Vermont's New Governor Sticking with Renewable Energy Goal


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Vermont 90% Renewable Energy Goal drives clean power, solar projects, and green jobs, advancing climate targets through technology innovation, grid upgrades, and energy storage while boosting economic development and keeping young talent in-state.

 

Key Points

Vermont aims to source 90% of its energy from renewables by 2050, leveraging solar, storage, and grid innovation.

✅ Target: 90% renewables statewide by 2050.

✅ Focus: solar, energy storage, grid modernization.

✅ Benefits: economic development, green jobs, talent retention.

 

Vermont's new Republican governor said Monday he would stick with his Democratic predecessor's long-term goal of getting 90 percent of the energy needed in the state from renewable sources by 2050, aligning with national conversations about 100% clean electricity by 2035 set at the federal level.

But Gov. Phil Scott, highlighting the construction of a new solar power project in the parking lot of a Montpelier food cooperative, said he believed new technology would be needed to make it happen amid proposals for a tenfold increase in U.S. solar power in the coming years nationwide.

"When you look at projects like this and the way we've changed over the last decade in that regard I think it can be accomplished, but we're going to have to have some help in technology changes," Scott said, noting that New York's solar progress highlights regional momentum.

While helping to inaugurate the "Solar Canopy" developed by the Waterbury-based SunCommon, Scott said the business fits in well with the top goal of his new administration, economic development, as states like Rhode Island pursue 100% renewable electricity by 2030 to drive growth. He said it also creates jobs that keep young people from leaving the state.

For several years, Vermont has been working toward some of the most aggressive renewable energy goals in the country, alongside neighbors as Maine targets 100% renewable electricity by statute. Scott's predecessor, Democrat Peter Shumlin, set the long-term goal.

 

Related News

Related News

California regulators weigh whether the state needs more power plants

California Natural Gas Plant Rethink signals a shift toward clean energy, renewables, distributed solar, battery storage, and grid modernization as LADWP and regulators pause repowering plans amid an electricity oversupply and rising ratepayer costs.

 

Key Points

California pauses new gas plants to assess renewables, storage, and grid solutions for reliability.

✅ LADWP delays $2.2B gas repowers to study clean alternatives

✅ CEC weighs halting Oxnard plant amid grid oversupply

✅ Distributed solar, batteries, demand response boost reliability

 

California energy officials are, for the first time, rethinking plans to build expensive natural gas power plants in the face of an electricity glut and growing use of cleaner and cheaper energy alternatives.

The Los Angeles Department of Water and Power announced Tuesday that it has put a hold on a $2.2-billion plan to rebuild several old natural gas power plants while it studies clean energy alternatives to meet electricity demands. And the California Energy Commission may decide as early as Thursday to halt a natural gas project in Ventura County.

The scrutiny comes after an investigation found that the state is operating with an oversupply of electricity, driven largely by the construction of gas-fueled generating plants, leading to higher rates as regulators consider a rate overhaul to clean the grid. The state’s power plants are on track to be able to produce at least 21% more electricity than needed by 2020, according to the Times report.

Californians are footing a $40-billion annual bill while using less electricity, paying $6.8 billion more than they did in 2008 when power use in the state was at its all-time high. Electricity consumption has since fallen and remained largely flat.

Utilities in California have been on a years-long building binge, adding new natural gas plants even as the nation’s electricity system has undergone significant change, including consumer choice reforms that are reshaping the market.

Where utilities once delivered all electrical services from huge power plants along miles of transmission lines, the industry now must consider power delivered to the electric grid not only from its own sources, but also from solar systems and batteries at homes and businesses.

At the same time, utilities have been aggressively upgrading or rebuilding their aging natural gas plants — a move critics have said is unnecessary because consumers are using less power and clean energy technology is making those plants obsolete.

The DWP and energy commission moves involve as many as seven natural gas plant projects proposed for Southern California, despite warnings about a looming shortage if capacity is retired too fast, from Oxnard to Carlsbad, at a cost of more than $6 billion.

Reiko Kerr, the DWP’s senior assistant general manager of power systems, said given the changes in the energy world, the assessment is necessary to protect ratepayer dollars and the environment.

“The whole utility paradigm has shifted,” Kerr said in an interview. “We really are doing our ratepayers a disservice by not considering all viable options.

“We’re just looking at everything,” she said. “What can help us solve this reliability, renewable and greenhouse gas challenge that we all have?”

State and local governments have felt a heightened sense of urgency to deal with climate change after President Trump decided last week to withdraw the United States from the Paris climate accord.

California already has mandated that at least 50% of the state’s electricity come from clean energy sources by 2030. Senate leader Kevin de León (D-Los Angeles) wants to increase that to 100% by 2045.

Building or overhauling natural gas plants throughout Southern California, environmentalists argue, isn’t helping achieve those goals, even as some contend the state can't keep the lights on without gas during the transition.

The DWP’s move to delay plans for the fossil fuel plants, which seemed all but set to be built, came as a surprise to clean-energy advocates, who hailed the decision.

“This is a great first step toward smart energy investments that save customers money, ensure the lights stay on and protect our health and environment,” Graciela Geyer of the Sierra Club said.

The environmental group said that if the utility had moved ahead with the $2.2-billion investment in repowering natural gas plants, it “would have blown an irreparable hole in the city and the state’s hopes to achieve 100% generation” from clean energy sources.

Angela Johnson Meszaros, attorney at EarthJustice, said in a statement: "As our city struggles with the worst smog we’ve seen in years, we appreciate that LADWP is taking some much-needed time to reassess its plans to build fossil fuel power plants. We look forward to the day that LADWP announces that we are going to power our city with 100% clean energy.”

The gas-fired generating units slated for demolition and rebuilding are at the Scattergood, Haynes and Harbor electricity plants, which range from 34 to 67 years old.

As a group, the three plants have generated less than 20% of their combined capacity since 2001. The Harbor facility has operated on the low end at just 7%, while Haynes ran on the high end at 22%.

“The old model, the old legacy clunkers, won’t get us into the future we want,” DWP’s Kerr said.

DWP staff members told the utility’s’ commissioners Tuesday that their analysis of possible alternatives would be completed no later than early 2018.

Separately, the California Energy Commission this week is evaluating whether to halt a natural gas project in Ventura County after the state’s electric grid operator offered to conduct a study of clean energy alternatives to the roughly $250-million project on Mandalay Bay in Oxnard.

An energy commission committee has been deliberating since a hearing Monday during which Southern California Edison and the project’s developer, NRG Energy, argued that a study is simply a delay tactic that probably would kill a project needed to ensure reliable electric service and to avoid blackouts during peak demand.

The California Independent System Operator, which runs the state’s electric grid, told the energy commission that it would take three to four weeks to conduct its study on alternatives to the Oxnard natural gas project.

“Here we have an actual offer by the ISO to do such an analysis,” Ellison Folk, a lawyer representing the city of Oxnard, told the energy commission as she pushed for the study. “Its view that this is an analysis worth doing is something worth taking seriously.”

Energy commission members reviewing the study proposal are scheduled to meet again Thursday to consider the offer.

The board of governors for the California Independent System Operator made the unusual offer at its May 1 meeting to conduct a eleventh-hour study of clean-energy alternatives to building a new natural gas plant.

“If we’re going to be moving forward with a gas plant at this time, in this juncture, in the context of everything that’s going on, not evaluating other alternatives that are viable, noncombustion alternatives, is a missed opportunity,” Angelina Galetiva. a commission board member, said during the May 1 meeting.

 

Related News

View more

Clean energy stored in electric vehicles to power buildings

Vehicle-to-Grid (V2G) enables bidirectional charging, letting EV batteries supply smart grid services to large buildings, support renewable energy integration, reduce battery degradation, and optimize demand response for efficient, resilient power management.

 

Key Points

Vehicle-to-Grid (V2G) is bidirectional EV charging that feeds the grid and buildings while protecting battery health.

✅ Uses idle EVs to power buildings and support renewables

✅ Smart algorithms minimize lithium-ion battery degradation

✅ Provides grid services, demand response, and peak shaving

 

Stored energy from electric vehicles (EVs) can be used to power large buildings -- creating new possibilities for the future of smart, renewable energy -- thanks to ground-breaking battery research from WMG at the University of Warwick.

Dr Kotub Uddin, with colleagues from WMG's Energy and Electrical Systems group and Jaguar Land Rover, has demonstrated that vehicle-to-grid (V2G) technology can be intelligently utilised to take enough energy from idle EV batteries to be pumped into the grid and power buildings -- without damaging the batteries.

This new research into the potentials of V2G shows that it could actually improve vehicle battery life by around ten percent over a year.

For two years, Dr Uddin's team analysed some of the world's most advanced lithium ion batteries used in commercially available EVs -- and created one of the most accurate battery degradation models existing in the public domain -- to predict battery capacity and power fade over time, under various ageing acceleration factors -- including temperature, state of charge, current and depth of discharge.

Using this validated degradation model, Dr Uddin developed a 'smart grid' algorithm, which supports grid coordination and intelligently calculates how much energy a vehicle requires to carry out daily journeys, and -- crucially -- how much energy can be taken from its battery without negatively affecting it, or even improving its longevity.

The researchers used their 'smart grid' algorithm to see if they could power WMG's International Digital Laboratory -- a large, busy building which contains a 100-seater auditorium, two electrical laboratories, teaching laboratories, meeting rooms, and houses approximately 360 staff -- with vehicle-to-building charging from EVs parked on the University of Warwick campus.

They worked out that the number of EVs parked on the campus (around 2.1% of cars, in line with the UK market share of EVs) could spare the energy to power this building, acting as capacity on wheels for electricity networks -- and that in doing so, capacity fade in participant EV batteries would be reduced by up to 9.1%, and power fade by up to 12.1% over a year.

It has previously been thought that extracting energy from EVs with V2G technology causes their lithium ion batteries to degrade more rapidly.

Dr Uddin's group (along with collaborators from Jaguar Land Rover) have proved, however, that battery degradation is more complex -- and this complexity, in operation, can be exploited to improve a battery's lifetime.

Given that battery degradation is dependent on calendar age, capacity throughput, temperature, state of charge, current and depth of discharge, V2G is an effective tool that can be used to optimise a battery's conditions such that degradation is minimised. Hence, taking excess energy from an idle EV to power the grid actually keeps the battery healthier for longer.

Dr Uddin commented on the research:

"These findings reinforce the attractiveness of vehicle-to-grid technologies to automotive Original Equipment Manufacturers: not only is vehicle-to-grid an effective solution for grid support -- and subsequently a tidy revenue stream -- but we have shown that there is a real possibility of extending the lifetime of traction batteries in tandem.

"The results are also appealing to policy makers interested in grid decarbonisation and addressing grid challenges from rising EVs across power systems."

The research, 'On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system' is published in Energy.

It was funded by the Engineering and Physical Sciences Research Council and the WMG centre High Value Manufacturing Catapult, in partnership with Jaguar Land Rover.

 

Related News

View more

Mississippi power plant costs cross $7.5B

Kemper County power plant costs and delays highlight lignite coal gasification, syngas production, carbon capture targets, and looming rate plans as Mississippi Power navigates Public Service Commission oversight and shareholder-ratepayer risk.

 

Key Points

Costs exceed $7.5B with repeated delays; rate impacts loom as syngas, lignite, and carbon capture systems mature.

✅ Estimate tops $7.5B; customers could fund about $4.3B

✅ Carbon capture target: 65% CO2 via syngas from lignite

✅ Rate plans pending before the Public Service Commission

 

A Mississippi utility on Monday delayed making proposals for how its customers should pay for an ever-more-expensive power plant, even as the estimated cost of the facility crossed $7.5 billion.

The Kemper County power plant will be tasked with mining lignite coal a few hundred yards away from the plant. That coal is moved through a process that will convert it to syngas. The syngas is then used to drive the energy output of the plant, and the resulting electricity is then moved into the grid, where transmission projects influence regional reliability and capacity.

Thomas Fanning, CEO of parent Southern Co., told shareholders in May that Mississippi Power would file rate plans for its Kemper County power plant this month. But still unable to operate the plant steadily enough to declare it finished, Mississippi Power punted, instead asking to hold rates level for 11 months to pay off costs that have already been approved by regulators.

Mississippi Power says it now hopes to reach commercial operation in June. The plant is more than three years behind schedule, with 10 delays announced in the past 18 months. It was originally supposed to cost $2.9 billion.

The company also said monday that it will have to replace troublesome parts of the facility much sooner than expected, including units that cool the synthetic gas produced from soft lignite coal by two gasifier units, plus ash handling systems in the gasifiers.

Kemper is designed to take synthetic gas, pipe it through a chemical plant to remove carbon dioxide and other chemicals, and then burn the gas in turbines to generate electricity. It’s designed to capture 65 percent of carbon dioxide from the coal, releasing only as much of the climate-warming gas as a typical natural gas plant. It’s a key effort nationally to maintain coal as a viable fuel source, even as coal unit retirements proceed in other states.

Mississippi Power raised its estimate of Kemper’s cost by $209.4 million, with shareholders absorbing $185.9 million, while ratepayers could be asked to pay $23.5 million. Overall, customers could be asked to pay $4.3 billion. Southern shareholders have agreed to absorb $3.1 billion, which has risen by $500 million since November.

The elected three-member Public Service Commission in 2015 allowed the company to raise rates on its 188,000 customers by $126 million a year. That paid for $840 million in Kemper work, which began generating electricity in 2014 using piped-in natural gas. Some items covered by that 15 percent rate increase will be paid off in coming months, but Mississippi Power now proposes to repay costs from regulatory proceedings earlier than originally projected.

In testimony filed with the Public Service Commission, Mississippi Power Chief Financial Officer Moses Fagin said that keeping rates level would reduce whiplash to customers when rates rise later to pay for Kemper, would pay off accumulated costs more quickly and would help the company wean itself off financial support from Southern Co. while maintaining credit ratings and positioning for a possible bond rating upgrade over time.

“Cash flow is important to the company in maintaining its current ratings and beginning to rebuild its credit strength on a more independent basis apart from the extraordinary parental support that has been required in recent years to maintain financial integrity,” Fagin testified.

Spokesman Jeff Shepard said Mississippi Power is still drawing up two rate plans — one requiring a sharp, immediate rate increase, and a “rate mitigation plan” that might cushion increases amid declining returns in coal markets. He said the company isn’t sure when it will file them. Fagin suggested the Public Service Commission set a new deadline of March 2, 2018.

 

Related News

View more

Sparking change: what Tesla's Model 3 could mean for electric utilities

EV Opportunity for Utilities spans EV charging infrastructure, grid modernization, demand response, time-of-use rates, and customer engagement, enabling predictable load growth, flexible charging, and stronger utility branding amid electrification and resilience challenges.

 

Key Points

It is the strategy to leverage EV adoption for load growth, grid flexibility, and branded charging services.

✅ Monetizes EV load via TOU rates, managed charging, and V2G.

✅ Uses rate-based infrastructure to expand equitable charging access.

✅ Enhances resilience and DER integration through smart grid upgrades.

 

Tesla recently announced delivery of the first 30 production units of its Model 3 electric vehicle (EV). EV technology has generated plenty of buzz in the electric utility industry over the past decade and, with last week’s announcement, it would appear that projections of a significant market presence for EVs could give way to rapid growth.

Tesla’s announcement could not have come at a more critical time for utilities, which face unprecedented challenges. For the past 15 years, utilities have been grappling with increasingly frequent “100-year storms,” including hurricanes, snowstorms and windstorms, underscoring the reality that the grid’s aging infrastructure is not fit to withstand increasingly extreme weather, along with other threats, such as cyber attacks.

Coupled with flat or declining load growth, changing regulations, increasing customer demand, and new technology penetration, these challenges have given the electric utility industry good reason to describe its future as “threatened.” These trends, each exacerbating the others, mean essentially that utilities can no longer rely on traditional ways of doing business.

EVs have significant potential to help relieve the industry’s pessimistic outlook. This article will explore what EV growth could mean for utilities and how they can begin establishing critical foundations today to help ensure their ability to exploit this opportunity.

 

The opportunity

At the Bloomberg New Energy Finance (BNEF) Global Summit 2017, BNEF Advisory Board Chairman Michael Liebreich announced the group’s prediction that electric vehicles will comprise 35-47 percent of new vehicle sales globally by 2040.

U.S. utilities have good reason to be optimistic about this potential new revenue source, as EV-driven demand growth could be substantial according to federal lab analyses. If all 236 million gas-powered cars in the U.S. — average miles driven per year: 12,000 — were replaced with electric vehicles, which travel an average of 100 miles on 34 kWh, they would require 956 billion kWh each year. At a national average cost of $0.12 / kWh, the incremental energy sold by utilities in the U.S. would bring in around $115 billion per year in new revenues. A variety of factors could increase or decrease this number, but it still represents an attractive opportunity for the utility sector.

Capturing this burgeoning market is not simply a matter of increased demand; it will also require utilities to be predictable, adaptable and brandable. Moreover, while the aggregate increase in demand might be only 3-4 percent, demand can come as a flexible and adaptable load through targeted programming. Also, if utilities target the appropriate customer groups, they can brand themselves as the providers of choice for EV charging. The power of stronger branding, in a sector that’s experiencing significant third-party encroachment, could be critical to the ongoing financial health of U.S. utilities.

Many utilities are already keenly aware of the EV opportunity and are speeding down this road (no pun intended) as part of their plans for utility business model reinvention. Following are several questions to be asked when evaluating the EV opportunity.

 

Is the EV opportunity feasible with today’s existing grid?

According to a study conducted by the U.S. Department of Energy’s Pacific Northwest National Laboratory, the grid is already capable of supporting more than 150 million pure electric vehicles, even as electric cars could challenge state grids in the years ahead, a number equal to at least 63 percent of all gas-powered cars on the road today. This is significant, considering that a single EV plugged into a Level 2 charger can double a home’s peak electricity demand. Assuming all 236 million car owners eventually convert to EVs, utilities will need to increase grid capacity. However, today’s grid already has the capacity to accommodate the most optimistic prediction of 35-47 percent EV penetration by 2040, which is great news.

 

Should the EV opportunity be owned by utilities?

There’s significant ongoing debate among regulators and consumer advocacy groups as to whether utilities should own the EV charging infrastructure, with fights for control over charging reflecting broader market concerns today. Those who are opposed to this believe that the utilities will have an unfair pricing advantage that will inhibit competition. Similarly, if the infrastructure is incorporated into the rate base, those who do not own electric vehicles would be subsidizing the cost for those who do.

If the country is going to meet the future demands of electric cars, the charging infrastructure and power grid will need help, and electric utilities are in the best position to address the problem, as states like California explore EVs for grid stability through utility-led initiatives that can scale. By rate basing the charging infrastructure, utilities can provide charging services to a wider range of customers. This would not favor one economic group over another, which many fear would happen if the private sector were to control the EV charging market.

 

If you build it, will they come?

At this point, we can conclude that growth in EV market penetration is a tremendous opportunity for utilities, one that’s most advantageous to electricity customers if utilities own some, if not all, of the charging infrastructure. The question is, if you build it, will they come — and what are the consequences if they don’t?

With any new technology, there’s always a debate centered around adoption timing — in this case, whether to build the infrastructure ahead of demand for EV or wait for adoption to spike. Either choice could have disastrous consequences if not considered properly. If utilities wait for the adoption to spike, their lack of EV charging infrastructure could stunt the growth of the EV sector and leave an opening for third-party providers. Moreover, waiting too long will inhibit GHG emissions reduction efforts and generally complicate EV technology adoption. On the other hand, building too soon could lead to costly stranded assets. Both problems are rooted in the inability to control adoption timing, and, until recently, utilities didn’t have the means or the savvy to influence adoption directly.

 

How should utilities prepare for the EV?

Beyond the challenges of developing the hardware, partnerships and operational programs to accommodate EV, including leveraging energy storage and mobile chargers for added flexibility, influencing the adoption of the infrastructure will be a large part of the challenge. A compelling solution to this problem is to develop an engaged customer base.

A more engaged customer base will enable utilities to brand themselves as preferred EV infrastructure providers and, similarly, empower them to influence the adoption rate. There are five key factors in any sector that influence innovation adoption:

  1. Relative advantage – how improved an innovation is over the previous generation.

  2. Compatibility – the level of compatibility an innovation has with an individual’s life.

  3. Complexity – if the innovation is to difficult to use, individuals will not likely adopt it.

  4. Trialability – how easily an innovation can be experimented with as it’s being adopted.

  5. Observability – the extent that an innovation is visible to others.

Although much of EV adoption will depend on the private vehicle sector influencing these five factors, there’s a huge opportunity for utilities to control the compatibility, complexity and observability of the EV. According to  “The New Energy Consumer: Unleashing Business Value in a Digital World,” utilities can influence customers’ EV adoption through digital customer engagement. Studies show that digitally engaged customers:

  • have stronger interest and greater likelihood to be early EV adopters;

  • are 16 percent more likely to purchase home-based electric vehicle charging stations and installation services;

  • are 17 percent more likely to sign up for financing for home-based electric vehicle charging stations; and

  • increase the adoption of consumer-focused programs.

These findings suggest that if utilities are going to seize the full potential of the EV opportunity, they must start engaging customers now so they can appropriately influence the timing and branding of EV charging assets.

 

How can utilities engage consumers in preparation?

If utilities establish the groundwork to engage customers effectively, they can reduce the risks of waiting for an adoption spike and of building and investing in the asset too soon. To improve customer engagement, utilities need to:

  1. Change their customer conversations from bills, kWh, and outages, to personalized, interesting topics, communicated at appropriate intervals and via appropriate communication channels, to gain customers’ attention.

  2. Establish their roles as trusted advisors by presenting useful, personalized recommendations that benefit customers. These tips should change dynamically with changing customer behavior, or they risk becoming stagnant and redundant, thereby causing customers to lose interest.

  3. Convert the perception of the utility as a monopolistic, inflexible entity to a desirable, consumer-oriented brand through appropriate EV marketing.

It’s critical to understand that this type of engagement strategy doesn’t even have to provide EV-specific messaging at first. It can start by engaging customers through topics that are relevant and unique, through established or evolving customer-facing programs, such as EE, BDR, TOU, HER.

As lines of communication open up between utility and users, utilities can begin to understand their customers’ energy habits on a more granular level. This intelligence can be used by business analysts to help educate program developers on the optimal EV program timing. For example, as customers become interested in services in which EV owners typically enlist, utilities can target them for EV program marketing. As the number of these customers grows, the window for program development opens, and their levels of interest can be used to inform program and marketing timelines.

While all this may seem like an added nuisance to an EV asset development strategy, there’s significant risk of losing this new asset to third-party providers. This is a much greater burden to utilities than spending the time to properly own the EV opportunity.

 

Related News

View more

Australia electricity market: Plan to avoid threats to electricity supply

National Electricity Market review calls for clear coal-fired closure schedules to safeguard energy security, backing a technology-agnostic clean energy and low emissions target with tradeable certificates to stabilise prices and support a smoother transition.

 

Key Points

A review proposing orderly coal closures and a technology-agnostic clean energy target to protect grid reliability.

✅ Mandates advance notice of coal plant closure schedules

✅ Supports clean energy and low emissions target with certificates

✅ Aims to stabilise prices and ensure system security

 

THE Latrobe Valley’s coal-fired power stations could be forced to give details of planned closures well in advance to help governments avoid major threats to electricity supply, amid an AEMO warning on reduced reserves across the grid.

The much-anticipated review of the national electricity market, to be released on Friday, will outline the need for clear schedules for the closure of coal-fired power stations to avoid rushed decisions on ­energy security.

It is believed the Turnbull government, which has ruled out taxpayer-funded power plants in the current energy debate, will move toward either a clean-energy or a low-emissions target that aims to bolster power security while reducing household bills and emissions.

The system, believed to be also favoured by industry, would likely provide a more stable transition to clean energy by engaging with the just transition concept seen in other markets, because coal-fired power would not be driven out of the market as quickly.

Sources said that would lead to greater investment in the energy sector, a surplus of production and, as seen in Alberta's shift to gas and price cap debate driving market changes, a cut in prices.

It is likely most coal-fired power stations, such as Yallourn and Loy Yang in the Latrobe Valley, would see out their “natural lives” under the government’s favoured system, rather than be forced out of business by an EIS.

The new target would be separate from the Renewable Energy Target which have come under fire because of ad hoc federal and state targets.

The Herald Sun has been told the policy would provide tradeable clean-energy certificates for low-emissions generation, such as wind, solar and gas and coal which used carbon capture and storage technology.

Energy retailers and large industrial users would then be ­required to source a mandated amount of certified clean power.

Federal Energy Minister Josh Frydenberg has repeatedly said any solution must be “technology agnostic” including gas, renewable energy and coal, amid ongoing debates over whether to save or close nuclear plants such as the Three Mile Island debate in other markets.

Energy Networks Australia’s submission to the review, chaired by Chief Scientist Alan Finkel, acknowledged the challenges in identifying potential generation closures, particularly with uncertain and poorly integrated state and national carbon policy settings.

The group said given the likelihood of further closures of coal fired generation units a new mechanism was needed to better manage changes in the generation mix, well in advance of the closure of the plant.

It said the implications for system stability were “too significant” to rely on the past short-term closures, such as Hazelwood, particularly when the amount of power generated could drive energy security to “tipping point”.

 

 

Related News

View more

Israeli ministries order further reduction in coal use

Israel Coal Reduction accelerates the energy transition, cutting coal use in electricity production by 30% as IEC shifts to natural gas, retires Hadera units, and targets a 2030 phase-out to lower emissions.

 

Key Points

Plan to cut coal power by 30%, retire IEC units, and end coal by 2030, shifting electricity generation to natural gas.

✅ 30% immediate cut in coal use for electricity by IEC

✅ Hadera units scheduled for retirement and gas replacement by 2022

✅ Complete phase-out of coal and gasoil in power by 2030

 

Israel's Energy and Water and Environmental Protection Ministers have ordered an immediate 30% reduction in coal use for electricity production by state utility Israel Electric Corporation as the country increases its dependence on domestic natural gas.

IEC, which operates four coal power plants with a total capacity of 4,850 MW and imports thermal coal from Australia, Colombia, Russia and South Africa, has been planning, as part of the decision to reduce coal use, to shut one of its coal plants during autumn 2018, when demand is lowest.

Israel has already decided to shut the four units of the oldest coal power plant at Hadera by 2022, echoing Britain's coal-free week milestones, and replace the capacity with gas plants.

"By 2030 Israel will completely stop the use of coal and gasoil in electricity production," minister Yuval Steinmetz said.

Coal consumption peaked in 2012 at 14 million mt and has declined steadily, aligning with global trends where renewables poised to eclipse coal in power generation, with the coming on line of Israel's huge Tamar offshore gas field in 2013.

In 2015 coal accounted for more than 50% of electricity production, even as German renewables outpaced coal in generation across that market. Coal's share would decline to less than 30% under the latest decision.

Israel's coal consumption in 2016 totaled 8.7 million mt, as India rationed coal supplies amid surging demand, and was due to decline to 8 million mt last year.

Three years ago, the ministers ordered a 15% reduction in coal use, while Germany's coal generation share remained significant, and the following year a further 5% cut was added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified