Vermont's New Governor Sticking with Renewable Energy Goal


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Vermont 90% Renewable Energy Goal drives clean power, solar projects, and green jobs, advancing climate targets through technology innovation, grid upgrades, and energy storage while boosting economic development and keeping young talent in-state.

 

Key Points

Vermont aims to source 90% of its energy from renewables by 2050, leveraging solar, storage, and grid innovation.

✅ Target: 90% renewables statewide by 2050.

✅ Focus: solar, energy storage, grid modernization.

✅ Benefits: economic development, green jobs, talent retention.

 

Vermont's new Republican governor said Monday he would stick with his Democratic predecessor's long-term goal of getting 90 percent of the energy needed in the state from renewable sources by 2050, aligning with national conversations about 100% clean electricity by 2035 set at the federal level.

But Gov. Phil Scott, highlighting the construction of a new solar power project in the parking lot of a Montpelier food cooperative, said he believed new technology would be needed to make it happen amid proposals for a tenfold increase in U.S. solar power in the coming years nationwide.

"When you look at projects like this and the way we've changed over the last decade in that regard I think it can be accomplished, but we're going to have to have some help in technology changes," Scott said, noting that New York's solar progress highlights regional momentum.

While helping to inaugurate the "Solar Canopy" developed by the Waterbury-based SunCommon, Scott said the business fits in well with the top goal of his new administration, economic development, as states like Rhode Island pursue 100% renewable electricity by 2030 to drive growth. He said it also creates jobs that keep young people from leaving the state.

For several years, Vermont has been working toward some of the most aggressive renewable energy goals in the country, alongside neighbors as Maine targets 100% renewable electricity by statute. Scott's predecessor, Democrat Peter Shumlin, set the long-term goal.

 

Related News

Related News

More than a third of Irish electricity to be green within four years

Ireland Wind and Solar Share 2022 highlights IEA projections of over 33% electricity generation from renewables, with variable renewable energy growth, capacity targets, EU policy shifts, and investments accelerating wind and solar deployment.

 

Key Points

IEA forecasts wind and solar to exceed 33% of Ireland's electricity by 2022, second in variable renewables after Denmark.

✅ IEA expects Ireland to surpass 33% wind and solar by 2022

✅ Denmark leads at ~70%; Germany and UK exceed 25%

✅ Investments and capacity targets drive renewable growth

 

The share of wind and solar in total electricity generation in Ireland is expected to exceed 33pc by 2022, according to the 'Renewables 2017' report from the International Energy Agency (IEA).

Among the findings, the report says that Denmark is on course to be the world leader in the variable renewable energy sector, with 70pc of its electricity generation expected to come from wind and solar renewables by 2022.

The Nordic country will be followed by Ireland, Germany and the UK, all of which are expected see their share of wind and solar energy in total electricity generation exceed 25pc, according to the IEA report.

In a move to increase the level of wind generation in Ireland, the Government-controlled Ireland Strategic Investment Fund (Isif) teamed up with German solar and wind park operator Capital Stage in January to invest €140m in 20 solar parks in Ireland.

#google#

The parks are being developed by Dublin-based Power Capital, and it marks the first time that Isif has committed to financing solar park developments in this country.

Globally, renewables accounted for almost two-thirds of net new power capacity, with nearly 165 gigawatts (GW) coming online in 2016.

This was a record year that was largely driven by a booming solar market in China and around the world.

In 2016 solar capacity around the world grew by 50pc, reaching over 74 GW, with China's solar PV accounting for almost half of this expansion. In another first, solar energy additions rose faster than any other fuel, surpassing the net growth in coal, the IEA report found.

China alone is responsible for over two-fifths of global renewable capacity growth, which, according to the IEA, is largely driven by concerns about the country's air pollution and capacity targets.

The Asian giant is also the world market leader in hydropower, bioenergy for electricity and heat, and electric vehicles, the IEA report said. In 2016 the United States remained the second largest growth market for renewables.

However, with US President Donald Trump withdrawing the country from the Paris Agreement on climate change, the country's commitment to renewable energy faces policy uncertainty.

Meanwhile, India continues to grow its renewable electricity capacity, and by 2022, the country is expected to more than double its current renewable electricity capacity, according to the IEA. For the first time, this growth over the forecast period (2016-2022) is higher compared with the European Union, according to the report.

Meanwhile in the EU, renewable energy growth over the forecast period is 40pc lower compared with the previous five-year period.

The low forecast in respect of the EU is based on a number of factors, the IEA said, including weaker electricity demand, overcapacity, and limited visibility on forthcoming auction capacity volumes in some markets.

Overall, the Government has committed to generating 40pc of its electricity from renewable energy sources by 2020.

That target is set to be missed, which would see the Government eventually having to fork out hundreds of millions of euro for carbon credits.

Later this year, Ireland will host Europe's biggest summit on Climate Innovation, during which over 50 nationwide events and initiatives will be held.

 

Related News

View more

New Alberta bill enables consumer price cap on power bills

Alberta Electricity Rate Cap shields RRO customers with a 6.8 cents/kWh price ceiling, stabilizing power bills amid capacity market transition, using carbon tax funding to offset spikes and enhance consumer protection from volatility.

 

Key Points

A four-year 6.8 cents/kWh ceiling on Alberta's RRO power price, backed by carbon tax to stabilize bills.

✅ Applies to RRO customers from Jun 2017 to May 2021

✅ Caps rates at 6.8 cents/kWh; lower RRO still applies

✅ Funded by carbon tax when market prices exceed cap

 

The Alberta government introduced a bill Tuesday, part of new electricity rules that will allow it to place a cap on regulated electricity rates for the next four years.

The move to cap consumer power rates at a maximum of 6.8 cents per kilowatt-hour for four years was announced in November 2016 by Premier Rachel Notley, although it was later scrapped by the UCP during a subsequent policy shift.

The cap is intended to protect consumers from price fluctuations from June 1, 2017, to May 31, 2021, as the province moves from a deregulated to a capacity power market amid a power market overhaul that is underway.

The price ceiling will apply to people with a regulated rate option. If the RRO is below 6.8 cents, they will still pay the lower rate.

The government isn't forecasting price fluctuations above 6.8 cents in this four-year period. If the price goes above that amount, funding would come from the carbon tax if required.

Funding may come from carbon tax

"We're taking a number of steps to keep prices low," said Energy Minister Marg McCuaig-Boyd. "But in the event that prices were to spike, the cap would automatically prevent the energy rate from going over 6.8 cents to give Albertans even more peace of mind." 

The government isn't forecasting price fluctuations above 6.8 cents in this four-year period. If the price goes above that amount, funding would come from the carbon tax.

McCuaig-Boyd said this would be an appropriate use for the carbon tax as the cap helps Albertans move to a greener energy system and change how the province produces and pays for electricity without relying as much on coal-fired electricity. 

The government estimates the program will cost $10 million a month for each cent the rate goes above 6.8 cents per kilowatt-hour. If rates remain below that amount, the program may not cost anything.

Wildrose electricity and renewables critic Don MacInytre said the move shows the government expects retail electricity rates will double over the next four years. 

MacIntyre argued a rate cap simply shifts increasing electricity costs away from consumers to the Alberta government. But ultimately everyone pays. 

"It's simply a shift of a burden from the ratepayer to the taxpayer, which is essentially the same person," he said. 

The City of Medicine Hat runs its own electrical system without a regulated rate option. The government will talk with the city to see if it is interested in taking part in the price cap protection.

About 60 per cent of eligible Albertans or one million households use the regulated rate option in their electricity contracts.

The current regulated rate option averages less than three cents per kilowatt-hour.

 

Related News

View more

Ontario opens first ever electric vehicle education centre in Toronto

Toronto EV Discovery Centre offers hands-on EV education, on-site test drives, and guidance on Ontario incentives, rebates, charging, and dealerships, helping drivers switch to electric vehicles and cut emissions through provincial climate programs.

 

Key Points

A public hub in Toronto for EV education, test drives, and guidance on Ontario incentives, rebates, and charging options.

✅ Free entry; neutral info on EV models and charging.

✅ On-site test drives; referrals to local dealerships.

✅ Backed by Ontario's cap-and-trade, utilities, and partners.

 

A centre where people can learn about electric vehicles and take them for a test drive has opened in Toronto, as similar EV events in Regina highlight growing public interest.

Ontario's Environment Minister Glen Murray says the Plug'n Drive Electric Vehicle Discovery Centre is considered the first of its kind and his government has pitched in $1 million to support it, alongside efforts to expand charging stations across Ontario.

Ontario's Environment Minister Glen Murray helps cut the ribbon on the first ever electric vehicle discovery centre. (CBC News)

Murray says the goal of the centre is to convince people to switch to electric vehicles in order to fight climate change, a topic gaining momentum in southern Alberta as well.

Visitors to the centre learn about how electric vehicles work and about Ontario government subsidies and rebates for electric car owners, as well as the status of the provincial charging network and infrastructure.

Visitors can test-drive vehicles from different companies and those who see something they like will receive a referral to an electric car dealership in their area.

The province hopes to have electric vehicles make up five per cent of all new vehicles sold by 2020. (Oliver Walters/CBC)

The Ontario government's Climate Change Action Plan includes a goal to have electric vehicles make up five per cent of all new vehicles sold by 2020, amid debate over whether the next wave will run on clean power in Ontario, and the discovery centre is part of that plan.

The centre is free for visitors. It's a public-private partnership funded from the provincial government's cap-and-trade revenue, with other funding from TD Bank Group, Ontario Power Generation, Power Workers' Union, Toronto Hydro and Bruce Power.

 

Related News

View more

Sparking change: what Tesla's Model 3 could mean for electric utilities

EV Opportunity for Utilities spans EV charging infrastructure, grid modernization, demand response, time-of-use rates, and customer engagement, enabling predictable load growth, flexible charging, and stronger utility branding amid electrification and resilience challenges.

 

Key Points

It is the strategy to leverage EV adoption for load growth, grid flexibility, and branded charging services.

✅ Monetizes EV load via TOU rates, managed charging, and V2G.

✅ Uses rate-based infrastructure to expand equitable charging access.

✅ Enhances resilience and DER integration through smart grid upgrades.

 

Tesla recently announced delivery of the first 30 production units of its Model 3 electric vehicle (EV). EV technology has generated plenty of buzz in the electric utility industry over the past decade and, with last week’s announcement, it would appear that projections of a significant market presence for EVs could give way to rapid growth.

Tesla’s announcement could not have come at a more critical time for utilities, which face unprecedented challenges. For the past 15 years, utilities have been grappling with increasingly frequent “100-year storms,” including hurricanes, snowstorms and windstorms, underscoring the reality that the grid’s aging infrastructure is not fit to withstand increasingly extreme weather, along with other threats, such as cyber attacks.

Coupled with flat or declining load growth, changing regulations, increasing customer demand, and new technology penetration, these challenges have given the electric utility industry good reason to describe its future as “threatened.” These trends, each exacerbating the others, mean essentially that utilities can no longer rely on traditional ways of doing business.

EVs have significant potential to help relieve the industry’s pessimistic outlook. This article will explore what EV growth could mean for utilities and how they can begin establishing critical foundations today to help ensure their ability to exploit this opportunity.

 

The opportunity

At the Bloomberg New Energy Finance (BNEF) Global Summit 2017, BNEF Advisory Board Chairman Michael Liebreich announced the group’s prediction that electric vehicles will comprise 35-47 percent of new vehicle sales globally by 2040.

U.S. utilities have good reason to be optimistic about this potential new revenue source, as EV-driven demand growth could be substantial according to federal lab analyses. If all 236 million gas-powered cars in the U.S. — average miles driven per year: 12,000 — were replaced with electric vehicles, which travel an average of 100 miles on 34 kWh, they would require 956 billion kWh each year. At a national average cost of $0.12 / kWh, the incremental energy sold by utilities in the U.S. would bring in around $115 billion per year in new revenues. A variety of factors could increase or decrease this number, but it still represents an attractive opportunity for the utility sector.

Capturing this burgeoning market is not simply a matter of increased demand; it will also require utilities to be predictable, adaptable and brandable. Moreover, while the aggregate increase in demand might be only 3-4 percent, demand can come as a flexible and adaptable load through targeted programming. Also, if utilities target the appropriate customer groups, they can brand themselves as the providers of choice for EV charging. The power of stronger branding, in a sector that’s experiencing significant third-party encroachment, could be critical to the ongoing financial health of U.S. utilities.

Many utilities are already keenly aware of the EV opportunity and are speeding down this road (no pun intended) as part of their plans for utility business model reinvention. Following are several questions to be asked when evaluating the EV opportunity.

 

Is the EV opportunity feasible with today’s existing grid?

According to a study conducted by the U.S. Department of Energy’s Pacific Northwest National Laboratory, the grid is already capable of supporting more than 150 million pure electric vehicles, even as electric cars could challenge state grids in the years ahead, a number equal to at least 63 percent of all gas-powered cars on the road today. This is significant, considering that a single EV plugged into a Level 2 charger can double a home’s peak electricity demand. Assuming all 236 million car owners eventually convert to EVs, utilities will need to increase grid capacity. However, today’s grid already has the capacity to accommodate the most optimistic prediction of 35-47 percent EV penetration by 2040, which is great news.

 

Should the EV opportunity be owned by utilities?

There’s significant ongoing debate among regulators and consumer advocacy groups as to whether utilities should own the EV charging infrastructure, with fights for control over charging reflecting broader market concerns today. Those who are opposed to this believe that the utilities will have an unfair pricing advantage that will inhibit competition. Similarly, if the infrastructure is incorporated into the rate base, those who do not own electric vehicles would be subsidizing the cost for those who do.

If the country is going to meet the future demands of electric cars, the charging infrastructure and power grid will need help, and electric utilities are in the best position to address the problem, as states like California explore EVs for grid stability through utility-led initiatives that can scale. By rate basing the charging infrastructure, utilities can provide charging services to a wider range of customers. This would not favor one economic group over another, which many fear would happen if the private sector were to control the EV charging market.

 

If you build it, will they come?

At this point, we can conclude that growth in EV market penetration is a tremendous opportunity for utilities, one that’s most advantageous to electricity customers if utilities own some, if not all, of the charging infrastructure. The question is, if you build it, will they come — and what are the consequences if they don’t?

With any new technology, there’s always a debate centered around adoption timing — in this case, whether to build the infrastructure ahead of demand for EV or wait for adoption to spike. Either choice could have disastrous consequences if not considered properly. If utilities wait for the adoption to spike, their lack of EV charging infrastructure could stunt the growth of the EV sector and leave an opening for third-party providers. Moreover, waiting too long will inhibit GHG emissions reduction efforts and generally complicate EV technology adoption. On the other hand, building too soon could lead to costly stranded assets. Both problems are rooted in the inability to control adoption timing, and, until recently, utilities didn’t have the means or the savvy to influence adoption directly.

 

How should utilities prepare for the EV?

Beyond the challenges of developing the hardware, partnerships and operational programs to accommodate EV, including leveraging energy storage and mobile chargers for added flexibility, influencing the adoption of the infrastructure will be a large part of the challenge. A compelling solution to this problem is to develop an engaged customer base.

A more engaged customer base will enable utilities to brand themselves as preferred EV infrastructure providers and, similarly, empower them to influence the adoption rate. There are five key factors in any sector that influence innovation adoption:

  1. Relative advantage – how improved an innovation is over the previous generation.

  2. Compatibility – the level of compatibility an innovation has with an individual’s life.

  3. Complexity – if the innovation is to difficult to use, individuals will not likely adopt it.

  4. Trialability – how easily an innovation can be experimented with as it’s being adopted.

  5. Observability – the extent that an innovation is visible to others.

Although much of EV adoption will depend on the private vehicle sector influencing these five factors, there’s a huge opportunity for utilities to control the compatibility, complexity and observability of the EV. According to  “The New Energy Consumer: Unleashing Business Value in a Digital World,” utilities can influence customers’ EV adoption through digital customer engagement. Studies show that digitally engaged customers:

  • have stronger interest and greater likelihood to be early EV adopters;

  • are 16 percent more likely to purchase home-based electric vehicle charging stations and installation services;

  • are 17 percent more likely to sign up for financing for home-based electric vehicle charging stations; and

  • increase the adoption of consumer-focused programs.

These findings suggest that if utilities are going to seize the full potential of the EV opportunity, they must start engaging customers now so they can appropriately influence the timing and branding of EV charging assets.

 

How can utilities engage consumers in preparation?

If utilities establish the groundwork to engage customers effectively, they can reduce the risks of waiting for an adoption spike and of building and investing in the asset too soon. To improve customer engagement, utilities need to:

  1. Change their customer conversations from bills, kWh, and outages, to personalized, interesting topics, communicated at appropriate intervals and via appropriate communication channels, to gain customers’ attention.

  2. Establish their roles as trusted advisors by presenting useful, personalized recommendations that benefit customers. These tips should change dynamically with changing customer behavior, or they risk becoming stagnant and redundant, thereby causing customers to lose interest.

  3. Convert the perception of the utility as a monopolistic, inflexible entity to a desirable, consumer-oriented brand through appropriate EV marketing.

It’s critical to understand that this type of engagement strategy doesn’t even have to provide EV-specific messaging at first. It can start by engaging customers through topics that are relevant and unique, through established or evolving customer-facing programs, such as EE, BDR, TOU, HER.

As lines of communication open up between utility and users, utilities can begin to understand their customers’ energy habits on a more granular level. This intelligence can be used by business analysts to help educate program developers on the optimal EV program timing. For example, as customers become interested in services in which EV owners typically enlist, utilities can target them for EV program marketing. As the number of these customers grows, the window for program development opens, and their levels of interest can be used to inform program and marketing timelines.

While all this may seem like an added nuisance to an EV asset development strategy, there’s significant risk of losing this new asset to third-party providers. This is a much greater burden to utilities than spending the time to properly own the EV opportunity.

 

Related News

View more

UK must be ready for rise of electric vehicles, says ABB chief

UK EV Charging Infrastructure is accelerating as ABB and Formula E spotlight fast charging, smart grids, and public stations, preparing Britain for mass electric vehicle adoption with expanded capacity, reliable connectors, and nationwide coverage.

 

Key Points

The UK network of charge points, grid capacity, and services enabling secure, scalable electric vehicle adoption.

✅ ABB urges rapid rollout of fast chargers and smart grid upgrades

✅ National Grid forecasts up to 9m EVs by 2030 in the UK

✅ Government GBP 400m investment targets reliable nationwide coverage

 

The UK should speed up preparations for the rise of electric vehicles, according to the chief executive of ABB, the world’s largest supplier of fast-charging points.

Speaking as the Switzerland-based engineering firm became the first official sponsor of the electric street racing series Formula E, Ulrich Spiesshofer predicted a flood of consumer take-up of plug-in cars, noting how EV inquiries surged in the UK during a recent fuel supply crisis.

And he added his voice to warnings that Britain must move faster to make sure owners of electric vehicles are not stymied by a shortage of charging bays or cost concerns among consumers.

“E-mobility is unstoppable, it’s just a question of how fast and how deep it will be deployed,” he said. “The UK has a big population that really wants to contribute to a greener, more sustainable world. But there’s always a question of whether it’s quick enough. In the next couple of years, it’s in the interest of everybody to make sure the infrastructure is coming up.”

 

How green are electric cars?

He said this would include adding to the UK’s network of electric charging points, as well as ensuring enough energy capacity so that the grid can cope with rising demand.

There are 14,344 charging connectors in the UK, according to ZapMap, which charts the scale of the UK’s network.

Those charging points served around 132,000 plug-in vehicles at the end of 2017, but the National Grid has predicted that the number of electric cars could surge to 9m by 2030.

“In the next couple of years, it’s in the interest of everybody to make sure the infrastructure is coming up,” said Spiesshofer.

He welcomed the government’s budget pledge to spend £400m on improving the UK’s charging point network but warned that the power grid also needed to be ready to meet the increased demand, which many argue is manageable with proper management approaches.

Electric cars have been forecast to add about 18 gigawatts of power demand to the grid, the equivalent of six Hinkley Point C nuclear power stations.

Spiesshofer said he hoped ABB’s sponsorship of Formula E, which will last until 2025, would help spur interest in electric cars and lead to technological breakthroughs, even as the US EV boom tests charging capacity elsewhere.

 

Related News

View more

Carnegie Teams with Sumitomo for Grid-Scale Vanadium Flow Battery Storage

Australian VRF Battery Market sees a commercial-scale solar and storage demonstration by Energy Made Clean, Sumitomo Electric, and TNG, integrating vanadium redox flow systems with microgrids for grid-scale renewable energy reliability across Australia.

 

Key Points

A growing sector deploying vanadium redox flow batteries for scalable, long-life energy storage across Australia.

✅ Commercial demo by EMC, Sumitomo Electric, and TNG

✅ Integrates solar PV with containerized VRF systems

✅ Targets microgrids and grid-scale renewable reliability

 

Carnegie Wave Energy’s 100 per cent owned subsidiary, Energy Made Clean, is set to develop and demonstrate a commercial-scale solar and battery storage plant in Australia, after entering into a joint venture targeting Australia’s vanadium redox flow (VRF) battery market.

Carnegie said on Tuesday that EMC had signed a memorandum of understanding with Japanese company Sumitomo Electric Industries and ASX-listed TNG Limited to assess the potential applications of VRF batteries through an initial joint energy storage demonstration project in Australia.

The deal builds on a June 2015 MOU between EMC and emerging strategic metals company TNG, to establish the feasibility of Vanadium Redox batteries. And it comes less than two months after Carnegie took full ownership of the Perth-based EMC, which has established itself as one of the Australia’s foremost micro-grid and battery storage businesses, reflecting momentum in areas such as green hydrogen microgrids internationally.

Energy Made Clean’s main role in the partnership will be to identify commercial project site opportunities, while also designing and supplying a compatible balance of plant – likely to include solar PV – to integrate with the VRF containerised system being supplied by Sumitomo.

The demonstration will be of commercial size, to best showcase Sumitomo’s technology, the companies said; with each party contributing to their core competencies, and subsequently cooperating on the marketing and sales of VRF batteries.

As we have noted on RE before, vanadium redox flow batteries are tipped to be one of the key players in the booming global energy storage market, alongside innovations like gravity storage investment, as more and more renewable energy sources are brought onto grids around the world.

The batteries are considered uniquely suited to on- and off-grid energy storage applications, and emerging models like vehicle-to-building power, due to their scalability and long asset lives, with deep and very high cycling capability.

Australia, as well as being a key market for battery storage uptake, has seen a recent grid rule change that could impact big batteries, and has been noted for its potential to become a top global producer of vanadium – a metal found in a range of mineral deposits.

A number of Australian companies are already active in the local vanadium redox flow battery market, including miner Australian Vanadium – which recently inked a deal with Germany battery maker Gildemeister Energy Storage to sell its CellCube range of VRF batteries – and Brisbane based battery maker Redflow.

Energy Made Clean CEO John Davidson said the signing of the MOU would bring key industry innovators together to help revolutionise the vanadium redox flow battery market in Australia.

“This strategic MoU represents a compelling three-way tie-up of an emerging miner, a manufacturer and an integrator to accelerate the development of a major new energy growth market,” Davidson said.  

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified