts, and participate in regional programs, as these all lead toward the clean electricity and emissions-reducing goals that mirror California's 100% mandate debates today.

The Climate Council would convene industry working groups, including Scientific and Technical, Transportation, Coastal and Marine, Energy, and Building & Infrastructure working groups, plus others as needed, where examples like New Zealand's electricity transition could inform discussions.

Membership within the council would include two members of the State Senate, two members of the House, a tribal representative, many department commissioners (Education, Defense, Transportation, etc.), multiple directors, business representatives, environmental non-profit members, and climate science and resilience representatives as well.

The council would update the Maine State Climate Plan every four years, and solicit input from the public and report out progress on its goals every two years, similar to planning underway in Minnesota's carbon-free plan framework. The first Climate Action Plan would be submitted to the legislature by December 1, 2020.

Specifically, the responsibilities of the Scientific and Technical Subcommittee were laid out. The group would be scheduled to meet at least every six months, beginning no later than October 1, 2019. The group would be tasked with reviewing existing scientific literature, including net-zero electricity pathways research, to use it as guidance, recognizing gaps in the state’s knowledge, and guiding outside experts to ascertain this knowledge.  The group would consider ocean acidification, and climate change effects on the state’s species; establish science-based sea-level rise projections for the state’s coastal regions by December 1, 2020; create a climate risk map for flooding and extreme weather events; and consider carbon sequestration via biomass growth.

The state’s largest power plants (above image), generate about 31% from gas, 28% from wood and 41% from hydro+wind. Already, the state has a very clean electricity profile, much like efforts to decarbonize Canada's power sector continue apace. Below, the U.S. Energy Information Administration (EIA) notes that 51% of electricity generation within the state comes from mostly wind+hydro, with a small touch from solar power. The state also gets 24% from wood and other biomass, which would lead some to argue that the state is already at 75% “renewable electricity”. The Governor’s document does reference wind power specifically as a renewable, however, no other specific electricity source. And there is much reference to forestry, agriculture, and logging – specifically noting carbon sequestration – but nothing regarding electricity.

The state’s final 25% of electricity mostly comes from natural gas, even as renewable electricity momentum builds across North America, with this author choosing to put “other” under the fossil percentage noted above.

 

Related News

View more

‘Tsunami of data’ could consume one fifth of global electricity by 2025

ICT Electricity Demand is surging as data centers, 5G, IoT, and server farms expand, straining grids, boosting carbon emissions, and challenging climate targets unless efficiency, renewable energy, and smarter cooling dramatically improve.

 

Key Points

ICT electricity demand is power used by networks, devices, and data centers across the global communications sector.

✅ Projected to reach up to 20 percent of global electricity by 2025

✅ Driven by data centers, 5G traffic, IoT, and high-res streaming

✅ Mitigation: efficiency, renewable PPAs, advanced cooling, workload shifts

 

The communications industry could use 20% of all the world’s electricity by 2025, hampering attempts to meet climate change targets, even as countries like New Zealand's electrification plans seek broader decarbonization, and straining grids as demand by power-hungry server farms storing digital data from billions of smartphones, tablets and internet-connected devices grows exponentially.

The industry has long argued that it can considerably reduce carbon emissions by increasing efficiency and reducing waste, but academics are challenging industry assumptions. A new paper, due to be published by US researchers later this month, will forecast that information and communications technology could create up to 3.5% of global emissions by 2020 – surpassing aviation and shipping – and up to 14% 2040, around the same proportion as the US today.

Global computing power demand from internet-connected devices, high resolution video streaming, emails, surveillance cameras and a new generation of smart TVs is increasing 20% a year, consuming roughly 3-5% of the world’s electricity in 2015, says Swedish researcher Anders Andrae.

In an update o a 2016 peer-reviewed study, Andrae found that without dramatic increases in efficiency, the ICT industry could use 20% of all electricity and emit up to 5.5% of the world’s carbon emissions by 2025. This would be more than any country, except China, India and the USA, where China's data center electricity use is drawing scrutiny.

He expects industry power demand to increase from 200-300 terawatt hours (TWh) of electricity a year now, to 1,200 or even 3,000TWh by 2025. Data centres on their own could produce 1.9 gigatonnes (Gt) (or 3.2% of the global total) of carbon emissions, he says.

“The situation is alarming,” said Andrae, who works for the Chinese communications technology firm Huawei. “We have a tsunami of data approaching. Everything which can be is being digitalised. It is a perfect storm. 5G [the fifth generation of mobile technology] is coming, IP [internet protocol] traffic is much higher than estimated, and all cars and machines, robots and artificial intelligence are being digitalised, producing huge amounts of data which is stored in data centres.”

US researchers expect power consumption to triple in the next five years as one billion more people come online in developing countries, and the “internet of things” (IoT), driverless cars, robots, video surveillance and artificial intelligence grows exponentially in rich countries.

The industry has encouraged the idea that the digital transformation of economies and large-scale energy efficiencies will slash global emissions by 20% or more, but the scale and speed of the revolution has been a surprise.

Global internet traffic will increase nearly threefold in the next five years says the latest Cisco Visual Networking Index, a leading industry tracker of internet use.

“More than one billion new internet users are expected, growing from three billion in 2015 to 4.1bn by 2020. Over the next five years global IP networks will support up to 10bn new devices and connections, increasing from 16.3bn in 2015 to 26bn by 2020,” says Cisco.

A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

Data centre capacity is also rocketing in Europe, where the EU's plan to double electricity use by 2050 could compound demand, and Asia with London, Frankfurt, Paris and Amsterdam expected to add nearly 200MW of consumption in 2017, or the power equivalent of a medium size power station.

“We are seeing massive growth of data centres in all regions. Trends that started in the US are now standard in Europe. Asia is taking off massively,” says Mitual Patel, head of EMEA data centre research at global investment firm CBRE.

“The volume of data being handled by such centres is growing at unprecedented rates. They are seen as a key element in the next stage of growth for the ICT industry”, says Peter Corcoran, a researcher at the university of Ireland, Galway.

Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions

Ireland, which with Denmark is becoming a data base for the world’s biggest tech companies, has 350MW connected to data centres but this is expected to triple to over 1,000MW, or the equivalent of a nuclear power station size plant, in the next five years.

Permission has been given for a further 550MW to be connected and 750MW more is in the pipeline, says Eirgrid, the country’s main grid operator.

“If all enquiries connect, the data centre load could account for 20% of Ireland’s peak demand,” says Eirgrid in its All-Island Generation Capacity Statement 2017-2026  report.

The data will be stored in vast new one million square feet or larger “hyper-scale” server farms, which companies are now building. The scale of these farms is huge; a single $1bn Apple data centre planned for Athenry in Co Galway, expects to eventually use 300MW of electricity, or over 8% of the national capacity and more than the daily entire usage of Dublin. It will require 144 large diesel generators as back up for when the wind does not blow.

 Facebook’s Lulea data centre in Sweden, located on the edge of the Arctic circle, uses outside air for cooling rather than air conditioning and runs on hydroelectic power generated on the nearby Lule River. Photograph: David Levene for the Guardian

Pressed by Greenpeace and other environment groups, large tech companies with a public face , including Google, Facebook, Apple, Intel and Amazon, have promised to use renewable energy to power data centres. In most cases they are buying it off grid but some are planning to build solar and wind farms close to their centres.

Greenpeace IT analyst Gary Cook says only about 20% of the electricity used in the world’s data centres is so far renewable, with 80% of the power still coming from fossil fuels.

“The good news is that some companies have certainly embraced their responsibility, and are moving quite aggressively to meet their rapid growth with renewable energy. Others are just growing aggressively,” he says.

Architect David Hughes, who has challenged Apple’s new centre in Ireland, says the government should not be taken in by the promises.

“Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions. Data centres … have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target. They are just adding to demand and reducing our percentage. They are getting a free ride at the Irish citizens’ expense,” says Hughes.

Eirgrid estimates indicate that by 2025, one in every 3kWh generated in Ireland could be going to a data centre, he added. “We have sleepwalked our way into a 10% increase in electricity consumption.”

Fossil fuel plants may have to be kept open longer to power other parts of the country, and manage issues like SF6 use in electrical equipment, and the costs will fall on the consumer, he says. “We will have to upgrade our grid and build more power generation both wind and backup generation for when the wind isn’t there and this all goes onto people’s bills.”

Under a best case scenario, says Andrae, there will be massive continuous improvements of power saving, as the global energy transition gathers pace, renewable energy will become the norm and the explosive growth in demand for data will slow.

But equally, he says, demand could continue to rise dramatically if the industry keeps growing at 20% a year, driverless cars each with dozens of embedded sensors, and cypto-currencies like Bitcoin which need vast amounts of computer power become mainstream.

“There is a real risk that it all gets out of control. Policy makers need to keep a close eye on this,” says Andrae.

 

Related News

View more

U.S. Nonprofit Invests $250M in Electric Trucks for California Ports

California Ports Electric Truck Leasing accelerates zero-emission logistics, cutting diesel pollution at Los Angeles and Long Beach. A $250 million nonprofit plan funds heavy-duty EVs and charging infrastructure to improve air quality and community health.

 

Key Points

A nonprofit's $250M plan to lease EV trucks at LA/Long Beach ports to cut diesel emissions and improve air quality.

✅ $250M lease program for heavy-duty EVs at LA/Long Beach ports

✅ Cuts diesel emissions; improves air quality in nearby communities

✅ Requires robust charging infrastructure and OEM partnerships

 

In a significant move towards sustainable transportation, a prominent U.S. nonprofit has announced plans to invest $250 million in leasing electric trucks for operations at California ports. This initiative aims to reduce air pollution and promote greener logistics, responding to the urgent need for environmentally friendly solutions in the transportation sector.

Addressing Environmental Concerns

California’s ports, particularly the Port of Los Angeles and the Port of Long Beach, are among the busiest in the United States. However, they also contribute significantly to air pollution due to the heavy reliance on diesel trucks for cargo transport. These ports are essential for the economy, facilitating trade and commerce, but the environmental toll is considerable. Diesel emissions are linked to respiratory issues and other health problems in nearby communities, which often bear the brunt of pollution.

The nonprofit's investment in electric trucks is a critical step towards mitigating these environmental challenges. By transitioning to electric vehicles (EVs), the project aims to significantly cut emissions from port operations, contributing to California's broader goals of reducing greenhouse gas emissions and improving air quality.

The Scale of the Initiative

This ambitious initiative involves leasing a fleet of electric trucks that will operate within the ports and surrounding areas. The $250 million investment is expected to facilitate the acquisition of hundreds of electric vehicles, which will replace conventional diesel trucks used for cargo transport. This fleet will help demonstrate the viability and effectiveness of electric trucks in heavy-duty applications, paving the way for broader adoption.

The plan includes partnerships with established electric truck manufacturers, such as the Volvo VNR Electric platform, and local logistics companies to ensure seamless integration of these vehicles into existing operations. By collaborating with industry leaders, the initiative seeks to establish a model that can be replicated in other major logistics hubs across the country.

Economic and Community Benefits

The introduction of electric trucks is expected to yield multiple benefits, not only in terms of environmental impact but also economically. As these trucks begin operations, and as other fleets adopt electric mail trucks, they will create jobs within the green technology sector, from manufacturing to maintenance and charging infrastructure development. The project is anticipated to stimulate local economies, providing new opportunities in communities that have historically been disadvantaged by pollution.

Moreover, the initiative is poised to enhance public health. By reducing diesel emissions, the nonprofit aims to improve air quality for residents living near the ports, and emerging research links EV adoption to fewer asthma-related ER visits in local communities. This could lead to decreased healthcare costs associated with pollution-related illnesses, benefiting both the community and the healthcare system.

Challenges Ahead

While the initiative is promising, challenges remain. The successful implementation of electric trucks at scale requires a robust charging infrastructure capable of supporting the significant power needs of a large fleet. Additionally, the transition from diesel to electric vehicles involves significant upfront costs, even with leasing arrangements. Ensuring that logistics companies can manage these costs effectively will be crucial for the project's success.

Furthermore, electric trucks currently face limitations in terms of range and payload capacity compared to their diesel counterparts. Continued advancements in battery technology and infrastructure development will be necessary to fully realize the potential of electric vehicles in heavy-duty applications.

The Bigger Picture

This investment in electric trucks aligns with broader national and global efforts to combat climate change. As governments and organizations commit to reducing carbon emissions, initiatives like this one represent crucial steps toward achieving sustainability goals, and ports worldwide are also piloting complementary technologies like hydrogen-powered cranes to decarbonize cargo handling.

California has set ambitious targets for reducing greenhouse gas emissions, including a mandate for all new trucks to be zero-emission by 2045. The nonprofit’s investment not only supports these goals, amid ongoing debates over funding priorities in the state, but also serves as a pilot program that could inform future policies and investments in clean transportation.

The $250 million investment in electric trucks for California ports marks a significant milestone in the push for sustainable transportation solutions. By addressing the urgent need for cleaner logistics, this initiative stands to benefit the environment, public health, and the economy. As the project unfolds, it will be closely watched as a potential model for similar efforts across the country and beyond, with developments such as the all-electric berth at London Gateway illustrating parallel advances, highlighting the critical intersection of innovation, sustainability, and community well-being in the modern logistics landscape.

 

Related News

View more

Why power companies should be investing in carbon-free electricity

Noncarbon Electricity Investment Strategy helps utilities hedge policy uncertainty, carbon tax risks, and emissions limits by scaling wind, solar, and CCS, avoiding stranded assets while balancing costs, reliability, and climate policy over decades.

 

Key Points

A strategy for utilities to invest 20-30 percent of capacity in low carbon sources to hedge emissions and carbon risks.

✅ Hedges future carbon tax and emissions limits

✅ Targets 20-30 percent of new generation from clean sources

✅ Reduces stranded asset risk and builds renewables capacity

 

When utility executives make decisions about building new power plants, a lot rides on their choices. Depending on their size and type, new generating facilities cost hundreds of millions or even billions of dollars. They typically will run for 40 or more years — 10 U.S. presidential terms. Much can change during that time.

Today one of the biggest dilemmas that regulators and electricity industry planners face is predicting how strict future limits on greenhouse gas emissions will be. Future policies will affect the profitability of today’s investments. For example, if the United States adopts a carbon tax 10 years from now, it could make power plants that burn fossil fuels less profitable, or even insolvent.

These investment choices also affect consumers. In South Carolina, utilities were allowed to charge their customers higher rates to cover construction costs for two new nuclear reactors, which have now been abandoned because of construction delays and weak electricity demand. Looking forward, if utilities are reliant on coal plants instead of solar and wind, it will be much harder and more expensive for them to meet future emissions targets, even as New Zealand's electrification push accelerates abroad. They will pass the costs of complying with these targets on to customers in the form of higher electricity prices.

With so much uncertainty about future policy, how much should we be investing in noncarbon electricity generation in the next decade? In a recent study, we proposed optimal near-term electricity investment strategies to hedge against risks and manage inherent uncertainties about the future.

We found that for a broad range of assumptions, 20 to 30 percent of new generation in the coming decade should be from noncarbon sources such as wind and solar energy across markets. For most U.S. electricity providers, this strategy would mean increasing their investments in noncarbon power sources, regardless of the current administration’s position on climate change.

Many noncarbon electricity sources — including wind, solar, nuclear power and coal or natural gas with carbon capture and storage — are more expensive than conventional coal and natural gas plants. Even wind power, which is often mentioned as competitive, is actually more costly when accounting for costs such as backup generation and energy storage to ensure that power is available when wind output is low.

Over the past decade, federal tax incentives and state policies designed to promote clean electricity sources spurred many utilities to invest in noncarbon sources. Now the Trump administration is shifting federal policy back toward promoting fossil fuels. But it can still make economic sense for power companies to invest in more expensive noncarbon technologies if we consider the potential impact of future policies.

How much should companies invest to hedge against the possibility of future greenhouse gas limits? On one hand, if they invest too much in noncarbon generation and the federal government adopts only weak climate policies throughout the investment period, utilities will overspend on expensive energy sources.

On the other hand, if they invest too little in noncarbon generation and future administrations adopt stringent emissions targets, utilities will have to replace high-carbon energy sources with cleaner substitutes, which could be extremely costly.

 

Economic modeling with uncertainty

We conducted a quantitative analysis to determine how to balance these two concerns and find an optimal investment strategy given uncertainty about future emissions limits. This is a core choice that power companies have to make when they decide what kinds of plants to build.

First we developed a computational model that represents the sectors of the U.S. economy, including electric power. Then we embedded it within a computer program that evaluates decisions in the electric power sector under policy uncertainty.

The model explores different electric power investment decisions under a wide range of future emissions limits with different probabilities of being implemented. For each decision/policy combination, it computes and compares economy-wide costs over two investment periods extending from 2015 to 2030.

We looked at costs across the economy because emissions policies impose costs on consumers and producers as well as power companies. For example, they may lead to higher electricity, fuel or product prices. By seeking to minimize economy-wide costs, our model identifies the investment decision that produces the greatest overall benefits to society.

 

More investments in clean generation make economic sense

We found that for a broad range of assumptions, the optimal investment strategy for the coming decade is for 20 to 30 percent of new generation to be from noncarbon sources. Our model identified this as the best level because it best positions the United States to meet a wide range of possible future policies at a low cost to the economy.

From 2005-2015, we calculated that about 19 percent of the new generation that came online was from noncarbon sources. Our findings indicate that power companies should put a larger share of their money into noncarbon investments in the coming decade.

While increasing noncarbon investments from a 19 percent share to a 20 to 30 percent share of new generation may seem like a modest change, it actually requires a considerable increase in noncarbon investment dollars. This is especially true since power companies will need to replace dozens of aging coal-fired power plants that are expected to be retired.

In general, society will bear greater costs if power companies underinvest in noncarbon technologies than if they overinvest. If utilities build too much noncarbon generation but end up not needing it to meet emissions limits, they can and will still use it fully. Sunshine and wind are free, so generators can produce electricity from these sources with low operating costs.

In contrast, if the United States adopts strict emissions limits within a decade or two, they could prevent carbon-intensive generation built today from being used. Those plants would become “stranded assets” — investments that are obsolete far earlier than expected, and are a drain on the economy.

Investing early in noncarbon technologies has another benefit: It helps develop the capacity and infrastructure needed to quickly expand noncarbon generation. This would allow energy companies to comply with future emissions policies at lower costs.

 

Seeing beyond one president

The Trump administration is working to roll back Obama-era climate policies such as the Clean Power Plan, and to implement policies that favor fossil generation. But these initiatives should alter the optimal strategy that we have proposed for power companies only if corporate leaders expect Trump’s policies to persist over the 40 years or more that these new generating plants can be expected to run.

Energy executives would need to be extremely confident that, despite investor pressure from shareholders, the United States will adopt only weak climate policies, or none at all, into future decades in order to see cutting investments in noncarbon generation as an optimal near-term strategy. Instead, they may well expect that the United States will eventually rejoin worldwide efforts to slow the pace of climate change and adopt strict emissions limits.

In that case, they should allocate their investments so that at least 20 to 30 percent of new generation over the next decade comes from noncarbon sources. Sustaining and increasing noncarbon investments in the coming decade is not just good for the environment — it’s also a smart business strategy that is good for the economy.

 

Related News

View more

China, Cambodia agree to nuclear energy cooperation

Cambodia-CNNC Nuclear Energy MoU advances peaceful nuclear cooperation, human resources development, and Belt and Road ties, targeting energy security and applications in medicine, agriculture, and industry across ASEAN under IAEA-guided frameworks.

 

Key Points

A pact to expand peaceful nuclear tech and skills, boosting Cambodia's energy, healthcare under ASEAN and Belt and Road.

✅ Human resources development and training pipelines

✅ Peaceful nuclear applications in medicine, agriculture, industry

✅ Aligns with IAEA guidance, ASEAN links, Belt and Road goals

 

Cambodia has signed a memorandum of understanding with China National Nuclear Corporation (CNNC) on cooperation in the peaceful use of nuclear energy. The agreement calls for cooperation on human resources development.

The agreement was signed yesterday by CNNC chief accountant Li Jize and Tekreth Samrach, Cambodia's secretary of state of the Office of the Council of Ministers and vice chairman of the Cambodian Commission on Sustainable Development. It was signed during the 14th China-ASEAN Expo and China-ASEAN Business and Investment Summit, being held in Nanning, the capital of China's Guangxi province.

The signing was witnessed by Cambodia's minister of commerce and other government officials, CNNC said.

"This is another important initiative of China National Nuclear Corporation in implementing the 'One Belt, One Road' strategy as China's nuclear program continues to advance and strengthening cooperation with ASEAN countries in international production capacity, laying a solid foundation for follow-up cooperation between the two countries," CNNC said.

One Belt, One Road is China's project to link trade in about 60 Asian and European countries along a new Silk Road, even as Romania ended talks with a Chinese partner in a separate nuclear project.

CNNC noted that Cambodia's current power supply cannot meet its basic electricity needs, while sectors including medicine, agriculture and industry require a "comprehensive upgrade". It said Cambodia has great market potential for nuclear power and nuclear technology applications.

On 14 August, CNNC vice president Wang Jinfeng met with Tin Ponlok, secretary general of Cambodia's National Council for Sustainable Development, to consult on the draft MOU. Cambodia's Ministry of Environment said these discussions focused on human resources in nuclear power for industrial development and environmental protection.

In late August, CNNC president Qian Zhimin visited Cambodia and met Say Chhum, president of the Senate of Cambodia. Qian noted that CNNC will support Cambodia in applying nuclear technologies in industry, agriculture and medical science, thus developing its economy and improving the welfare of the population. Cambodia can start training workers, promoting new energy exploitation as India's nuclear revival progresses in Asia, and infrastructure construction, and increasing its capabilities in scientific research and industrial manufacturing, he said. This will help the country achieve its long-term goal of the peaceful use of nuclear energy, he added.

In November 2015, Russian state nuclear corporation Rosatom signed a nuclear cooperation agreement with Cambodia, focused on a possible research reactor, but with consideration of nuclear power, while KHNP in Bulgaria illustrates parallel developments in Europe. A further cooperation agreement was signed in March 2016, and in May Rosatom and the National Council for Sustainable Development signed memoranda to establish a nuclear energy information centre in Cambodia and set up a joint working group on the peaceful uses of atomic energy.

In mid-2016, Cambodia's Ministry of Industry, Mines and Energy held discussions with CNNC on building a nuclear power plant and establishing the regulatory and legal infrastructure for that, in collaboration with the International Atomic Energy Agency, mirroring IAEA assistance in Bangladesh on nuclear development.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified