Latest Dielectric Fluids Articles

Transformer Oil Analysis Explained

Transformer oil analysis evaluates dielectric strength, moisture, acidity, interfacial tension, and dissolved gases in insulating oil. It ensures transformer reliability, detects faults, prevents failures, and supports predictive maintenance in power distribution.

 

What is Transformer Oil Analysis?

Transformer oil analysis is a diagnostic process that tests insulating oil for moisture, acidity, and gases to monitor the condition of transformers, improve reliability, and prevent failures.

✅ Identifies dielectric strength, moisture, acidity, and interfacial tension levels

✅ Detects dissolved gases that signal faults, overheating, or arcing

✅ Supports predictive maintenance and ensures compliance with IEEE and IEC standards

 

This form of testing is a cornerstone of preventative maintenance for electrical engineering and maintenance professionals. Ensuring the optimal condition of insulating fluids is essential for the reliable and efficient operation of high-voltage equipment. Degraded oil reduces efficiency, accelerates insulation aging, and increases the risk of failures. Regular analysis enables the early detection of potential issues, allowing for timely corrective actions that extend transformer life and ensure an uninterrupted power supply. For utility transformers, where downtime can disrupt entire networks, ongoing transformer oil analysis is as critical as proper transformer oil filling.

Electrical Transformer Maintenance Training

Substation Maintenance Training

Request a Free Training Quotation

Transformer oil testing plays a crucial role in ensuring the health of equipment. It ensures that insulating liquids continue to provide cooling and insulation while preventing dielectric failure. With modern grids demanding greater reliability, oil analysis combined with condition monitoring has become a strategic tool for utilities and industries. Recognized standards, such as IEEE C57.104, IEC 60599, and ASTM methods, guide testing procedures, the interpretation of results, and recommended corrective actions. In modern systems, condition monitoring works in tandem with oil testing to detect early signs of faults and extend the lifespan of transformers.

 

Dissolved Gas Analysis

Dissolved gas analysis (DGA) is the most widely used diagnostic test for assessing the condition of electrical equipment. By identifying gases such as hydrogen, methane, ethylene, and acetylene dissolved in the fluid, engineers can detect thermal faults, arcing, or overheating long before physical symptoms appear. For example, acetylene may indicate high-energy arcing, while elevated hydrogen levels often signal partial discharge. By comparing gas concentrations against IEEE and IEC thresholds, operators can implement corrective actions before problems escalate. Because distribution transformers play a critical role in voltage delivery, routine DGA ensures reliable service to residential, commercial, and industrial customers. The role of distribution transformers necessitates regular analysis to ensure stable voltage delivery to residential, commercial, and industrial users.

 

Moisture Content

Moisture is one of the leading causes of reduced dielectric strength. Even small amounts of water in insulating fluids increase the risk of flashover and accelerate the degradation of paper insulation. Regular testing identifies water contamination early, allowing timely fluid treatment or replacement. Moisture analysis not only protects winding insulation but also provides valuable insight into transformer loading, breathing, and sealing conditions. For professionals studying transformer design, moisture control illustrates the importance of oil’s dual role as coolant and insulator. For engineers studying the construction of a transformer, oil analysis provides practical insight into how insulating fluids preserve coil integrity and cooling efficiency.

 

 

Dielectric Breakdown Voltage Testing

The dielectric breakdown voltage (BDV) test measures the maximum voltage oil can withstand before electrical breakdown occurs. This simple yet powerful test determines whether oil continues to provide adequate insulation under stress. Results guide maintenance decisions such as filtration, degassing, or replacement. When combined with advanced diagnostics, such as hydrogen detection or DGA, BDV testing provides a comprehensive picture of equipment readiness for demanding operating conditions. Advanced diagnostics, such as dissolved gas analysis, can complement specialized equipment like a hydrogen detection system, safeguarding against internal faults.

 

Acid Number

Acid number testing (also known as neutralization number) monitors the buildup of acidic compounds formed as oil oxidizes over time. High acid levels corrode metals, degrade insulation, and contribute to the formation of sludge, which reduces cooling efficiency. Tracking the acid number enables predictive maintenance planning and helps operators avoid accelerated transformer aging. In combination with furan analysis, acid testing provides a strong indicator of overall fluid degradation and the health of solid insulation. Understanding how oil testing supports the operation of high-voltage transformers highlights its importance in maintaining safe insulation and efficient energy transfer.

 

Comparison Table

Aspect / Focus Transformer Oil Analysis Condition Monitoring Hydrogen Detection System
Purpose Evaluates insulating oil quality: moisture, acidity, dissolved gases, dielectric strength Tracks overall transformer performance, detecting faults early Detects hydrogen gas buildup from overheating or arcing
Key Parameters Moisture, acid number, dissolved gas levels, dielectric breakdown voltage Temperature, vibration, oil quality, load fluctuations Hydrogen ppm levels in oil or the surrounding environment
Reliability Impact Prevents insulation failure, extends transformer lifespan Reduces unplanned outages, predicts maintenance needs Prevents catastrophic failures and downtime
Maintenance Role Guides oil treatment, replacement, or corrective action Provides system-wide health insights for proactive maintenance Enables fast response to internal transformer faults


Interfacial tension (IFT)

Interfacial tension (IFT) testing, although less frequently discussed, is equally critical in evaluating quality. IFT measures the ability of an insulating fluid to separate from water. As fluid ages and becomes contaminated with byproducts of degradation, its interfacial tension decreases, indicating a loss in purity and efficiency. Ensuring high IFT values is essential for maintaining the insulating liquid's protective qualities and overall system performance.

 

Advanced Testing

Beyond standard tests, advanced diagnostics offer deeper insight. Furan testing detects cellulose breakdown, a key indicator of insulation aging. Power factor testing measures dielectric losses and reveals any deterioration in oil or insulation. Flash point testing evaluates fire safety by determining an oil’s resistance to ignition. Together, these tests provide a comprehensive health assessment, helping utilities maintain reliability, meet compliance requirements, and reduce lifecycle costs.

Routine transformer testing not only identifies immediate problems but also builds a historical database that improves long-term decision-making. Utilities, industrial plants, and service providers rely on these results to optimize maintenance schedules, extend equipment life, and improve grid stability.

 

Dielectric Fluid

Dielectric fluid examination also focuses on physical properties, such as flash point, which indicates the fluid's flammability and safety under operational conditions. A higher flash point denotes better thermal stability, ensuring the insulating liquid remains effective even in demanding environments. These parameters collectively highlight the importance of transformer oil testing and its role in safeguarding electrical systems. Maintaining the insulating fluid is just as vital as selecting the right dielectric fluid, since purity and dielectric strength directly affect operational safety.

Routine analysis not only identifies existing problems but also prevents potential failures, enabling a longer lifespan for critical assets. Electrical utilities and industries rely on these insights to maintain an uninterrupted power supply and reduce operational costs. By focusing on key themes such as dissolved gas analysis, moisture content, and acid number, this kind of analysis remains indispensable in modern power system management.

 

Frequently Asked Questions


What tests are done on a transformer?

Transformer oil is tested for moisture, acid number, dielectric breakdown voltage, and gases. Advanced methods include interfacial tension, furan testing, and power factor testing. Together, these tests provide a complete profile of insulation and oil condition.


How do you do oil analysis?

Oil analysis begins with proper sampling, followed by laboratory tests that utilize IEEE, IEC, and ASTM standards. Common tests include DGA, BDV, moisture, and acidity. Results are compared to benchmarks to detect issues and guide corrective maintenance.


How much does transformer oil sampling cost?

Costs vary by scope and provider. Basic testing (DGA, moisture, BDV) ranges from $200 to $500 per sample. Comprehensive packages with furan or advanced diagnostics may exceed $1,000. Despite costs, regular testing prevents failures and reduces long-term expenses.


How can the health of transformer oil be checked?

The health of insulating fluids is checked through routine tests, including DGA, BDV, moisture, acid number, and IFT. Advanced diagnostics and visual inspections supplement these methods, ensuring safe operation and extending service life.

 

Related Articles

 

View more

Sign Up for Electricity Forum’s Dielectric Fluids Newsletter

Stay informed with our FREE Dielectric Fluids Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Advancements in Dissolved Gas Analysis: CO/CO2 Ratio

Advancements in Dissolved Gas Analysis CO CO2 Ratio optimize transformer diagnostics with machine learning, IEC 60599 interpretation, insulation aging assessment, fault detection, and predictive maintenance for condition monitoring of power transformers.

 

What Are Advancements in Dissolved Gas Analysis CO/CO2 Ratio for Transformer Diagnostics?

New methods refine CO/CO2 ratio interpretation using ML, online sensors, and IEC 60599 to assess paper aging.

✅ CO/CO2 thresholds aligned with IEC 60599 and IEEE C57.104

✅ Online DGA sensors and digital twins for real-time aging insights

✅ Machine learning models correlate ratios with DP and hot-spot temp

 

For DGA interpretation, faults identified using hydrocarbon gases are considered more serious if they appear to affect paper insulation. That is made explicit in CIGRE technical brochure 771 [1]. Production of hydrocarbon gases from the oil by electrical or thermal stress does not significantly affect the oil’s function as a coolant or electrical insulator. On the other hand, production of carbon oxide gases from paper insulation raises a concern of paper deterioration. In particular, charring of the paper by a localized hot spot, especially in the windings, can lead to transformer failure.
Recently R. Cox and C. Rutledge have developed a method for judging the location of a fault in paper insulation from the percent change of the CO2/CO carbon oxide gas ratio [2, 3]. In a controlled experiment with a sacrificial transformer and a heating element, they found that direct heating of paper tends to generate more CO than CO2. Case studies of faulty transformers have revealed that a large percent decrease in CO2/CO is associated with charring of winding paper. A moderate percent decrease in the ratio is often associated with paper charring outside of the windings, such as on bushing or tap changer leads. A minor percent decrease or an increase of the ratio (with production of carbon oxide gas) is usually associated with mild bulk overheating of paper insulation rather than a localized hot spot. See Table 1 for details. For readers new to the topic, an overview of dissolved gas analysis principles can clarify how gas ratios inform fault localization.

Complementary context on transformer oil analysis helps explain the baseline behavior of oils under electrical and thermal stress.

We propose on mathematical grounds that the CO/CO2 ratio should be used instead of CO2/CO. With the most serious problem – charring of winding insulation – the CO2/CO ratio approaches zero asymptotically, so that numerical and graphical resolution are worst when the problem is most severe. By contrast, charring of insulating paper causes the CO/CO2 ratio to increase, while decreases are associated with less damaging low temperature bulk overheating. (See Table 1.) The case history portrayed in Figure 1 shows two episodes where CO/CO2 increased sharply in parallel with methane before the transformer failed with extensive charring of winding insulation. When applying ratio-based criteria, attention to DGA data quality practices can reduce misinterpretation from sampling or instrument bias.

Recent industry work on advancements in dissolved gas analysis also discusses trends in ratio visualization relevant to severe paper charring.



This behavior of the carbon oxide gas ratio can generally be explained by chemical principles. Higher temperature and lower oxygen concentration favor the production of CO, while lower temperature and higher oxygen concentration favor CO2 production. The oxygen concentration in the windings tends to be lower than in the more freely circulating oil outside the windings, so a hot spot in the windings produces more CO than one outside the windings.
We conclude with some useful observations. First, stabilization of the gas ratio after a large change is not necessarily a good sign – it may signify that the paper near a hot spot has been consumed. Second, the criteria in Table 1 remain roughly valid even in the presence of gas loss. Since CO is lost to the atmosphere much faster than CO2, the CO/CO2 ratio can only increase if CO is truly being produced faster than CO2. Finally, some carbon oxide ratio changes are not fault related. For example, in transformers that have just been degassed and in transformers immediately after factory heat run testing, the gas ratio may change as gas trapped in oil-soaked paper insulation diffuses into relatively gas-free bulk oil. For context on heat removal and fluid flow, see transformer cooling considerations that influence temperature gradients.

Background on oil in transformers provides additional insight into oxygen availability and gas dissolution dynamics.

References
1. CIGRE TF D1.01/A2.11 and WG D1.32, Advances in DGA Interpretation, CIGRE Technical Brochure 771, July 2019.
2. C. Rutledge and R. Cox, “A comprehensive diagnostic evaluation of power transformers via dissolved gas analysis,” 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T & D), Dallas, TX, 2016, pp. 1-5, doi: 10.1109/TDC.2016.7519996.
3. R. Cox, ‘“Categorizing Faults in Power Transformers via Dissolved Gas Analysis,” NETA World Journal, Spring 2020, pp. 64–68.

For extended reading, summaries of emerging analytical techniques offer broader context for interpreting field DGA patterns.


 

 

Related Articles

View more

Transformer Insulating Oil

Transformer Insulating Oil provides dielectric insulation, arc suppression, and cooling for power transformers, improving efficiency, preventing electrical faults, reducing downtime, and ensuring reliable high-voltage system performance in energy distribution networks.

 

What is Transformer Insulating Oil?

Transformer insulating oil is a vital fluid that plays a crucial role in the reliable and efficient operation of electrical power systems.

✅ Provides electrical insulation and suppresses arcing between components

✅ Dissipates heat to prevent transformer overheating and failure

✅ Protects against moisture, oxidation, and other contaminants

It serves as the lifeblood of power transformers, providing essential insulation, cooling, and arc-quenching properties. A deep understanding of the fluid's characteristics, functions, and maintenance requirements is essential for electrical engineers, technicians, and maintenance professionals to ensure the optimal performance and longevity of these critical components. To learn more about the role of dielectric fluids in transformer insulation and cooling, visit our main page on Dielectric Fluids.

 

Electrical Transformer Maintenance Training

Substation Maintenance Training

Request a Free Training Quotation

The essential role of transformer insulating oil in electrical power distribution systems cannot be overstated. This insulating fluid plays a vital role in ensuring transformers' efficiency, safety, and longevity. It is a crucial insulating material that supports electrical stability while also providing thermal management and arc-quenching capabilities. Without it, transformers would face higher risks of failure, overheating, and electrical breakdowns. For insight into cutting-edge techniques for fault detection, see our detailed guide on Advancements in DGA Data Quality.

One of the most critical aspects of this kind of dielectric fluid is its ability to act as an excellent electrical insulating medium. By filling the space around the core and coils, it prevents electrical arcing and ensures a high dielectric strength. This high dielectric strength is essential for maintaining insulation integrity under high-voltage conditions. The breakdown voltage of the insulating fluid must be tested regularly to ensure it retains its insulating properties. Testing procedures, such as dielectric strength testing and dissolved gas analysis (DGA), are used to identify potential issues and help maintain service life. Discover how dissolved gas patterns reveal transformer health in our technical article on Advancements in Dissolved Gas Analysis.

The properties of a dielectric fluid vary depending on its type. Mineral oil remains one of the most widely used types of transformer dielectric fluid due to its affordability, availability, and decent insulating performance. However, it’s not the only option. Synthetic ester oils offer a more sustainable and fire-resistant alternative. These oils have a high fire point, making them safer for use in sensitive environments where fire hazards must be minimized. Silicone-based dielectric fluids, on the other hand, are known for their ability to remain stable at high temperatures, offering an advantage in environments with extreme heat.


Insulation and Cooling

Another critical role of transformer insulating oil is heat dissipation. The design of transformers enables efficient heat transfer, allowing the insulating fluid to absorb and dissipate heat generated by the core and coils. This heat management is crucial for extending the service life. An essential property that supports this function is the pour point of the fluid, which ensures it remains fluid even at low temperatures. Fluid with a low pour point maintain fluidity, ensuring effective heat dissipation in colder climates. Dive deeper into diagnostic gas trends with our exploration of CO/CO₂ Ratio Analysis as an indicator of cellulose insulation degradation.


 


Arc Quenching and Oxidation Resistance

Regular transformer testing and maintenance are essential to maintaining the effectiveness of dielectric fluids. Filtration and purification are critical to remove contaminants, moisture, and gases that accumulate over time. Oxidation stability is one of the most important factors influencing the service life of the fluid. When oxidation occurs, it can form acids and sludge, which degrade the dielectric fluid's insulating properties and reduce its effectiveness. Regular filtration processes ensure the insulating oil remains pure and retains its excellent electrical insulating capabilities.


Testing and Maintenance

Regular testing and maintenance are essential to maintaining optimal performance and reliability. Dielectric strength testing measures the dielectric fluid's ability to withstand electrical stress, while dissolved gas analysis (DGA) identifies potential faults within the unit by analyzing the gases dissolved. Fluid filtration and purification techniques remove contaminants and moisture, prolonging the dielectric fluid's service life.


Types of Transformer Oil

Various types are available, each with its own specific characteristics. Mineral oil, a traditional choice, is derived from petroleum and offers a balance of performance and cost-effectiveness. However, it is susceptible to fire and environmental concerns. To address these issues, synthetic ester oils have emerged as a superior alternative. These dielectric fluids exhibit excellent fire resistance, high dielectric strength, and superior oxidation stability. They are also environmentally friendly and biodegradable. Silicone oil, another synthetic option, offers exceptional thermal stability and arc-quenching properties, making it suitable for high-temperature applications.


 


Environmental Impact and Safety

Environmental sustainability has also become a key consideration in the selection and management of dielectric fluid. Traditional mineral oil has environmental drawbacks, such as limited biodegradability and disposal challenges. Biodegradable types, such as synthetic ester oils, are now being used as environmentally friendly alternatives. These dielectric fluids offer the dual benefits of reducing environmental impact and providing high fire resistance. Moreover, responsible recycling and disposal practices for used transformer fluids are mandated by regulatory compliance standards to protect the environment.

Safety is a paramount concern when dealing with dielectric fluid. As the dielectric fluid circulates inside, it’s crucial to understand the risks associated with fire hazards. The flash point of a dielectric fluid is a key indicator of its fire resistance. Dielectric fluids with a high fire point are preferred in applications where fire safety is a priority. Emergency response procedures must also be established in the event of spills or leaks, ensuring that spills are contained quickly to prevent environmental contamination. Additionally, health and safety measures are critical for workers handling dielectric fluid. Direct exposure can pose health risks, requiring protective equipment and following established handling protocols. For additional context on cooling mechanisms and thermal performance, read our article on Transformer Cooling and Dielectric Fluids.


Frequently Asked Questions


What is another name for transformer oil?

Another name is insulating or dielectric fluid. It is also sometimes referred to as dielectric fluid because of its role as a dielectric material that prevents electrical discharges inside. In specific contexts, names like mineral-insulating dielectric fluid or ester-based insulating dielectric fluid may be used to specify the type of oil used.


Can I use transformer oil on my skin?

No, it is not recommended to use dielectric dielectric fluid on your skin. This oil is not designed for human contact and may contain chemical additives, contaminants, or degradation products that can irritate the skin. Prolonged exposure to certain types of mineral oil can pose health risks. Any exposure should be washed off immediately with soap and water for health and safety reasons.

 

What is the real name of transformer oil?

The real name depends on its composition. Most dielectric fluids are referred to as mineral insulating oil or naphthenic mineral oil. Biodegradable alternatives may be called natural ester insulating dielectric fluid or synthetic ester insulating oil. For example, common mineral oil used is a type of naphthenic oil, while modern, environmentally friendly units may use ester-based oils.

Transformer dielectric fluid is a vital component in electrical power distribution, playing a central role in insulation, cooling, arc quenching, and overall safety. The choice of dielectric fluid—whether mineral, synthetic ester, or silicone—depends on application requirements, safety considerations, and environmental impact. Regular testing, maintenance, and proper disposal methods ensure its continued performance and compliance with regulatory standards. By maintaining oxidation stability and leveraging dielectric fluids with a high fire point, operators can ensure the longevity and safety in various industrial and commercial settings.

View more

Dissolved Gas Analysis Of Transformer Oil

Dissolved Gas Analysis (DGA) is a key diagnostic tool for transformers, evaluating dissolved gases in insulating oil to identify overheating, arcing, partial discharge, and insulation breakdown. It enables predictive maintenance, improves power system reliability.

 

What is Dissolved Gas Analysis?

Dissolved Gas Analysis is a diagnostic method that evaluates gases in transformer insulating oil to identify electrical faults and ensure reliable operation.

✅ Detects partial discharge, arcing, and overheating

✅ Guides predictive maintenance and fault prevention

✅ Improves transformer reliability and system safety

 

DGA is a crucial tool for electrical engineering and maintenance professionals, providing vital insights into the health of transformers and other high-voltage assets. By detecting gases produced during insulation degradation or electrical faults, it offers early warning signs of potential failures. Proactive detection through DGA allows utilities and industries to prevent unplanned outages, extend equipment lifespan, and strengthen system reliability. As a cornerstone of condition-based maintenance, mastering DGA is essential for maintaining high-performance electrical infrastructure. Understanding dissolved gas analysis begins with the role of dielectric fluids, as the composition of transformer oil directly influences gas formation and the accuracy of fault detection.

 

Electrical Transformer Maintenance Training

Substation Maintenance Training

Request a Free Training Quotation

 

Transformer Fault Diagnosis

One of the key applications of DGA is transformer fault diagnosis. Under normal operating conditions, only trace gases form. During faults, such as partial discharge or arcing, heat and stress decompose insulating oil and cellulose, generating gases such as hydrogen, methane, ethane, ethylene, acetylene, carbon monoxide, and carbon dioxide.

  • Hydrogen (H₂): partial discharges

  • Methane (CH₄): low-temperature overheating of cellulose

  • Ethane (C₂H₆) and Ethylene (C₂H₄): higher-temperature thermal faults

  • Acetylene (C₂H₂): arcing

  • CO and CO₂: insulation paper degradation

The concentration and ratio of these gases provide a fingerprint of the fault type. Experts can distinguish between thermal faults, partial discharge, and severe arcing, enabling timely maintenance. New research highlights advancements in DGA data quality, improving reliability and reducing errors in transformer fault diagnosis.

 

Interpretation Methods and Fault Classification

Accurate interpretation is central to DGA. Several methods have been standardized:

  • Ratio Methods: Rogers and Doernenburg use gas concentration ratios to classify fault types.

  • Duval Triangle / Pentagon: graphical techniques plotting gas ratios (e.g., H₂:CH₄:C₂H₆) to identify fault zones (partial discharge, low/high thermal faults, arcing).

  • IEC 60599 and IEEE C57.104 Standards: provide threshold limits, diagnostic ratios, and guidelines for reporting and action.

Example: Using the Duval Triangle, a mixture rich in acetylene indicates arcing, while high ethylene levels suggest a high-temperature thermal fault.

Emerging methods, such as fuzzy logic and expert systems, refine interpretation when faults overlap, thereby enhancing the accuracy of fault detection. AI and machine learning now enhance accuracy, reducing misclassification in complex cases. Engineers applying DGA can benefit from recent advancements in dissolved gas analysis, which refine fault classification methods through better interpretation of gas ratios.

 

Case Study Example

A 230 kV transformer recorded abnormal gas levels:

  • H₂ = 750 ppm

  • CH₄ = 120 ppm

  • C₂H₆ = 40 ppm

  • C₂H₄ = 260 ppm

  • C₂H₂ = 15 ppm

  • CO = 900 ppm

Interpretation: The high hydrogen, ethylene, and carbon monoxide levels suggest a high-temperature thermal fault with cellulose insulation degradation. Using the Duval Triangle, this case falls into a “thermal fault >700°C” zone. Preventive maintenance avoided catastrophic failure. Specialists often review the CO/CO₂ ratio in dissolved gas analysis, since carbon gases provide unique insights into cellulose insulation degradation.

 

Predictive Maintenance

Predictive maintenance is another significant advantage of DGA. Since transformers are essential but costly assets, unplanned downtime can be financially devastating. Through DGA, utilities and industrial operators can predict when maintenance is required, rather than reacting to sudden failures. DGA monitors provide real-time tracking of gas concentrations, enabling maintenance teams to act before a minor issue becomes a major outage.

DGA shifts maintenance from a reactive to a predictive approach. By monitoring gas concentration trends, utilities can:

  • Predict when interventions are needed

  • Extend transformer service life

  • Reduce operational costs and outages

Continuous monitoring ensures that problems are addressed before they escalate into system failures. By pairing dissolved gas analysis with condition monitoring in an age of modernization, utilities can transition from reactive repairs to predictive maintenance strategies.

 

Gas Chromatography

DGA relies on gas chromatography, which separates and quantifies individual gases. A sample of insulating oil is processed to measure the concentrations of hydrogen, methane, ethane, ethylene, acetylene, carbon monoxide, and carbon dioxide in parts per million (ppm). This precision enables consistent results across laboratories and forms the foundation of DGA reporting. Gas concentrations revealed through DGA provide insights that complement power transformer health check programs, ensuring reliable performance of these critical assets.

 


 

 

IEC Standards and Key Gases

International Electrotechnical Commission (IEC) standards play a pivotal role in ensuring consistency and accuracy in dissolved gas analysis. These standards provide guidelines for the collection, handling, and analysis of oil samples, as well as for the interpretation of results. By following IEC standards, utilities and maintenance teams can achieve more reliable and comparable DGA results across different transformers and facilities. This uniformity helps ensure that decisions regarding maintenance and repair are based on accurate, standardized data.

Key gases such as hydrogen, methane, ethane, ethylene, and acetylene are essential to understanding the types of transformer faults. For example, the presence of acetylene often points to arcing, while ethylene and ethane are indicators of high-temperature thermal faults. Hydrogen is commonly associated with partial discharge, while methane is linked to overheating of cellulose insulation. Recognizing the role of these key gases allows technicians to identify specific transformer problems, prioritize maintenance, and avoid costly failures.

International standards ensure consistency.

  • IEC 60599: guidance on sampling, analysis, and interpretation.

  • IEEE C57.104: fault classification tables and gas thresholds.

Example gas thresholds (ppm):

Gas Normal Caution Dangerous
Hydrogen (H₂) <100 100–700 >700
Acetylene (C₂H₂) <1 1–10 >10
Ethylene (C₂H₄) <50 50–200 >200

 

Limitations and Caveats

While powerful, DGA has limits:

  • Cannot localize the exact fault location

  • Oil replacement can reset the gas history

  • Mixed faults produce ambiguous results

  • Stray gassing may occur at low temperatures

  • Sampling and handling errors can skew results

DGA should complement other diagnostics, such as dissolved moisture analysis, partial discharge monitoring, or infrared thermography. Dissolved gas analysis also supports the broader maintenance of substation transformers, where continuous monitoring is essential to preventing costly power disruptions.

 

Real-Time Monitoring

DGA monitors are essential tools for continuous tracking of gas levels in transformer oil. Unlike periodic sampling, DGA monitors operate in real-time, offering immediate insight into any changes in dissolved gases. By continuously observing gas concentrations, operators gain a deeper understanding of the transformer's condition, enabling swift responses to abnormal readings. Continuous tracking helps utilities maintain system reliability and prevent emergency shutdowns.

Online DGA monitors provide continuous tracking of gas levels, feeding data into SCADA and asset management systems. Unlike periodic lab sampling, online systems detect rapid changes, offering:

  • 24/7 protection for critical transformers

  • Faster fault detection and intervention

  • Integration with predictive analytics dashboards

Though more costly, real-time systems are invaluable for utilities managing large fleets of high-value transformers.

 

Advanced Analytics and AI

Recent research applies machine learning and deep learning to improve DGA interpretation. Models such as convolutional neural networks (CNNs), ensemble classifiers, and copula-based correlation methods identify fault patterns with greater accuracy. Studies (2023–2025, Nature, MDPI, arXiv) show AI can detect stray gassing and overlapping fault signatures earlier than classical methods. Combining traditional ratios with AI enhances both precision and reliability.


Frequently Asked Questions

 

When should transformers be retested with DGA?

Typically, every 6–12 months for routine testing, but more frequently if abnormal gas levels are detected or if online monitors show sudden changes.

 

How do you choose a DGA monitor?

Consider transformer criticality, cost, required gases, calibration frequency, and SCADA compatibility.

 

What is the minimum oil sample size?

About 50–100 mL is typically required for laboratory gas chromatography.

 

What role does cellulose insulation play in gas generation?

Breakdown of cellulose produces CO and CO₂, indicating paper degradation in addition to oil fault gases.

 

Can DGA predict all failures?

No. While highly effective, it should be combined with other diagnostics for complete transformer condition monitoring.

 

Related Articles

 

View more

Oil For Transformers - Efficient Operation

Oil for transformers acts as a vital dielectric fluid, providing insulation, cooling, and arc suppression. By reducing heat buildup and protecting internal components, high-quality transformer oil ensures safe, efficient, and long-lasting performance in distribution systems.

 

What is Oil for Transformers?

Oil for transformers is a specialized insulating and cooling medium used in electrical transformers. It ensures safe, efficient, and long-lasting operation.

✅ Provides electrical insulation between windings and core

✅ Dissipates heat to prevent overheating and equipment failure

✅ Suppresses arcing and prolongs unit service life

 

Electrical Transformer Maintenance Training

Substation Maintenance Training

Request a Free Training Quotation

Oil for transformers plays a critical role as a dielectric fluid, ensuring the safe and efficient operation of electrical transformers. The type of fluid used maintains the integrity of both paper insulation and solid insulation, ensuring efficient performance in fluid-filled electrical systems. As an insulating medium, it not only prevents electrical breakdown but also helps in cooling the equipment by dissipating the heat generated during operation. Equipment liquid, typically mineral-based or synthetic, is designed to offer excellent electrical insulation properties, enhance operational longevity, and protect against faults or failures. This fluid is essential for maintaining the equipment’s performance, safeguarding against short circuits, and improving overall system reliability. In this article, we’ll explore the importance of liquid in equipment, its types, and why it's crucial for both electrical safety and efficiency. Utilities rely on distribution transformers filled with high-quality oil to ensure reliable service across neighborhoods and industrial facilities.

 

Transformer Oil Comparison Table

Oil Type Key Features Advantages Limitations
Mineral Oil Petroleum-based dielectric fluid Cost-effective, excellent cooling performance Flammable, environmentally harmful, prone to aging
Silicone Oil Synthetic, thermally stable Fire-resistant, high flash point, long lifespan Expensive, limited biodegradability
Synthetic Ester Man-made ester-based fluid Biodegradable, high fire safety, stable at high temperatures Higher cost, limited field experience
Natural Ester (Vegetable Oil) Derived from renewable plant oils Sustainable, biodegradable, high fire point Sensitive to moisture, higher viscosity

 

Types of Transformer Oil

Equipment is typically filled with mineral liquid, which has been the most commonly used insulating liquid due to its stability, thermal performance, and cost-effectiveness. However, recent advancements have led to the development of alternative liquids, such as natural esters, which offer improved environmental benefits and higher fire points, reducing the risk of fire hazards. These alternative liquids also contain small amounts of fatty acids that enhance their oxidation stability and performance under high temperatures. The construction of transformers includes the careful integration of insulating oil to protect windings and cores from overheating and electrical breakdown.

 

Electromagnetic Operation and Insulation

The electromagnetic operation of equipment involves the flow of current through windings, which induces magnetic fields and generates heat. Proper cooling and insulation are necessary to maintain the efficiency of this process. The liquid not only aids in cooling but also provides protection to the windings and contacts inside the equipment. Contact configurations within the equipment determine how electrical circuits connect and disconnect, and the insulating properties of the liquid prevent unintended short circuits or failures. The role of transformer insulation is closely tied to oil performance, ensuring both dielectric strength and thermal management.

 

Different Types of Transformer Oils

Different types of liquid equipment are available, including mineral-based and synthetic alternatives. Mineral liquids have been widely used for decades due to their proven reliability; however, concerns over their environmental impact have led to the adoption of biodegradable options, such as natural esters. These fluids offer a high fire point and enhanced oxidation resistance, making them an attractive choice for applications where fire safety and sustainability are priorities.

 

Applications of Transformer Oil

The applications of equipment liquid extend beyond just insulation and cooling. It also plays a crucial role in suppressing arcing within the equipment and ensuring the longevity of its components. Over time, however, liquid can degrade due to exposure to high temperatures, moisture, and contaminants. This degradation can compromise its insulating and cooling abilities, making regular oil testing essential. By conducting routine liquid testing, engineers can assess the condition of the liquid, identify contamination, and determine whether it needs to be replaced or treated. High-voltage units, such as power transformers, rely on oil with stable dielectric properties to withstand demanding grid conditions.

 

Principles of Liquid Operation

The operation principles of the equipment liquid are closely tied to the efficiency of the equipment itself. When the equipment is energized, the liquid absorbs and transfers heat, maintaining a stable operating temperature. Any significant degradation in the liquid’s properties can lead to insulation failure and reduced performance. Ensuring that the liquid maintains its high dielectric strength is crucial for the equipment’s long-term reliability. Modern condition monitoring systems often track transformer oil quality, enabling predictive maintenance and reducing costly outages.

 

Fire Safety and Flash Point Considerations

Another key property of equipment liquid is its flash point, which determines the temperature at which the liquid can vaporize and ignite. A higher flash point indicates better fire resistance, reducing the risk of fires in electrical substations and industrial settings. Regular monitoring of the liquid’s flash point, along with other relevant properties, is a crucial step in ensuring equipment safety.

 

Frequently Asked Questions

 

What is a Dielectric liquid, and why is it used in electrical transformers?

Dielectric liquid is a specially refined mineral liquid used in electrical equipment as an insulating and cooling medium. It helps to insulate the equipment’s internal components, preventing electrical breakdown. Additionally, it dissipates heat generated during operation to keep the equipment at an optimal temperature, ensuring efficiency and preventing damage from overheating. Understanding transformer oil is key to extending equipment life, preventing faults, and maintaining overall system reliability.

 

What are the different types of oil used in transformers?

The two main types of oil used in equipment are mineral oil and synthetic oil.

  • Mineral oil, derived from petroleum, is the most commonly used liquid in equipment due to its excellent insulating properties, cost-effectiveness, and widespread availability. It is further divided into highly refined mineral liquid and less refined options.

  • Synthetic oils are man-made liquids designed to perform better at extreme temperatures and provide enhanced thermal stability. They are typically used in situations requiring higher performance or in environments with strict environmental and safety regulations.

 

How does equipment liquid prevent electrical breakdown?

Equipment liquid prevents electrical breakdown by providing high dielectric strength, which allows the equipment to handle high voltage without risk of failure. The liquid acts as an insulating barrier between electrical components, such as conductors and windings, reducing the chance of short circuits. Its insulating properties ensure that electrical discharges or arcing do not occur, thereby maintaining the equipment's stability.

 

What is the role of transformer oil in cooling and heat dissipation?

The primary role of equipment liquid in cooling is to absorb the heat generated by the electrical components inside the equipment during operation. The oil circulates through the equipment, transferring heat away from the core and winding. It then releases the heat through the outer surfaces or the radiator system, maintaining an optimal operating temperature to avoid overheating, which could damage internal components and shorten the equipment’s lifespan.

 

How can transformer oil be tested for quality?

Transformer liquid can be tested for quality using several methods, including:

  • Dielectric strength testing to check for the liquid's insulating properties.

  • Acidity tests to detect the presence of contaminants that could cause corrosion or degradation.

  • Moisture content analysis is performed to ensure the liquid remains free of water, which can reduce its insulation effectiveness.

  • Color and appearance tests to identify contaminants, oxidation, or breakdown.

 

Transformer liquid should be replaced when it shows signs of contamination, degradation, or when its dielectric strength drops below the acceptable level. Regular monitoring and testing can help determine when liquid replacement or filtration is necessary to ensure the continued safe and efficient operation of the equipment.

Oil for transformers serves as an essential insulating and cooling medium in electrical equipment, ensuring optimal performance and longevity. Mineral liquid, the most commonly used type, helps dissipate the heat generated during operation, preventing overheating that could lead to equipment failure. It also provides electrical insulation, preventing short circuits and electrical faults by maintaining the integrity of the equipment's internal components. Additionally, liquid serves as a barrier against moisture and contaminants, further enhancing the reliability and safety of the equipment. Over time, liquid may degrade, requiring periodic monitoring and replacement to maintain its effectiveness.

 

View more

Transformer Cooling

Transformer cooling enhances thermal management via oil-immersed and air-cooled systems, radiators, fans, and pumps. Methods like ONAN, ONAF, and OFAF reduce temperature rise, limit insulation aging, and improve efficiency under varying load.

 

What Is Transformer Cooling?

Transformer cooling removes heat from windings and core via oil or air circulation to control temperature and slow aging.

✅ Common types: ONAN, ONAF, OFAF, OFWF for various ratings.

✅ Components: radiators, fans, oil pumps, heat exchangers.

✅ Benefits: lower temperature rise, higher efficiency, longer life.

 

A little energy lost in a transformer must be dissipated as heat. Although this energy is but a small portion of the total energy undergoing transformation, it becomes quite large in amount in transformers of larger kVA ratings. To maintain efficiency and life expectancy the transformer's cooling system needs to be operating at peak performance. For dry-type transformers, the ventilation system of the room should be inspected to make sure it is operating efficiently. For forced air-cooled systems, the fan motors should be checked for proper lubrication and operation. Water-cooled systems must be tested for leaks and proper operation of pumps, pressure gauges, temperature gauges and alarm systems.

In liquid-filled designs, the choice and maintenance of oil in transformers directly influence heat removal performance and long-term reliability.

When a liquid coolant is used its dielectric should be tested. Water in the coolant will reduce its dielectric strength and the insulation quality. In cases where the dielectric strength of the coolant is reduced significantly, conducting arcs may develop causing short-circuits when the transformer is energized. A standard oil dielectric test involves applying high voltage to a sample taken from the transformer and recording the voltage at which the oil breaks down. If the average breakdown voltage is less than 20 kilovolts, the oil will need to be filtered until a minimum average breakdown of 25 kilovolts is achieved. Technicians often reference breakdown voltage of oil guidelines to interpret test results and schedule remediation.

Comprehensive transformer oil analysis can reveal moisture ingress, dissolved gases, and particulate contamination before failures occur.

Oil-insulated transformers use mineral oil for cooling. This oil is thin enough to circulate freely and does a good job of providing insulation between the transformer windings and the core. It is however subject to oxidation and if any moisture enters the oil, its insulating value is substantially reduced. In addition, mineral oil is flammable and therefore should not be located near combustible materials indoors or outdoors. In critical applications, selecting a high-quality transformer insulating oil mitigates oxidation, moisture effects, and thermal aging.

These behaviors align with the fundamental dielectric characteristics that govern insulation performance under electrical and thermal stress.

There are several types of transformer oil cooling solutions:

  • oil air
  • forced oil
  • oils water
  • oil natural
  • air forced
  • heated oil
  • oil forced
  • natural

In practice, each configuration must be evaluated alongside the properties of the chosen dielectric fluid to balance cooling effectiveness, safety, and service life.

Outdoor liquid-cooled transformers usually use mineral oil, and liquid cooled transformers for inside use are filled with a synthetic liquid that is nonflammable and nonexplosive. Synthetic oil coolants must be handled with care as they sometimes cause skin irritations. One type, askarelinsulated transformers used in past years contained polychlorinated biphenyls (PCBs), which are known to cause cancer. Askarel has been banned by the Environmental Protection Agency and its use as a transformer coolant is being phased out. However, askarel coolants are still found throughout the electrical industry in older transformers and direct contact with them should be avoided. The NEC still contains provisions for installing askarel transformers. The following is a list of the different types of liquid-filled transformers recognized by the NEC:

Facility engineers should review application requirements, fire codes, and material compatibility when selecting oil for transformers to ensure compliance and dependable operation.

  • Oil-Insulated--uses chemically untreated insulating oil
  • Askarel—uses nonflammable insulating oil
  • Less-Flammable Liquid-Insulated--uses reduced flammable insulating oil
  • Nonflammable Fluid-Insulated--uses noncombustible liquid

 

 

Related Articles

View more

What is Breakdown Voltage of Oil?

The breakdown voltage (BDV) of oil refers to the point at which insulating oil loses its dielectric strength and begins to conduct electricity, potentially leading to failure in electrical systems. In systems like transformers, insulating oil plays a critical role in preventing electrical discharges by providing both insulation and cooling. A BDV test is essential for evaluating the quality and effectiveness of the oil. The higher the BDV, the better the oil can resist electrical breakdown, ensuring the safety and efficiency of the system.

 

What is the breakdown voltage of oil, and why is it important in electrical systems?

The breakdown voltage (BDV) of oil is the maximum voltage at which the insulating properties of the oil fail, causing it to conduct electricity. This is critical in systems like transformers, where transformer oil is used as an insulator. If the BDV of the oil is low, it can lead to electrical failures, short circuits, and equipment damage. Testing and maintaining the BDV ensures that the oil can effectively insulate electrical components and prevent catastrophic breakdowns.

 

How is the breakdown voltage of oil measured, and what are the typical test methods?

The breakdown voltage test is performed by placing an oil sample between two electrodes immersed in the oil at a specific distance, known as the specific gap. A gradually increasing voltage is applied until the oil fails and allows current to flow between the electrodes. The voltage at which this occurs is recorded as the BDV. This test is crucial in assessing the dielectric strength of the oil. The BDV test is typically conducted according to industry standards to ensure accurate and reliable results.

 

What factors affect the breakdown voltage of insulating oil?

Several factors can affect the breakdown voltage of insulating oil. Conducting impurities, such as moisture, dust, and other contaminants, can significantly lower the BDV of the oil. Over time, oil exposed to high temperatures, oxidation, and electrical stress can degrade, reducing its dielectric properties. Additionally, the presence of gases dissolved in the oil, as well as the condition of the oil's molecular structure, can affect its ability to insulate. Proper maintenance and regular testing help ensure that these factors are kept in check.

 

What are the typical breakdown voltage values for transformer oil?

The typical breakdown voltage values for transformer oil range from 30 kV to 60 kV, depending on the quality of the oil and its use in the transformer. New transformer oil generally has a higher BDV, while older, degraded oil can have a significantly lower value. Industry standards set minimum acceptable BDV values to ensure that the oil can maintain its insulating properties under operating conditions. Regular testing is necessary to monitor the oil’s performance and ensure it meets the required specifications.

 

How can the breakdown voltage of oil be improved or maintained?

Maintaining and improving the breakdown voltage of insulating oil involves regular testing and filtration. Removing conducting impurities such as moisture and dissolved gases can help increase the BDV. Proper storage and handling of the oil are also critical in preventing contamination. In some cases, reconditioning the oil by removing contaminants and restoring its dielectric properties can extend its useful life. Periodic BDV tests ensure that the oil continues to meet the necessary dielectric standards, safeguarding the electrical system from potential failure.

The breakdown voltage (BDV) of oil is a key parameter in maintaining the safety and efficiency of electrical equipment, particularly in transformers. By regularly testing and ensuring that the oil retains its dielectric strength, engineers can prevent costly electrical failures and extend the lifespan of the equipment. Proper maintenance and testing of transformer oil through BDV tests are essential to keeping systems operating safely and effectively.

View more

All Dielectric Fluids Articles


Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified