Vermont's New Governor Sticking with Renewable Energy Goal


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Vermont 90% Renewable Energy Goal drives clean power, solar projects, and green jobs, advancing climate targets through technology innovation, grid upgrades, and energy storage while boosting economic development and keeping young talent in-state.

 

Key Points

Vermont aims to source 90% of its energy from renewables by 2050, leveraging solar, storage, and grid innovation.

✅ Target: 90% renewables statewide by 2050.

✅ Focus: solar, energy storage, grid modernization.

✅ Benefits: economic development, green jobs, talent retention.

 

Vermont's new Republican governor said Monday he would stick with his Democratic predecessor's long-term goal of getting 90 percent of the energy needed in the state from renewable sources by 2050, aligning with national conversations about 100% clean electricity by 2035 set at the federal level.

But Gov. Phil Scott, highlighting the construction of a new solar power project in the parking lot of a Montpelier food cooperative, said he believed new technology would be needed to make it happen amid proposals for a tenfold increase in U.S. solar power in the coming years nationwide.

"When you look at projects like this and the way we've changed over the last decade in that regard I think it can be accomplished, but we're going to have to have some help in technology changes," Scott said, noting that New York's solar progress highlights regional momentum.

While helping to inaugurate the "Solar Canopy" developed by the Waterbury-based SunCommon, Scott said the business fits in well with the top goal of his new administration, economic development, as states like Rhode Island pursue 100% renewable electricity by 2030 to drive growth. He said it also creates jobs that keep young people from leaving the state.

For several years, Vermont has been working toward some of the most aggressive renewable energy goals in the country, alongside neighbors as Maine targets 100% renewable electricity by statute. Scott's predecessor, Democrat Peter Shumlin, set the long-term goal.

 

Related News

Related News

Clean energy stored in electric vehicles to power buildings

Vehicle-to-Grid (V2G) enables bidirectional charging, letting EV batteries supply smart grid services to large buildings, support renewable energy integration, reduce battery degradation, and optimize demand response for efficient, resilient power management.

 

Key Points

Vehicle-to-Grid (V2G) is bidirectional EV charging that feeds the grid and buildings while protecting battery health.

✅ Uses idle EVs to power buildings and support renewables

✅ Smart algorithms minimize lithium-ion battery degradation

✅ Provides grid services, demand response, and peak shaving

 

Stored energy from electric vehicles (EVs) can be used to power large buildings -- creating new possibilities for the future of smart, renewable energy -- thanks to ground-breaking battery research from WMG at the University of Warwick.

Dr Kotub Uddin, with colleagues from WMG's Energy and Electrical Systems group and Jaguar Land Rover, has demonstrated that vehicle-to-grid (V2G) technology can be intelligently utilised to take enough energy from idle EV batteries to be pumped into the grid and power buildings -- without damaging the batteries.

This new research into the potentials of V2G shows that it could actually improve vehicle battery life by around ten percent over a year.

For two years, Dr Uddin's team analysed some of the world's most advanced lithium ion batteries used in commercially available EVs -- and created one of the most accurate battery degradation models existing in the public domain -- to predict battery capacity and power fade over time, under various ageing acceleration factors -- including temperature, state of charge, current and depth of discharge.

Using this validated degradation model, Dr Uddin developed a 'smart grid' algorithm, which supports grid coordination and intelligently calculates how much energy a vehicle requires to carry out daily journeys, and -- crucially -- how much energy can be taken from its battery without negatively affecting it, or even improving its longevity.

The researchers used their 'smart grid' algorithm to see if they could power WMG's International Digital Laboratory -- a large, busy building which contains a 100-seater auditorium, two electrical laboratories, teaching laboratories, meeting rooms, and houses approximately 360 staff -- with vehicle-to-building charging from EVs parked on the University of Warwick campus.

They worked out that the number of EVs parked on the campus (around 2.1% of cars, in line with the UK market share of EVs) could spare the energy to power this building, acting as capacity on wheels for electricity networks -- and that in doing so, capacity fade in participant EV batteries would be reduced by up to 9.1%, and power fade by up to 12.1% over a year.

It has previously been thought that extracting energy from EVs with V2G technology causes their lithium ion batteries to degrade more rapidly.

Dr Uddin's group (along with collaborators from Jaguar Land Rover) have proved, however, that battery degradation is more complex -- and this complexity, in operation, can be exploited to improve a battery's lifetime.

Given that battery degradation is dependent on calendar age, capacity throughput, temperature, state of charge, current and depth of discharge, V2G is an effective tool that can be used to optimise a battery's conditions such that degradation is minimised. Hence, taking excess energy from an idle EV to power the grid actually keeps the battery healthier for longer.

Dr Uddin commented on the research:

"These findings reinforce the attractiveness of vehicle-to-grid technologies to automotive Original Equipment Manufacturers: not only is vehicle-to-grid an effective solution for grid support -- and subsequently a tidy revenue stream -- but we have shown that there is a real possibility of extending the lifetime of traction batteries in tandem.

"The results are also appealing to policy makers interested in grid decarbonisation and addressing grid challenges from rising EVs across power systems."

The research, 'On the possibility of extending the lifetime of lithium-ion batteries through optimal V2G facilitated by an integrated vehicle and smart-grid system' is published in Energy.

It was funded by the Engineering and Physical Sciences Research Council and the WMG centre High Value Manufacturing Catapult, in partnership with Jaguar Land Rover.

 

Related News

View more

UPS pre-orders 125 Tesla electric semi-trucks

UPS Tesla Electric Semi Order marks the largest pre-order of all-electric Class-8 big rigs, advancing sustainable freight logistics with lower total cost of ownership, expanded charging infrastructure support, and competitive range versus diesel trucks.

 

Key Points

UPS's purchase of 125 Tesla all-electric Class-8 semis to cut costs, emissions, and modernize long-haul freight.

✅ Largest public pre-order: 125 electric Class-8 trucks

✅ Aims lower total cost of ownership vs diesel

✅ Includes charging infrastructure consulting by Tesla

 

United Parcel Service Inc. said on Tuesday it is buying 125 Tesla Inc. all-electric semi-trucks, the largest order for the big rig so far, as the package delivery company expands its fleet of alternative-fuel vehicles, including options like the all-electric Transit cargo van now entering the market.

Tesla is trying to convince the trucking community it can build an affordable electric big rig with the range and cargo capacity to compete with relatively low-cost, time-tested diesel trucks. This is the largest public order of the big rig so far, Tesla said.

The Tesla trucks will cost around $200,000 each for a total order of about $25 million. UPS expects the semi-trucks, the big rigs that haul freight along America's highways, will have a lower total cost of ownership than conventional vehicles, which run about $120,000.

Tesla has received pre-orders from such major companies as Wal-Mart, fleet operator J.B. Hunt Transport Services Inc. and food service distributor Sysco Corp.

Prior to UPS, the largest single pre-order came from PepsiCo Inc, for 100 trucks. 

UPS said it has provided Tesla with real-world routing information as part of its evaluation of the vehicle's expected performance.

"As with any introductory technology for our fleet, we want to make sure it's in a position to succeed," Scott Phillippi, UPS senior director for automotive maintenance and engineering for international operations, told Reuters.

Phillippi said the 125 trucks will allow UPS to conduct a proper test of their abilities. He said the company was still determining their routes, but the semis will "primarily be in the United States." Tesla will provide consultation and support on charging infrastructure, as electric truck fleets will need a lot of power to operate at scale.

"We have high expectations and are very optimistic that this will be a good product and it will have firm support from Tesla to make it work," Phillippi said.

The UPS alternative fuel fleet already includes trucks propelled by electricity, natural gas, propane and other non-traditional fuels, and interest in electric mail trucks underscores how delivery fleets are evolving.

About 260,000 semis, or heavy-duty Class-8 trucks, are produced in North America annually, according to FTR, an industry economics research firm.

Including the UPS order, Tesla has at least 410 pre-orders in hand, according to a Reuters tally.

Navistar International Corp. and Volkswagen AG hope to launch a smaller, electric medium-duty truck by late 2019, while rival Daimler AG has delivered the first of a smaller range of electric trucks to customers in New York, and Volvo Trucks planned a complete range of electric trucks in Europe by 2021.

Tesla unveiled its semi last month, following earlier plans to reveal the truck in October, and expects the truck to be in production by 2019.

 

Related News

View more

Clean energy's dirty secret

Renewable Energy Market Reform aligns solar and wind with modern grid pricing, tackling intermittency via batteries and demand response, stabilizing wholesale power prices, and enabling capacity markets to finance flexible supply for deep decarbonization.

 

Key Points

A market overhaul that integrates variable renewables, funds flexibility, and stabilizes grids as solar and wind grow.

✅ Dynamic pricing rewards flexibility and demand response

✅ Capacity markets finance reliability during intermittency

✅ Smart grids, storage, HV lines balance variable supply

 

ALMOST 150 years after photovoltaic cells and wind turbines were invented, they still generate only 7% of the world’s electricity. Yet something remarkable is happening. From being peripheral to the energy system just over a decade ago, they are now growing faster than any other energy source and their falling costs are making them competitive with fossil fuels. BP, an oil firm, expects renewables to account for half of the growth in global energy supply over the next 20 years. It is no longer far-fetched to think that the world is entering an era of clean, unlimited and cheap, abundant electricity for all. About time, too. 

There is a $20trn hitch, though. To get from here to there requires huge amounts of investment over the next few decades, to replace old smog-belching power plants and to upgrade the pylons and wires that bring electricity to consumers. Normally investors like putting their money into electricity because it offers reliable returns. Yet green energy has a dirty secret. The more it is deployed, the more it lowers the price of power from any source. That makes it hard to manage the transition to a carbon-free future, during which many generating technologies, clean and dirty, need to remain profitable if the lights are to stay on. Unless the market is fixed, subsidies to the industry will only grow.

Policymakers are already seeing this inconvenient truth as a reason to put the brakes on renewable energy. In parts of Europe and China, investment in renewables is slowing as subsidies are cut back, even as Europe’s electricity demand continues to rise. However, the solution is not less wind and solar. It is to rethink how the world prices clean energy in order to make better use of it.

 

Shock to the system

At its heart, the problem is that government-supported renewable energy has been imposed on a market designed in a different era. For much of the 20th century, electricity was made and moved by vertically integrated, state-controlled monopolies. From the 1980s onwards, many of these were broken up, privatised and liberalised, so that market forces could determine where best to invest. Today only about 6% of electricity users get their power from monopolies. Yet everywhere the pressure to decarbonise power supply has brought the state creeping back into markets. This is disruptive for three reasons. The first is the subsidy system itself. The other two are inherent to the nature of wind and solar: their intermittency and their very low running costs. All three help explain why power prices are low and public subsidies are addictive.

First, the splurge of public subsidy, of about $800bn since 2008, has distorted the market. It came about for noble reasons—to counter climate change and prime the pump for new, costly technologies, including wind turbines and solar panels. But subsidies hit just as electricity consumption in the rich world was stagnating because of growing energy efficiency and the financial crisis. The result was a glut of power-generating capacity that has slashed the revenues utilities earn from wholesale power markets and hence deterred investment.

Second, green power is intermittent. The vagaries of wind and sun—especially in countries without favourable weather—mean that turbines and solar panels generate electricity only part of the time. To keep power flowing, the system relies on conventional power plants, such as coal, gas or nuclear, to kick in when renewables falter. But because they are idle for long periods, they find it harder to attract private investors. So, to keep the lights on, they require public funds.

Everyone is affected by a third factor: renewable energy has negligible or zero marginal running costs—because the wind and the sun are free. In a market that prefers energy produced at the lowest short-term cost, wind and solar take business from providers that are more expensive to run, such as coal plants, depressing wholesale electricity prices, and hence revenues for all.

 

Get smart

The higher the penetration of renewables, the worse these problems get—especially in saturated markets. In Europe, which was first to feel the effects, utilities have suffered a “lost decade” of falling returns, stranded assets and corporate disruption. Last year, Germany’s two biggest electricity providers, E.ON and RWE, both split in two. In renewable-rich parts of America, power providers struggle to find investors for new plants, reflecting U.S. grid challenges that slow a full transition. Places with an abundance of wind, such as China, are curtailing wind farms to keep coal plants in business.

The corollary is that the electricity system is being re-regulated as investment goes chiefly to areas that benefit from public support. Paradoxically, that means the more states support renewables, the more they pay for conventional power plants, too, using “capacity payments” to alleviate intermittency. In effect, politicians rather than markets are once again deciding how to avoid blackouts. They often make mistakes: Germany’s support for cheap, dirty lignite caused emissions to rise, notwithstanding huge subsidies for renewables. Without a new approach the renewables revolution will stall.

The good news is that new technology can help fix the problem.  Digitalisation, smart meters and batteries are enabling companies and households to smooth out their demand—by doing some energy-intensive work at night, for example. This helps to cope with intermittent supply. Small, modular power plants, which are easy to flex up or down, are becoming more popular, as are high-voltage grids that can move excess power around the network more efficiently, aligning with common goals for electricity networks worldwide.

The bigger task is to redesign power markets to reflect the new need for flexible supply and demand. They should adjust prices more frequently, to reflect the fluctuations of the weather. At times of extreme scarcity, a high fixed price could kick in to prevent blackouts. Markets should reward those willing to use less electricity to balance the grid, just as they reward those who generate more of it. Bills could be structured to be higher or lower depending how strongly a customer wanted guaranteed power all the time—a bit like an insurance policy. In short, policymakers should be clear they have a problem and that the cause is not renewable energy, but the out-of-date system of electricity pricing. Then they should fix it.

 

Related News

View more

Montreal's first STM electric buses roll out

STM Electric Buses Montreal launch a zero-emission pilot with rapid charging stations on the 36 Monk line from Angrignon to Square Victoria, winter-tested for reliability and aligned with STM's 2025 fully electric fleet plan.

 

Key Points

STM's pilot deploys zero-emission buses with charging on the 36 Monk line, aiming for a fully electric fleet by 2025.

✅ 36 Monk route: Angrignon to Square Victoria with rapid charging

✅ Winter-tested performance; 15-25 km range per charge

✅ Quebec-built: motors Boucherville; buses Saint-Eustache

 

The first of three STM electric buses are rolling in Montreal, similar to initiatives with Vancouver electric buses elsewhere in Canada today.

The test batch is part of the city's plan to have a fully electric fleet by 2025, mirroring efforts such as St. Albert's electric buses in Alberta as well.

Over the next few weeks, one bus at a time will be put into circulation along the 36 Monk line, a rollout approach similar to Edmonton's first electric bus efforts in that city, going from Angrignon Metro station to Square Victoria Metro station. 

Rapid charging stations have been set up at both locations, a model seen in TTC's battery-electric rollout to support operations, so that batteries can be charged during the day between routes. The buses are also going to be fully charged at regular charging stations overnight.

Each bus can run from 15 to 25 kilometres on a single charge. The Monk line was chosen in part for its length, around 11 kilometres.

The STM has been testing the electric buses to make sure they can stand up to Montreal's harsh winters, drawing on lessons from peers such as the TTC electric bus fleet in Toronto, and now they are ready to take on passengers.

 

Keeping it local

The motors were designed in Boucherville, and the buses themselves were built in Saint-Eustache.

No timeline has been set for when the STM will be ready to roll out the whole fleet, but Montreal Mayor Denis Coderre, who was on hand at Tuesday's unveiling, told reporters he has confidence in the $11.9-million program.

"We start with three. Trust me, there will be more." said Coderre.

 

Related News

View more

Tesla’s lead battery expert hired by Uber to help power its ‘flying car’ service

Uber Elevate eVTOL Batteries enable electric air taxis with advanced energy storage, lithium-ion cell quality, safety engineering, and zero-emissions performance for urban air mobility, ride-hailing aviation, and scalable battery pack development.

 

Key Points

Battery systems for Uber's electric air taxis, maximizing energy density, safety, and cycle life for urban air mobility.

✅ Ex-Tesla battery leader guides pack design and cell quality

✅ All-electric eVTOL targets zero-emissions urban air mobility

✅ Focus on safety, energy density, fast charge, and lifecycle

 

Celina Mikolajczak, a senior manager for battery pack development at Tesla, has been hired by Uber to help the ride-hail company’s “flying car” project get off the ground. It’s an important hire because it signals that Uber plans to get more involved in the engineering aspects of this outlandish-sounding project.

For six years, Mikolajczak served as senior manager and technical lead for battery technology, cell quality, and materials analysis. She worked with Tesla’s suppliers, tested the car company’s lithium-ion batteries for long-term use as the age of electric cars accelerates, oversaw quality assurance, and conducted “failure analysis” to drive battery cell production and design improvements. In other words, Mikolajczak was in charge of making sure the most crucial component in Tesla’s entire assembly line was top of the line.

Now she works for Uber — and not just for Uber, but for Uber Elevate, the absurdly ambitious air taxi service that hinges on the successful development of electric vertical take-off and landing (eVTOL) vehicles. There are practically zero electric planes in service today, and definitely none being used in a commercial ride-hail service. The hurdles to getting this type of service off the ground are enormous.

Her title at Uber is director of engineering and energy storage systems, and today marks her first week on the job. She joins Mark Moore, the former chief technologist for on-demand mobility at NASA’s Langley Research Center, who joined Uber almost a year ago to help lend a professional appearance to Elevate. Both serve under Jeff Holden, Uber’s head of product, who oversees the air taxi project.

Uber first introduced its plan to bring ride-sharing to the skies in a white paper last year. At the time, Uber said it wasn’t going to build its own eVTOL aircraft, but stood ready to “contribute to the nascent but growing VTOL ecosystem and to start to play whatever role is most helpful to accelerate this industry’s development.”

Instead, Uber said it would be partnering with a handful of aircraft manufacturers, real estate firms, and government regulators to better its chances of developing a fully functional, on-demand flying taxi service. It held a day-long conference on the project in Dallas in April, and plans to convene another one later this year in Los Angeles. In 2020, Uber says its aerial service will take off in three cities: LA, Dallas-Fort Worth, and Dubai.

 

UBER’S TAKING A MORE PROMINENT ROLE

Now, Uber’s taking a more prominent role in the design and manufacturing of its fleet of air taxis, which signals a stronger commitment to making this a reality — and also more of a responsibility if things eventually go south, as setbacks like Eviation's collapse underscore.

Perhaps most ambitiously, Uber says the aircraft it plans to use (but, importantly, do not exist yet) will run on pure battery-electric power, and not any hybrid of gasoline and electricity. Most of the companies exploring eVTOL admit that battery’s today aren’t light enough or powerful enough to sustain flights longer than just a few minutes, but many believe that battery technology will eventually catch up, with Elon Musk suggesting a three-year timeline for cheaper, more powerful cells.

Uber believes that in order to sustain a massive-scale new form of transportation, it will need to commit to an all-electric, zero-operational emissions approach from the start, even as potential constraints threaten the EV boom overall. And since the technology isn’t where it needs to be yet, the ride-hail company is taking a more prominent role in the development of the battery pack for its air taxi vehicles. Mikolajczak certainly has her work cut out for her.

 

Related News

View more

Carnegie Teams with Sumitomo for Grid-Scale Vanadium Flow Battery Storage

Australian VRF Battery Market sees a commercial-scale solar and storage demonstration by Energy Made Clean, Sumitomo Electric, and TNG, integrating vanadium redox flow systems with microgrids for grid-scale renewable energy reliability across Australia.

 

Key Points

A growing sector deploying vanadium redox flow batteries for scalable, long-life energy storage across Australia.

✅ Commercial demo by EMC, Sumitomo Electric, and TNG

✅ Integrates solar PV with containerized VRF systems

✅ Targets microgrids and grid-scale renewable reliability

 

Carnegie Wave Energy’s 100 per cent owned subsidiary, Energy Made Clean, is set to develop and demonstrate a commercial-scale solar and battery storage plant in Australia, after entering into a joint venture targeting Australia’s vanadium redox flow (VRF) battery market.

Carnegie said on Tuesday that EMC had signed a memorandum of understanding with Japanese company Sumitomo Electric Industries and ASX-listed TNG Limited to assess the potential applications of VRF batteries through an initial joint energy storage demonstration project in Australia.

The deal builds on a June 2015 MOU between EMC and emerging strategic metals company TNG, to establish the feasibility of Vanadium Redox batteries. And it comes less than two months after Carnegie took full ownership of the Perth-based EMC, which has established itself as one of the Australia’s foremost micro-grid and battery storage businesses, reflecting momentum in areas such as green hydrogen microgrids internationally.

Energy Made Clean’s main role in the partnership will be to identify commercial project site opportunities, while also designing and supplying a compatible balance of plant – likely to include solar PV – to integrate with the VRF containerised system being supplied by Sumitomo.

The demonstration will be of commercial size, to best showcase Sumitomo’s technology, the companies said; with each party contributing to their core competencies, and subsequently cooperating on the marketing and sales of VRF batteries.

As we have noted on RE before, vanadium redox flow batteries are tipped to be one of the key players in the booming global energy storage market, alongside innovations like gravity storage investment, as more and more renewable energy sources are brought onto grids around the world.

The batteries are considered uniquely suited to on- and off-grid energy storage applications, and emerging models like vehicle-to-building power, due to their scalability and long asset lives, with deep and very high cycling capability.

Australia, as well as being a key market for battery storage uptake, has seen a recent grid rule change that could impact big batteries, and has been noted for its potential to become a top global producer of vanadium – a metal found in a range of mineral deposits.

A number of Australian companies are already active in the local vanadium redox flow battery market, including miner Australian Vanadium – which recently inked a deal with Germany battery maker Gildemeister Energy Storage to sell its CellCube range of VRF batteries – and Brisbane based battery maker Redflow.

Energy Made Clean CEO John Davidson said the signing of the MOU would bring key industry innovators together to help revolutionise the vanadium redox flow battery market in Australia.

“This strategic MoU represents a compelling three-way tie-up of an emerging miner, a manufacturer and an integrator to accelerate the development of a major new energy growth market,” Davidson said.  

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified